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Abstract—Community detection on networks is a well-known 

problem encountered in many fields, for which the existing 
algorithms are inefficient 1) at capturing overlaps in-between 
communities, 2) at detecting communities having disparities in 
size and density 3) at taking into account the networks’ 
dynamics. In this paper, we propose a new algorithm (iLCD) for 
community detection using a radically new approach. Taking 
into account the dynamics of the network, it is designed for the 
detection of strongly overlapping communities. We first explain 
the main principles underlying the iLCD algorithm, introducing 
the two notions of intrinsic communities and longitudinal 
detection, and detail the algorithm. Then, we illustrate its 
efficiency in the case of a citation network, and then compare it 
with existing most efficient algorithms using a standard 
generator of community-based networks, the LFR benchmark.  
 

Index Terms—Community detection, dynamic networks, social 
network analysis 
 

I. INTRODUCTION 
HE detection of communities within networks is one of 
the most interesting and complex problem in the field of 

networks studies. For a while it was related to the problem of 
graph partitioning, aiming at dividing a graph into an arbitrary 
given number of groups and minimizing the number of edges 
between those groups. The counterpart of this approach is that 
one has to know the number and the size of the clusters one 
wants to obtain, which reduce the efficiency of such a tool for 
the detection of communities in real settings. In such latter 
circumstances one would at least expect a solution to find the 
best partition of a network without knowing initially the 
precise characteristics of these partitions, in particular their 
number and respective sizes.  
Community detection in its actual definition really began in 
2002 with the Girvan & Newman algorithm [1]. Since then, a 
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very large amount of algorithms have been proposed, 
sometimes with great improvements in time and efficiency. In 
[2] Fortunato confronted the best-known algorithms, 
proposing a benchmark (the LFR benchmark) that generates 
graphs with well-defined communities. Then, he ran the 
different algorithms on the generated graphs and compared the 
communities detected with the expected ones, known by 
construction. According to his results, two algorithms, 
Infomap [3] and the fast modularity optimization by Blondel 
et al. [4], are the best algorithms available until now. Looking 
at the results of Infomap, we can say that the problem of 
detection in "ideal" problems, as the ones produced by the 
LFR benchmark [6], is solved. But real-world networks have 
peculiar properties that could seriously reduce the efficiency 
of these algorithms. 
But another interesting algorithm was proposed recently, the 
k-clique percolation method (CPM) [5]. Although it is less 
efficient on classic community detection compared with the 
two previous ones, it proposes one more thing: it can detect 
overlapping communities.  
If we look at the case of community detection in social 
networks, we immediately notice that the question of 
overlapping communities is crucial.  For example, thinking 
about your personal social network, you will naturally 
consider that you belong to several communities: for example 
your family, your co-workers, college friends, and so on and 
so forth. These communities can be identified by topological 
properties, for instance clustering, i.e. an important density of 
the connections in-between the peoples of these communities 
– the members of your family are very likely to know each 
other. But every person also belongs to a lot of other 
communities, with few but essential overlaps (at least 
yourself), in-between those communities. The same thing can 
be observed in scientific networks, often captured using 
citation networks. Whatever the granularity of analysis, 
research domains are identifiable, but their boundaries are 
quite difficult to characterize, due to the existence of such 
overlaps or to the existence of scientific communities at the 
border of the well identified domains or even at the crossroad 
in-between different domains (think about bioinformatics). 
Another problem of community detection is related to the 
definition of community. To cite Fortunato: "The first problem 
in graph clustering is to look for a quantitative definition of 
community. No definition is universally accepted." [7] 
Actually, most algorithms have their own definitions of what a 
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community is, and analysis of real-world networks too, highly 
dependent on the context and the phenomenon you are 
studying. In this paper, we will study communities from the 
social network point of view. We think that in most cases, 
social communities are very close to the traditional definition 
of community, i.e. dense regions of the network that are 
weakly connected to the rest of the network, but we will not 
try to optimize a global function, like the modularity, as we 
think that in order to detect meaningful communities we have 
to include a part of the complexity of the underlying 
phenomenon. 
In section 2, we introduce and explicit two notions that 
provide a new vision over some aspects of this problem, the 
longitudinal detection and the intrinsic nature of communities. 
Section 3 proposes a new algorithm for community detection 
based on these notions. Section four describes tests on this 
algorithm, both to compare it with other algorithms using the 
LFR benchmark, and to observe its results on real networks. 

