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CLASS OVERVIEW

• Previous Lecturer : Marton Karsai

• Lectures: 24h
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‣ 3x2h
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• Evaluation:
‣ Lectures: Writing exam
‣ Tutorials: projects during semester



COMPLEX NETWORKS
WHAT?
WHY? 

WHY NOW?
WHAT FOR?



SCIENCE

• Science: understand how things work
‣ The human body, the motion/characteristics of objects, societies, etc.

• 1)Experiment with the object (macro-level)
‣ What if I throw a ball from that height ? From a moving platform ? If it’s a dice ? 

In wood or in glass ?
‣ What if I give this substance to eat/drink ? Is sickness related to cold ? Humidity 

? etc.



SCIENCE

• 2)Great success of the 19/20 centuries: Reductionism

• To understand things, I need to understand what they are 
made of:
‣ A human body: organs, vessels  =>  cells => DNA, proteins & stuff => 

Nucleotides ….
‣ Objects: Organic compounds => atoms => protons/electrons/neutrons => 

stuff

• => Now we know. And then what ?



SCIENCE

• 3)Two situations:
‣ The system is homogeneous and/or has a regular structure

- => You can explain it with a bunch of equations
‣ The system is heterogeneous and/or has a complex structure

- => Understanding each component is not enough to understand the system
- Understanding each cell tells you little about how the brain works.
- Understanding how each individual works/behave tells you little about societies
- etc.

• => The structure/relations/interactions matters.
‣ Networks represent structures



COMPLEX SYSTEMS

• Complex systems: Systems composed of multiple parts 
in interactions

• Complex networks model the interactions between the parts
‣ A common framework applicable to many systems
‣ =>Many networks share similar characteristics
‣ =>Similar processes shape the networks





WHO ?

• Network scientists:
‣ Physicists
‣ Computer scientists
‣ Mathematicians
‣ => Work on the same problems, with converging vocabularies and references

• Applied network scientists
‣ Geographers, biologists, social scientists, etc.
‣ =>Experts of i)their domain, and ii)complex networks analysis



TO CONCLUDE

• Complex Network Analysis is/should be/will become (in my 
opinion) one of the basic tools of the modern scientist (and 
Data scientist), much as statistics or linear algebra.



A BRIEF HISTORY



A BRIEF HISTORY

• Graph theory:1736 - Euler and the bridges of konigsberg

Can one walk across 
the seven bridges and 
never cross the same 

bridge twice? 



A BRIEF HISTORY

Answer: No



A BRIEF HISTORY

• Social networks: 1934 - Jacob Moreno

Sociomatrix Sociograms



KEY PUBLICATIONS
• 1998: Watts & Strogatz  - Small-World:

‣ 2nd Most cited paper of the year in Nature

• 1999: Barabasi & Albert - scale-free networks:
‣ Most cited paper of the year in Science

• 2002: Girvan & Newman - Community detection:
‣ Most cited paper of the year in PNAS

• 2004: Barabasi & Oltvai - Network Biology:
‣ Most cited paper (ever) in Nature genetics

• 2010: Kwak et al. - What is Twitter, a Social Network or a News Media?
‣ Most cited paper (ever) of the WWW conference

• …

(As of 2019)
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Statistical mechanics of complex networks

Réka Albert* and Albert-László Barabási
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

(Published 30 January 2002)

Complex networks describe a wide range of systems in nature and society. Frequently cited examples
include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally these systems have been
modeled as random graphs, it is increasingly recognized that the topology and evolution of real
networks are governed by robust organizing principles. This article reviews the recent advances in the
field of complex networks, focusing on the statistical mechanics of network topology and dynamics.
After reviewing the empirical data that motivated the recent interest in networks, the authors discuss
the main models and analytical tools, covering random graphs, small-world and scale-free networks,
the emerging theory of evolving networks, and the interplay between topology and the network’s
robustness against failures and attacks.
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The Structure and Function of
Complex Networks∗

