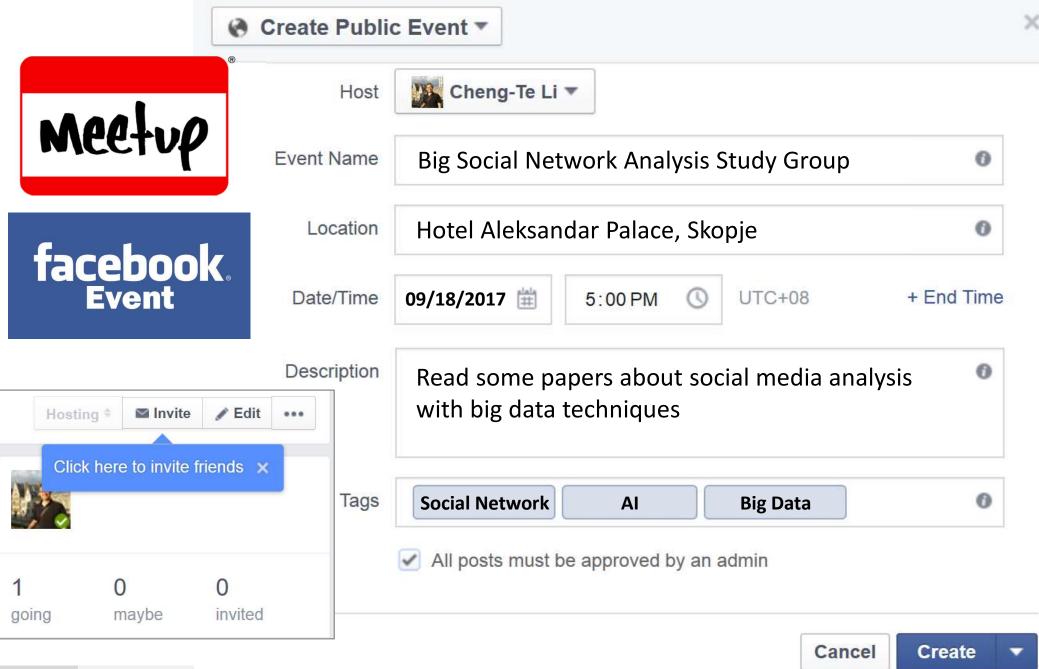


Influence Maximization-based Event Organization on Social Networks

Cheng-Te Li

National Cheng Kung University, Taiwan

chengte@mail.ncku.edu.tw



Social Event Organization

 You may want to plan parties or activities that the participated people will enjoy with one another

Event-based Social Services

2017/9/18

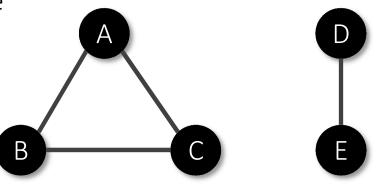
3

Influential Event Organization

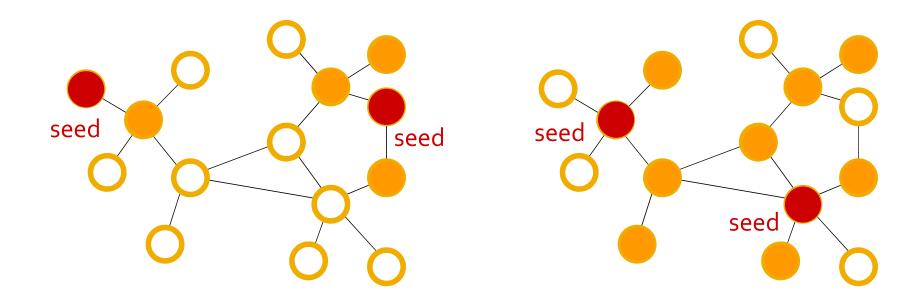
- Find a set of individuals who are interested in organize an event with some theme
 - Have better social interactions
 - Attract more people to participate the event