II. TWO CONCEPTS TO CHARACTERIZE SOCIAL 
COMMUNITIES 

In this section, we introduce two notions that we use in our 
algorithm. On the one hand, the intrinsic nature of 
communities deals with what makes a community distinct 
from the others. On the other hand, the longitudinal detection 
is a new dynamical way of approaching community detection. 
They have in common to make the distinction between 
overlapping communities easier. 

A. Intrinsic nature of communities 
We can oppose two definitions of community:  
The first one, used by most of algorithms, is what we can call 
a "relative" definition of community. In this perspective, a 
community is determined not only by nodes and edges of this 
community but also by the remaining part of the network, its 
properties, topology, and so on, i.e. the topological 
environment of the community. If we have the same 
configurations of nodes and edges in a sparse graph or in a 
denser one, most detection algorithms will detect the 
community in one of the case and not in the other. Moreover, 
if the algorithm detected a big community at the first run, and 
if we run again the same algorithm on this community only, 
the algorithm will generally propose a new decomposition of 
the community, without recognizing that in this latter case, the 
whole network is only one community. Even if this could 
make sense to detect sub-communities, we think this is pretty 
rare in real networks for small communities to be exactly 
included in bigger ones. In this perspective, studying only an 
isolated part of a network and ignoring outgoing edges is not 
efficient. 
We oppose this definition to what we call intrinsic 
communities. Let's take a simple example: for illustrative 
purpose, if we choose as a definition that "cliques (whatever 
their size) are always communities and a community must be a 
clique", we have a definition of intrinsic communities. This 

means that for one particular set of nodes and edges (let’s take 
a 4-clique for instance), we can define absolutely whether or 
not it is a community, whatever its topological environment. 
However, this is not necessarily a minimal community: if we 
remove edges or nodes, depending on the chosen definition of 
a community, we could detect other communities inside of it 
(3-cliques). Following the same idea, if the 4-clique is 
included in a 5-clique, depending on the chosen definition, we 
could stand that the community is the 5-clique and ignore the 
smaller one or not. The point of choosing the 5-clique rather 
than the 4-clique in this case is only a simplification choice. 
The important thing is, as long as a clique exists in a network, 
it is possible to identify it. An advantage of the intrinsic 
property of communities is that they can be as overlapped or 
intricated as possible, they always will be detected as different 
ones. If you think of two k-cliques, even if they have k-1 
nodes in common, each one of them is by definition different 
from the other. Therefore, the community is totally 
independent of its context or topological environment. A 5-
clique is as much a 5-clique in a large sparse network than in a 
small dense one. A final advantage deals with the 
determination power. Using an algorithm searching intrinsic 
communities in a network, it can determine whether or not this 
network is a community (depending on the chosen definition 
for a community, of course). We have to insist that the 
definition proposed in this paragraph for communities (defined 
as k-cliques) is for illustrative purpose only, the important 
point being the notion of intrinsic community.  
In the proposed algorithm, as we make longitudinal detections 
of communities, what will define intrinsically a community 
will not be defined only by its edges and nodes but also by a 
particular pattern of development. 
The CPM (Clique Percolation Method) already detects 
intrinsic communities: as an example, if we detect in a large 
graph a large community and then removing all the nodes not 
included in this community, the algorithm will again detect a 
single community, being now the whole network. 
We think that relative communities can be interesting, for 
example if we want to partition a large graph into large parts, 
for instance to identify the main scientific domains using the 
Google scholar network or to identify national communities 
on a web 2.0 social network. But the corresponding problem is 
more related to graph partitioning than to community 
detection, as it does not correspond to any social reality to 
consider all the people of a country as a community. On the 
other hand, to deal with social communities, that are 
frequently strongly overlapped and have an important 
disparity among them, we think that searching for intrinsic 
communities will be more efficient.  

B.  Longitudinal detection 
Trying to detect communities in a graph, we traditionally only 
look at a particular state of a network, a snapshot of this 
network at a given time. But nearly all networks have not been 
created in this state, they do have an history, a past that 
explains how they are now. This dynamics can be used to 
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analyze and/or explain the actual characteristics of the 
network. As an example, the power law for degree distribution 
observed in many networks can be explained by the 
preferential attachment model [8]. According to this model, 
we can use a dynamical hypothesis on the construction of the 
network to explain as well as to reproduce real networks. We 
think that the formation of communities can be studied in a 
similar way. In the past few years, some studies like the ones 
by Bilgin [9] or Leskovec [10] analyzed the evolution of 
networks in time. Some works have already been done to 
study the evolution of communities [12][13] but only by 
successively detecting communities on several snapshots of 
the graph at different time steps, and then looking for the 
differences. A community detection algorithm that would take 
into account the evolution of the network would enable to 
identify these dynamical communities more accurately. 