M. E. J. Newman†

Abstract. Inspired by empirical studies of networked systems such as the Internet, social networks,
and biological networks, researchers have in recent years developed a variety of techniques
and models to help us understand or predict the behavior of these systems. Here we
review developments in this field, including such concepts as the small-world effect, degree
distributions, clustering, network correlations, random graph models, models of network
growth and preferential attachment, and dynamical processes taking place on networks.
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a b s t r a c t

The modern science of networks has brought significant advances to our understanding of
complex systems. One of the most relevant features of graphs representing real systems
is community structure, or clustering, i.e. the organization of vertices in clusters, with
many edges joining vertices of the same cluster and comparatively few edges joining
vertices of different clusters. Such clusters, or communities, can be considered as fairly
independent compartments of a graph, playing a similar role like, e.g., the tissues or the
organs in the human body. Detecting communities is of great importance in sociology,
biology and computer science, disciplines where systems are often represented as graphs.
This problem is very hard and not yet satisfactorily solved, despite the huge effort of a
large interdisciplinary community of scientists working on it over the past few years. We
will attempt a thorough exposition of the topic, from the definition of the main elements
of the problem, to the presentation of most methods developed, with a special focus on
techniques designed by statistical physicists, from the discussion of crucial issues like the
significance of clustering and how methods should be tested and compared against each
other, to the description of applications to real networks.

© 2009 Elsevier B.V. All rights reserved.
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a b s t r a c t

A great variety of systems in nature, society and technology – from the web of sexual
contacts to the Internet, from the nervous system to power grids – can be modeled as
graphs of vertices coupled by edges. The network structure, describing how the graph is
wired, helps us understand, predict and optimize the behavior of dynamical systems. In
many cases, however, the edges are not continuously active. As an example, in networks
of communication via e-mail, text messages, or phone calls, edges represent sequences
of instantaneous or practically instantaneous contacts. In some cases, edges are active for
non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can
be represented by a graph where an edge between two individuals is on throughout the
time they are at the same ward. Like network topology, the temporal structure of edge
activations can affect dynamics of systems interacting through the network, from disease
contagion on the network of patients to information diffusion over an e-mail network. In
this review, we present the emergent field of temporal networks, and discuss methods
for analyzing topological and temporal structure and models for elucidating their relation
to the behavior of dynamical systems. In the light of traditional network theory, one can
see this framework as moving the information of when things happen from the dynamical
system on the network, to the network itself. Since fundamental properties, such as the
transitivity of edges, do not necessarily hold in temporal networks, many of thesemethods
need to be quite different from those for static networks. The study of temporal networks is
very interdisciplinary in nature. Reflecting this, even the object of study has many names—
temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-
stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This
review covers different fields where temporal graphs are considered, but does not attempt
to unify related terminology—rather, we want to make papers readable across disciplines.

© 2012 Elsevier B.V. All rights reserved.
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3 Departament de Física i Enginyeria Nuclear, Universitat Politècnica de
Catalunya, Campus Nord, Mòdul B4, 08034 Barcelona, Spain

Abstract

We review the main tools which allow for the statistical characterization of
weighted networks. We then present two case studies, the airline connection network
and the scientific collaboration network, which are representative of critical infras-
tructures and social systems, respectively. The main empirical results are (i) the
broad distributions of various quantities and (ii) the existence of weight-topology
correlations. These measurements show that weights are relevant and that in general
the modeling of complex networks must go beyond topology. We review a model
which provides an explanation for the features observed in several real-world net-
works. This model of weighted network formation relies on the dynamical coupling
between topology and weights, considering the rearrangement of weights when new
links are introduced in the system.

PACS numbers: 89.75.-k, -87.23.Ge, 05.40.-a

1 Introduction

Networked structures arise in a wide array of different contexts such as tech-
nological and transportation infrastructures, social phenomena, and biological
systems. These highly interconnected systems have recently been the focus of
a great deal of attention that has uncovered and characterized their topo-
logical complexity [1,2,3,4]. Along with a complex topological structure, real
networks display a large heterogeneity in the capacity and intensity of the
connections—the weight of the links. For example, in ecology the diversity of
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a b s t r a c t