Technical conference

Fundraising for victims


Anti-nuclear campaign

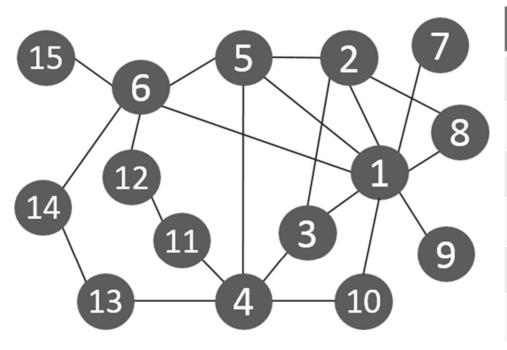
Team Formation


- Task = {ML, Art, Web, Python}
- Without the social network
 - Result 1 = {A, B, C} An effective team
 - Result $2 = \{A, E\}$ Hard to communicate
- With the social network

Expert	Skill		
Α	ML		
В	Ру		
С	Art, Web		
D	Art		
Е	Art, Web, Py		

- Given a task consisting of a set of skills, how to find a set of individuals that
 - Cover the required skills
 - Effectively communicate with each other

Social Influence Maximization


- Given a limit budget for initial advertising
- Identify a small set of influential customers (as seeds)
- such that by convincing them to adopt the product
- And finally trigger a larger cascade of influence

Influential Team Formation (ITF)

- Given
 - A social network (each node has a set of labels)
 - A set L of required labels depicting the event
 - \blacksquare The size k of the team
- Goal: Find a set S of nodes such that
 - *L* is covered by *S*
 - The Influence-Cost Ratio (ICR) of S is maximized

$$ICR(S) = \frac{\sigma(S)}{c(S)} \rightarrow$$
 Influence Spread: Expected number of nodes activated by S $c(S) \rightarrow$ Cost: Sum of all-pair shortest path length between nodes in S Maximize $\sigma(S)$ and Minimize $c(S) = IM + TF$

An ICR Example

Node	Label-Set	Activated-Set
1	{ a, e }	{ 3, 5, 7, 9 }
2	{ b, c, e }	{ 1, 3, 5, 8 }
3	{ a, b, c, d }	{ 1, 2 }
4	{}	{ 3, 5, 10, 11 }
5	{ c, e }	{ 2, 4, 6 }
6	{ b, d }	{ 5, 14, 15 }

L = {a,b,c,d,e}, k = 3	The selected set S	ICR Score
Team Formation (TF)	$S_{TF} = \{1, 2, 3\}$	$ICR(S_{TF}) = 7/3$
Influence Maximization (IM)	$S_{IM} = \{1, 4, 6\}$	$ICR(S_{IM}) = 10/5$
Influential Team Formation (ITF)	$S_{ITF} = \{1, 5, 6\}$	$ICR(S_{ITF}) = 10/3$

Solution 1: ICR-Greedy

- Based on the idea of Greedy influence maximization, we can directly maximize ICR in a greedy manner
- Repeatedly select the next node, which has the maximum marginal gain of ICR, into final set S

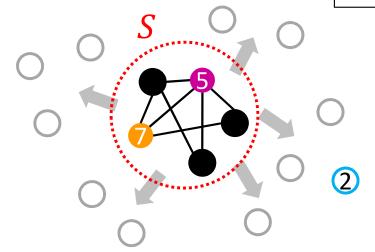
For each of k iterations: Add a node $u \in S \setminus V^L$ to set S that maximizes: $ICR(S \cup \{u\}) - ICR(S)$

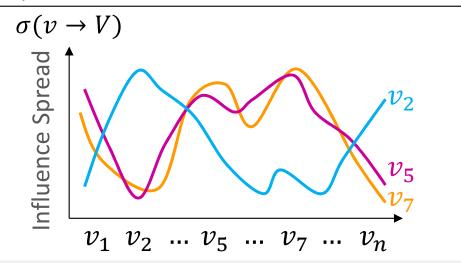
$$V^{L} = \{ v | v \in V \text{ and } L_{v} \cap L \neq \emptyset \}$$

The node set containing at least one of required labels

Solution 2: Mixing Influence and Cost Greedy

(M-Greedy)