 
Figure 1 – in a), there are two communities (blue and red) and a set of already 
connected nodes (in white). In b), new edges have been created. A 
longitudinal detection can identify communities (for instance blue and red or 
blue, white and red), whereas for static algorithms, b) it remains a regular grid 
and no detection is possible. 
 
Longitudinal detection can be more powerful too, because this 
analysis matches with a reality. As an example, think about a 
community as the one of the members of a sports club. At the 
beginning, few persons will have the intention to create this 
club. To do so, they will have to interact a lot with each other, 
forming a cluster of well-connected people. At this stage, it is 
possible to intuitively identify an embryonic community. 
Afterwards, new people joining the club will have to interact 
with some clubs’ members, and, then, will probably be 
introduced to other members of the club in a kind of insertion 
dynamics. Though we can assume that the growth process of a 
community can be modeled by a kind of snowball effect, with 
initially a small community and new members joining 
gradually. This longitudinal vision can really be helpful when 
confronted to situations where two (or more) communities are 
close, with numerous links between them, but for side effects 
reasons. For example, the football team and the basketball 
teams of the same high school will have members that know 
well each other, because they are classmates, and they were 
probably even before entering their sports teams. If we look 
now starting with "basket-ball team" and "football team" as 
well-identified communities, and a pool of new students which 
are classmates, although they are well connected, by looking 

along time at who creates links with which sport team we will 
easily differentiate them (Figure 1) 
 
Of course, this snowball effect must be limited, otherwise the 
entire network would belong to the older communities. In our 
model, it's the intrinsic nature of communities that will limit 
the detection to realistic communities only. 
We have to rise the point of the availability of the longitudinal 
datasets needed to make such an analysis. The information 
concerning network dynamics does not exist for most datasets 
but some of them are quite naturally adapted and available, as 
it is the case of citation networks for example. From a 
technical point of view, this information could be easily 
obtained in web 2.0 social networks, 

III. THE ALGORITHM 

A. Description of the iLCD algorithm 
First, we need to define the input of the iLCD (intrinsic 
Longitudinal Community Detection) algorithm. Due to the 
longitudinal analysis, we will use a list of edges, ordered by 
their creation time, those edges could correspond to links 
creation among existing nodes or could also imply the creation 
of a new node. As some edges creations can be simultaneous 
(think about the publication of several articles in a given 
journal issue), we will use ordered sets of edges, where edges 
of a given set are created at the same time.  
More formally, let’s note G=(V,E) the graph that is 
dynamically built and C=<Ck> the set of communities that is 
dynamically built. Initially, G and C are empty. We then 
define Ein the set of edges in input as Ein = <Et> i.e. composed 
by ordered time-stamped sets of edges. 
Et= <(u,v)> is the set of edges (u,v) created at time t 
(u,v) being the edge linking nodes u and v.  
 
For each time-stamped set Et 

For each edge (u,v) of the set Et 
Add (u,v) to E. If u or v is not in V, add it to V 
 
Determine the updates of existing communities. For each 
community Ck to which u (respectively v) belongs, try to 
integrate v (resp. u) to Ck (1) 

   
End for 

  Update of previous communities 
If u and v do not already belong to the same community, 

Try to create a new community.(2)  
Merge similar communities.(3) 

End for 
 
We have to notice that, following our approach, each node can 
belong to one or more communities and that we add 
synchronously all links belonging to the same set Et, 
calculating first the potential induced changes by all the links 
added and hereafter proceeding to the update. A limitation of 
our solution is that at a given time step t we can’t add at the 
same time two new nodes and a link in-between. Taking the 
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example of citation networks, it would correspond to the 
situation where two papers published at the same time 
reference each others. 
 

1) Update of existing communities 
We detail here the procedure concerning the addition or not of 
new nodes to one or several existing communities. In our 
approach, a node can be integrated into a given community if 
it satisfies two conditions. For each community, we compute 
(and update each time the community is modified) two values 
that will be used to characterize it. These are the estimation of 
the mean number of second neighbors (EMSN) and the 
estimation of the mean number of robust second neighbors 
(EMRSN). These values represent, for a node of the 
community,  

• The mean number of neighbors inside the 
community it can access with a path of length 2 or 
less,  

• the mean number of neighbors inside the community 
that can be accessed with a path of length 2 or less, 
by at least two different paths (therefore robust). 