Complex systems are very often organized under the form of networks where nodes and
edges are embedded in space. Transportation and mobility networks, Internet, mobile
phone networks, power grids, social and contact networks, and neural networks, are all
examples where space is relevant and where topology alone does not contain all the
information. Characterizing and understanding the structure and the evolution of spatial
networks is thus crucial for many different fields, ranging from urbanism to epidemiology.
An important consequence of space on networks is that there is a cost associated with the
length of edges which in turn has dramatic effects on the topological structure of these
networks. We will thoroughly explain the current state of our understanding of how the
spatial constraints affect the structure and properties of these networks.Wewill review the
most recent empirical observations and the most important models of spatial networks.
We will also discuss various processes which take place on these spatial networks, such
as phase transitions, random walks, synchronization, navigation, resilience, and disease
spread.

© 2010 Elsevier B.V. All rights reserved.
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In the past years, network theory has successfully characterized the interaction among
the constituents of a variety of complex systems, ranging from biological to technological,
and social systems. However, up until recently, attention was almost exclusively given to
networks in which all components were treated on equivalent footing, while neglecting all
the extra information about the temporal- or context-related properties of the interactions
under study. Only in the last years, taking advantage of the enhanced resolution in real
data sets, network scientists have directed their interest to the multiplex character of
real-world systems, and explicitly considered the time-varying and multilayer nature
of networks. We offer here a comprehensive review on both structural and dynamical
organization of graphs made of diverse relationships (layers) between its constituents,
and cover several relevant issues, from a full redefinition of the basic structural measures,
to understanding how the multilayer nature of the network affects processes and
dynamics.
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GRAPHS & NETWORKS
Networks often refers to real systems
• www,
• social network
• metabolic network. 
• Language: (Network, node, link) 

In most cases we will use the two terms interchangeably. 

Graph is the mathematical 
representation of a network
• Language: (Graph, vertex, edge) 

Vertex Edge
person friendship
neuron synapse
Website hyperlink
company ownership

gene regulation



NETWORK 
REPRESENTATIONS



NETWORK REPRESENTATIONS

•  
‣ edge:  
‣ Often encoded as edge list or adjacency list
‣ Software: custom data structure and manipulation

- add_nodes([i,j]), add_edge(i,j), …

• Adjacency Matrix  
‣ Edge:  
‣ Graph Laplacian   with D the degree matrix

- Powerful graph spectral properties, more later

G = (V, E)
(u, v) ∈ E

A
Aij

L = D − A



Types of 
Networks



Undirected networks

 G=(V, E) 
 (u,v) ∈ E ≡ (v,u) ∈ E 

• The directions of edges do 
not matter

• Interactions are possible 
between connected entities 
in both directions

The Internet: Nodes - routers, Links - physical wires

Opte project



Directed networks

 G=(V, E) 
 (u,v) ∈ E ≢ (v,u) ∈ E 

• The directions of 
edges matter

• Interactions are 
possible between 
connected entities 
only in specified 
directions

Citation network: Nodes - publications, Links - references

Moritz Stefaner, eigenfactor.com

http://eigenfactor.com


Weighted networks

 G=(V, E, w) 
 w: (u,v) ∈ E ⇒ R 

• Strength of 
interactions are 
assigned by the 
weight of links

Social interaction network: Nodes - individuals
                         Links - social interactions

Onnela et.al. New Journal of Physics 9, 179 (2007).



Bipartite network

 G=(U, V, E) 
U ∩ V = ∅ 
∀(u,v) ∈ E, u ∈ U and v ∈ V

Gene-desease network:
          Nodes - Desease (7)&Genes (747)
          Links - gene-desease relationship

Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3



Multiplex and multilayer networks

 G=(V, Ei), i=1…M 
• Nodes can be present in 

multiple networks 
simultaneously 

• These networks are 
connected (can influence 
each other) via the 
common nodes

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

M=2
[Mendez-Bermudez et al. 2017]



Temporal and evolving networks
 G=(V, Et), (u,v,t,d) ∈ Et 
          t - time of interaction (u,v) 
   d - duration of interaction (u,v,t) 

   
  G=(Vt’, Et’) 
      v(t) ∈ Vt’  
      (u,v,t) ∈ Et’

Mobile communication network
     Nodes - individuals
     Links - calls and SMS

• Temporal links encode time varying interactions

• Dynamical nodes and 
links  encode the 
evolution of the 
network



DESCRIPTION OF GRAPHS



DESCRIPTION OF GRAPHS

• When confronted with a graph, how to describe it?