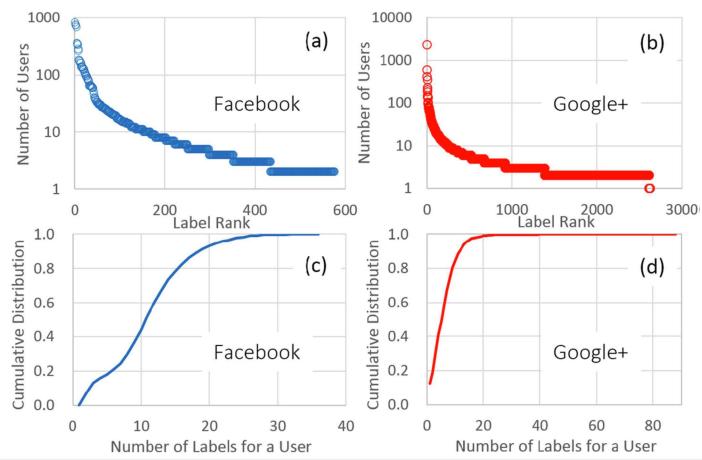

- Directly maximize ICR may destroy the connectivity among team members (i.e., make them disconnected)
- Divide the maximization of $ICR(S) = \frac{\sigma(S)}{c(S)}$ into interweavingly maximize $\sigma(S)$ and minimize c(S)
 - Balance the trade-off between $\sigma(S)$ and c(S)
- Similar to ICR-Greedy, but
 - In "i%2 = 0" rounds: $\underset{v \in V^L \setminus S}{\operatorname{argmax}} \sigma(S \cup \{v\}) \sigma(S)$
 - In "i%2 = 1" rounds: $\underset{v \in V^L \setminus S}{\operatorname{argmin}} c(S \cup \{v\}) c(S)$


(SimIS)

Solution 3: Similar Influence Search Heuristic

- ICR-Greedy and M-Greedy are inefficient to compute $\sigma(S)$
- SimIS Heuristic
 - Use Group-PageRank (GPR) to efficiently approximate the vector $\sigma(S \to V)$: the influence spread from S to all nodes
 - A node set S with lower cost c(S) means its members:
 - → Tend to be close to each other in the graph
 - → Generate similar distributions of influence to other nodes
 - Select the next node by:

$$\underset{v \in V^L \setminus S}{\operatorname{argmin}} \|GPR(\{v\} \to V) - GPR(S \to V)\|_F^2$$



Real Social Network Datasets

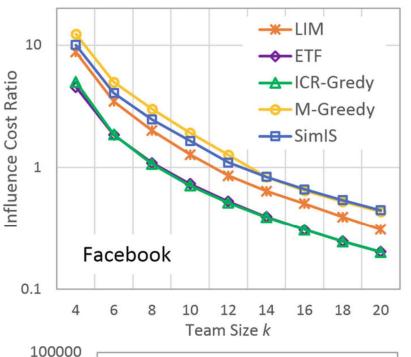
Datasets

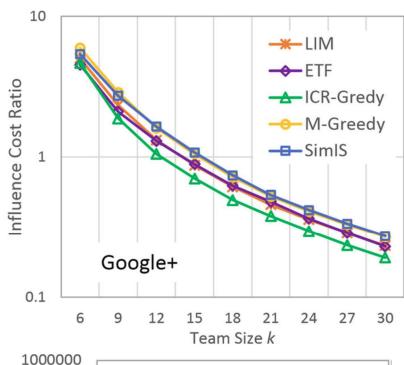
	#nodes	#edges	#labels
Facebook	1045	53498	576
Google+	3478	435569	2627

- Labels: user attributes in profiles
 - E.g. gender, interests, skills, hometown, schools