We do not try to compute the actual values of EMSN and 
EMRSN, but just an approximation of these values on a 
random network with the same number of nodes and edges 
than the considered community. Surprisingly, we could not 
find in the literature a formula to compute EMSN that take 
into account the redundancy in second neighbors, very strong 
in communities, though we calculate it as follows: 
let d be the average degree of the nodes of the community. 
 

€ 

d =
2l
n

⎢ 

⎣ ⎢ 
⎥ 

⎦ ⎥ 
  

with 
l : number of internal edges of the community  
n = number of nodes of the community 
 
We recursively calculate EMSN for a random network 
equivalent to the community,

€ 

f (d)  with 
 

€ 

f : 0;d[ ] →ℜ

f (i) =
i = 0→d

i > 0→ f (i −1) + d −1( )* n − f (i −1)
n

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

 

The idea is to successively count the number of neighbors 
encountered only once at rank two. Starting from a given node 
(i=0), we have on average d first neighbors. Then for each of 
these first neighbors, we could add on average d - 1 new 
neighbors, (one of its neighbors being already counted). The 
probability of these neighbors to not have been counted yet 
corresponds to the number of nodes not already counted as 
neighbors 

€ 

n − f (i −1)  over the total number of nodes n. 
The estimation of EMRSN is done in a similar way. 
 

Then, the calculation of the two indices done, we will accept a 
new node if: 

• The number of its neighbors at rank 2 in the 
community is greater than EMSN. It ensures that 
the community presents short paths in-between the 
nodes and corresponds to the quick spread of 
information inside communities. 

• The number of its robust neighbors at rank 2 is 
greater than EMRSN. This ensures that the node is 
not connected to its second neighbors only through 
very few hubs. It corresponds to the property of 
robustness of communities. The removing of one 
edge or one node does not change drastically the 
community, or the information flow inside of it. 

The main advantage of these adaptive thresholds is that they 
allow the existence in the same graph of big and small, dense 
and sparse communities, each having its own characteristic 
values we use to determine the belonging or not of new added 
nodes. 

2) Creation of a new community 
We now detail the procedure concerning the potential creation 
of a new community when new edges are added to the 
network at a given timestep. Each time a new edge is added to 
the network, we determine weather it enables to form a 
minimal community or not. The minimal community is a 
predefined pattern, which corresponds to the smallest 
community we want to detect. This pattern could be cliques of 
3 or 4 nodes, but if we want to detect only bigger and denser 
communities, or if we are working on very dense networks, 
we can choose bigger cliques as the minimal pattern to detect.  
Therefore, if this minimal pattern is detected, we create a new 
community. We then add to this community all the nodes 
composing the pattern. After that, we try to integrate to the 
community all the neighbors of every node of the pattern, 
simultaneously, as described in the preceding section.  

3) Merging similar communities 
Hereafter the addition of new nodes and edges to the network, 
after determining whether or not they join existing 
communities and whether or not they do create new ones, we 
merge the communities that are very close to each other. To 
proceed, at each step, we merge all communities that have 
more than a certain ratio of nodes in common. Actually, it is 
frequent that two communities initially detected as separated 
become more and more overlapped along time and become 
nearly identical. The definition of the threshold upon which 
we consider communities as identical is a though point, and 
depends on the results we want to obtain. If we want to 
conserve only drastically different communities, i.e. with a 
minimal overlap, we should set a low threshold (0.2,0.3). On 
the contrary, if we want to obtain more detailed results 
including more intricate communities, we should raise this 
threshold (0.7, 0.9). 
Depending then on the retained threshold, when two 
communities are detected as similar, we simply remove the 
younger one. In most cases, this younger community is more 
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likely to be just an artifact caused by the simultaneous 
inclusion of a set of nodes into an older community. We could 
maybe obtain better results by merging the two communities, 
however in this first version of the algorithm, we tried to limit 
as much as possible the use of uncertain heuristics. 

B. Parameters 
This algorithm finally uses only two parameters, which do not 
play really on the detection process but rather on the 
granularity of the results wanted. These parameters are:  
- The size of the minimal clique we want to detect Mk, which 
affect the creation of new communities. On small or sparse 
graphs, a value of 3 will be optimal, when a value of 4 will be 
more appropriate for bigger or denser graphs, to avoid 
detecting several times the same community. 
-The threshold for community merging Tm, dealing with the 
removal of similar communities, plays on the overlap between 
two communities we tolerate before than to decide they 
correspond to a single one. 
 

 
Figure 2 - CPM (k=3 or k=4) detect only one community in this network, 
while longitudinal detection detect two communities, with an overlap in the 
middle. 

C. Intuitive explanation 
Thinking about the meaning of the k-clique percolation 
method (CPM) for a social network, with k=4, we can 
interpret it as the following heuristic: a person belongs to a 
community if he has at least 3 relations inside this community 
and if each of these relations are linked together, moreover all 
of them might also have a relation with a fourth person in the 
community. We easily understand that it’s very likely to well 
detect communities based of the properties of triangle closure 
and high clustering. However, it seems a little arbitrary and it 
also has limitations. First, it depends strongly on the mean 
degree of nodes. But the main problem is probably that the 
condition is not restrictive enough. A node connected only to a 
single 4-clique in a large community will be added to this 
community, when it does not make always sense. Moreover, 
when two communities have some high-connected nodes in 
common (a frequent case in real networks, think for example 
of two successive classes of students, with a certain number of 
students repeating a year), CPM will likely consider the two 
classes as one community, when it seems more relevant to 

divide in 2 or 3 overlapping communities (Figure 2). 
If we try to explain our algorithm in a similar way, we can 
summarize it to two rules:  
to be added to a community, a node must: 

• Be able to access easily (in two step) to most of the 
community (at least as much as the others nodes of 
the community) 

• Have a robust access to other nodes of the community 
(at least as much as the others nodes of the 
community). 

That’s why our algorithm might be more reliable, particularly 
in the case of important overlaps in-between communities. We 
can resume it by saying that CPM is able to detect individual 
overlap (random nodes of some communities belongs to other 
communities), but not communities having a set of nodes in 
common. 

D. Complexity 
It’s nearly impossible to really determine the complexity of 
this algorithm, as it strongly depends on the size and number 
of communities, the number of cliques, parameters, and so on. 
However, we can give an insight into it: 
The complexity will at least be proportional to the number of 
edges, as we have to do a computation each time we add a 
new edge.  On the other hand, this calculation only depends on 
local information: second neighborhood, and communities 
involved in this neighborhood. We can ensure that the 
complexity does not grow exponentially, but it can rise 
strongly with high degrees and big communities.  
In term of memory, we only need at each step to memorize the 
current network (edges and nodes), and the current 
communities. 
Finally, we made some computations on graphs of different 
size. On the graphs generated by LFR benchmark used for 
comparison in this paper (up to 5000 nodes), the algorithm end 
up in a fistful of seconds. 
The computation on a larger real network (the citation network 
of the “High Energy Physic – Theory” Arxiv section, from 
1992 to 2003, composed of approximately 27.000 nodes and 
350.000 edges) with our current implementation in JAVA 
requires less than 10 minutes on a personal computer. 
On the same computer, CPM stops after 5 minutes of running 
due to memory overflow. 
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IV. RESULTS 
Like every community detection algorithm, this algorithm 
gives as a result a set of communities. However, it tries to 
detect communities at every level, which means that some 
communities can be included in others, some can be highly 
overlapping, some nodes can not belong to any of the 
communities, and so on. Depending on the aim of the 
application, it could be interesting to do some filtering, for 
example by removing the very small communities.  

 
Figure 3 - Communities detected in the JASSS citation network with 
longitudinal detection 

A. JASSS citation network. 
The Journal of Artificial Societies and Social Simulation 
(JASSS) has already been studied in a perspective of 
community evolution [12] but using a static network analysis 
on two different periods. We decided to apply our own 
algorithm to the same case study enabling a qualitative 
comparison among results. The JASSS dataset considered here 
is composed of all articles published in JASSS between 1998 
(date of the creation of the journal) and 2008 and citing at 
least one other article published in JASSS. Nodes are papers 
and edges are citations among papers, however we consider 
the graph as undirected, as link orientation does not play any 
role in the current version of our algorithm. 
As we can see on (Figure 3), it is a sparse network, with a lot 
of nodes having only one or two edges with the other JASSS 
papers. The aim of the community detection on this graph is to 
find the most important subjects treated by several papers. At 
the exception of the k-clique percolation method, none of the 
traditional algorithms can be used to do that: they would try to 
do a complete partition of the network, when at the evidence a 
majority of nodes do not belong to any clear community (at 
least from the data we have). It is only by studying intrinsic 