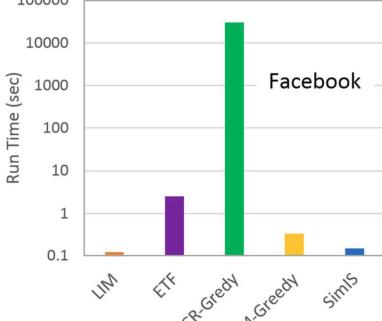
Evaluation Settings

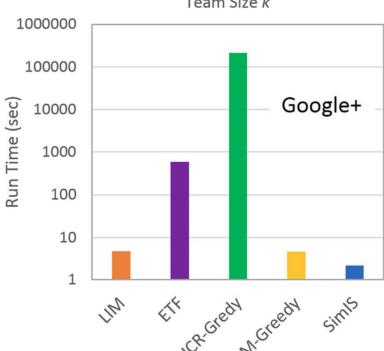
- Each required label set has 5 labels
- Random select 20 sets of required labels
- Independent Cascade model to estimate $\sigma(S)$
- Use the TRIVALENCY model to determine edge probabilities: uniformly selected from {0.1, 0.2, ..., 0.9}
- Competing methods
 - Enhanced Team Formation (ETF)


Lappas, T., et al. Finding a team of experts in social networks. KDD 2009.

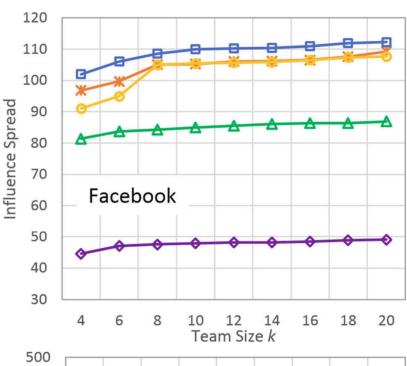

Linear Influence Maximization (LIM)

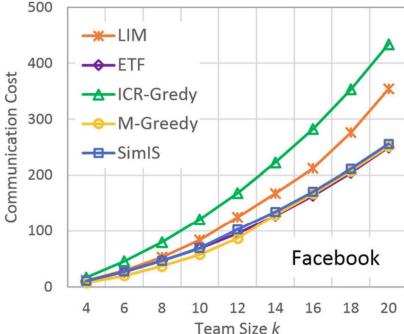
Liu, Q., et al. Influence maximization over large-scale socialnetworks: a bounded linear approach. CIKM 2014.

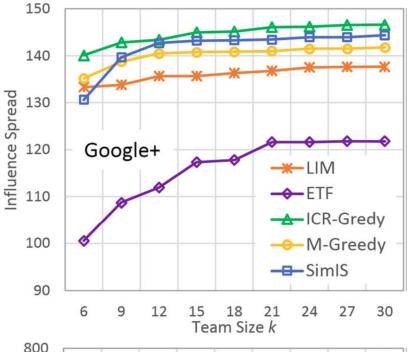

Evaluation on ICR and Time

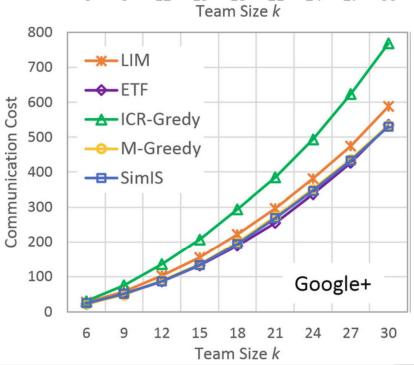

SimIS & M-Greedy are higher than others in ICR

SimS leads to the best time efficiency




Evaluation on Influence Spread & Cost


SimIM and ICR-Greedy generate higher σ


ETF and LIM have a trade-off between σ and c

ICR-Greedy is worst in c, but SimIS tends to be with lower c

2017/9/18 15

Conclusions

- We propose a novel Influential Team
 Formation (ITF) problem to find a team of users that can best organize influential events
- Three methods are proposed ICR-Greedy, M-Greedy, and SimIS
- Experiments conducted on Facebook and Google+ datasets exhibit the superior of SimIS in terms of ICR and run time

Cheng-Te Li

Email chengte@mail.ncku.edu.tw

Web http://myweb.ncku.edu.tw/~chengte/