communities that we can obtain interesting results. 
In figure 3, we displayed all communities detected by 
longitudinal detection that have more than 3 nodes. The 
algorithm detects 5 communities. Visually, one can observe 
some overlaps in-between some communities. Moreover, one 
can notice that some of the communities, even without 
overlaps, are closer than others. By looking at the keywords of 
the publication of the corresponding nodes, we can easily 
attribute research themes to these communities, which are 
quite homogeneous from a qualitative point of view. The 3 
communities that are on the left concern directly multi-agent 
simulation (MAS and industrial district; replication of MAS; 
MAS and Role Playing Games). The last two in the right part 
concern: norms and reputations (the bottom one) and opinion 
dynamics (upper one). 
Even though the dataset  and the techniques are very different 
from the ones used by Meyer and Lorscheid [12] (they were 
looking at co-citation networks rather than at citation 
networks), the main communities detected are quite similar. 
Moreover, communities are meaningful and, given the dataset, 
it seems difficult to obtain a better detection. 
Moreover, our results can help to make a longitudinal analysis. 
For example, by looking at the norm & reputation community, 
we can follow its evolution (Figure 4): it was first detected 
with 3 nodes linked together in 2001. Then, one paper of 2002 
extended the community by 3 nodes (itself and two older 
papers that were already weakly linked to the community). A 
new paper was added in 2004, and a final one in 2007.  
We can also conduce a comparative analysis in time between 
communities. Compared to the norm & reputation community, 
the community about model replication was only detected in 
2006, and is mainly composed of recent papers. Finally, one 
paper, which belongs to two communities, is added in one of 
them in 2002 and in another one in 2005. We have to remind 
that the date of inclusion of a paper within a community does 
not necessarily correspond to its publication date. 

1/3/3 2/1/2

4/4/3

1/3/3 2/1/2

4/4/3

1/3/1

4/1/2

5/4/4

1/3/3

2/1/2

4/4/3

1/3/1

4/1/2

5/4/4

7/1/5

10/1/2

2001 2002 2004-2007  
Figure 4 - Growth of the "norm & reputation" community. 
 
A final interesting result on this example concerns the node 
(1/3/1). This paper, entitled "Understanding Complex Social 
Dynamics: A Plea For Cellular Automata Based Modelling", 
by Hegselmann and Flache [14], is a general article dealing 
with the use of Cellular automata for the simulation of social 
dynamics. By looking at the results provided by our algorithm, 
we can observe that this paper belongs concurrently to the 
periphery of both "norm & simulation" and "opinion 
dynamics" communities. It also belongs to a small community 
of three nodes about Cellular Automata approaches. We think 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 
HERE TO EDIT) < 
 

7 

that it is a good example of overlapping, where a traditional 
algorithm will encounter some troubles to do an assignation of 
this node to any particular community, knowing that this 
particular node has several edges with each one of these 3 
communities. 
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Figure 5 - Comparison between CPM and iLCD. Up: big communities. Down: 
small communities. 
 

B. LFR benchmark 
The confrontation of the efficiency of algorithms is essential 
to learn their strengths and weaknesses. Probably the best 
paper published recently on this issue was written by 
Lancichinatti et al. [6], and uses the LFR Benchmark to 
compare communities detected by several algorithms with the 
real communities known by construction. The idea is to 
generate graphs, making vary three parameters:  
- The size of the network (from 1000 to 5000 nodes) (N) 
- The size of the communities (either between 10 and 50 nodes 
or between 20 and 100 nodes) (C)  
- The average ratio, for each node, between edges to its 
community and edges with the remaining of the network (µ). 
Unfortunately, only one of the evaluated algorithms (CPM) is 
able to deal with overlapping communities. In the following, 
we will compare the results obtained by our algorithm (iLCD) 
and CPM, both with and without overlap. The two algorithms 
have parameters; we decided to fix them for all tests, as it is 
nearly impossible to adjust them efficiently for real graphs for 
which we do not know the solution to be found. For CPM, we 
chose the value that appeared to be the more efficient in the 
article by Lancichinatti, k=4. For longitudinal detection, we 

choose a merging threshold Tm=0,3 and a minimal clique 
Mk=4. Tm is not really sensible, tests have shown that adding 
or removing 0,15 does not affect significantly the results (it 
can be slightly better or worse depending on the cases).  
Before presenting the results, we must underline that the LFR 
benchmark is far to generate networks that best apply to our 
algorithm. First, obviously, they do not have any longitudinal 
aspect. This is a crucial problem, and we will discuss in the 
analysis below that it is effectively causing biases. The other 
problem is that the LFR benchmark does not try to produce 
realistic networks in their structure, apart from ensuring a 
power law for the degree distribution. In real networks, 
connections outside of the communities are not random. There 
are communities with more links among them than others (see 
the results on the JASSS citation network), and the 
communities themselves have some properties, like core-
periphery structure. However, despite these problems, results 
are quite convincing. 
We began our tests with graphs without overlap. In Figure 5, 
we can see that our algorithm gives results that are comparable 
to the CPM. The bigger the graph, the better the results. While 
results with big communities could be improved, results for 
small communities are close to the ones of the best known 
algorithms. 
 
 

 
Figure 6 - Comparison of several community detection algorithms on the 
same case (iLCD with plain line). 
 
When we look at community detection with overlapping 
communities as it has been done in [6], we can do the same 
observations: results are of the same order, though lightly 
better for iLCD and particularly for big graphs. 
In Figure 6, we compared the efficiency of several algorithms 
on the case in which the communities are the more reliably 
defined: small communities and big graphs without overlap. 
For a given degree, a small community is more precisely 
defined than a bigger one because of a relatively higher 
clustering. In a big network, for constant size of communities, 
there are less multiple-edges between communities than in a 
smaller network. 
Compared algorithms are the best known of the field, with 
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these denominations : CPM, Infomap, Blondel, MCL, 
Radicchi et al. InfoMod, Clauset et al. 
We ended our tests by a comparison of the CPM and iLCD on 
a case of very important overlap: we generate networks with 
the LFR benchmark, with the constraint that every node 
belongs to 3 different communities (and has no edge outside 
of these communities). Therefore, each node has more edges 
outside than inside of its community. However, according to 
the previous tests, belonging to communities is still strong 
enough to be detected. This time, we do not make vary the 
edge repartition but only the density. Intuitively, the higher the 
density, the better defined are the communities. If the density 
is too low, communities will be too sparse to be identified 
(The more edges nodes have inside their communities, the 
easier it is to detect their belonging to these communities). 
On Figure 7, we observe as predicted that with our algorithm, 
the denser the graph is, the better the detection. On the other 
hand, CPM is far more sensitive to the modifications of 
density. Above a threshold (for x around 20), communities 
began to have cliques in common, and then merge into one big 
community. We can modify the size of the cliques (k) of the 
CPM to overcome this problem, however, to study real graphs, 
it will be hard to choose the right value for k, as a too high 
value would fail to detect sparser communities. The problem 
stays unsolvable when the same network includes both sparse 
and dense communities, as it could be the case for real social 
networks. One of the advantages of our algorithm is that it is 
less sensitive to variations of the network’s properties, an 
advantage to study real networks. 
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Figure 7 - Comparison of CPM and iLCD when varying the density of the 
network. 

V. CONCLUSION 
The aim of this paper is to propose a new algorithm able to 
deal with strong overlaps in-between communities. However 
there are already numerous algorithms that seem to yield good 
results for community detection on graphs without overlaps; 
on many real graphs, and especially on social networks, there 
are quite important overlaps preventing these algorithms to 
work correctly and to produce interesting results. The only 
algorithm thought to deal with this problem was CPM. The 

algorithm we described here is an alternative to CPM, using a 
completely different mechanism, giving results equals or 
better in most of the cases, less sensitive to parameters, and 
more adapted to the specificities of real-world networks and 
communities. 
However, this algorithm is still a first step that needs to be 
improved. First, if it takes into account the growth of 
communities along time, it is not yet able to deal with the 
natural evolution of communities: shrinking, merging and 
splitting. Secondly, the tests done on the LFR benchmark have 
shown some weaknesses with big communities. Tests on more 
adapted datasets must be conducted. 
One problem to test effectively the efficiency of our algorithm 
is the difficulty to find real graphs with tagged communities, 
and we think that generators like the LFR benchmark are not 
realistic enough to reveal the weaknesses and strengths of 
some of them.  
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