• How to compare graphs?

• What can we say about a graph?



SIZE
• A network is composed of nodes and edges. 

• Size: How many nodes and edges ? (n & m)

#nodes (n) #edges (m)
Wikipedia HL 2M 30M
Twitter 2015 288M 60B

Facebook 2015 1.4B 400B
Brain c. Elegans 280 6393

Roads US 2M 2.7M
Airport traffic 3k 31k



DENSITY 

#nodes #edges Density avg. deg
Wikipedia 

HL
2M 30M 1.5x10-5 30

Twitter 2015 288M 60B 1.4x10-6 416
Facebook 

2015
1.4B 400B 4x10-9 570

Brain c. 
Elegans

280 6393 0.16 46
Roads Calif. 2M 2.7M 6x10-7 2.7

Airport 
traffic

3k 31k 0.007 21

Defined as: 
Directed

Undirected

Often more relevant: average degree ( 2|E| / |V| )



DENSITY 

• It has been observed that: [Leskovec. 2006]
‣ When graphs increase in size, the average degree increases
‣ This increase is very slow

• Think of friends in a social network



DENSITY 



DENSITY 

[Broido, Clauset 2018]



Node degree
Number of connections of a node

2

3
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3

1

1
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• Undirected network

wherem =

P
i ki
2

m = |E|

ki = Ai1 +Ai2 + ...+AiN =
NX

j

Aij



Node degree
Number of connections of a node

2

3

2

3

1

1

1

• Directed network

• Undirected network

In degree

Out degree
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where

mean degree

m =

P
i ki
2

m = |E|

hki = 1

N

NX

i

ki

ki = Ai1 +Ai2 + ...+AiN =
NX

j

Aij

koutj =
NX

i

Aij

kini =
NX

j

Aij



Weighted degree: strength
• Weighted networks

1
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3

4 5
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The sum of the weights of links connected to node i

si = wi1 + wi2 + ... + wiN = Σj wij



DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

 Sometimes with CDF (Cumulative Distribution Function)



DEGREE DISTRIBUTION

• In a fully random graph (Erdos-Renyi), degree distribution is a 
normal distribution centered on the average degree 

• In real graphs, in general, it is not the case:
‣ A high majority of small degree nodes
‣ A small minority of nodes with very high degree (Hubs)

• Often modeled by a power law



DEGREE DISTRIBUTION

POWER-LAW DISTRIBUTIONS IN EMPIRICAL DATA [Clauset 2009]

Power laws in empirical data (degrees and other things)



DEGREE DISTRIBUTION
Power law/Scale free distribution:

[Quanta magazine 2018]



Node clustering coefficient
• Measure of interconnectivity
• What portion of neighbours of a node are connected to each other?

u

Cu = (2x2)/(4x3) = 1/3

• eu - number of links between the 
neighbours of node u 

• (ku(ku-1))/2 - maximum number of 
triangles

Definition: Watts and Strogatz 2002

Average local clustering coefficient

Local clustering coefficientGlobal clustering coefficient

Cu =
2eu

ku(ku − 1)

C =
1
N ∑

u

Cu

C = 9/18 = 1/2



CLUSTERING COEFFICIENT

The higher the value, 
the more locally dense is the network.

“Friends of my friends are my friends”

Higher in real networks than random



CLUSTERING COEFFICIENT

• Global CC:
‣ Random (ER): =density: very small for large graphs 
‣ Facebook ego-networks: 0.6
‣ Twitter lists: 0.56
‣ California Road networks: 0.04



Link clustering coefficient: Overlap
• Link property
• Fraction of common neighbours of a connected pair
• Jaccard index of common neighbours

Oij = 3/(6+5-3) = 3/8

• ni - number of common neighbours of nodes i and j 
• (ki-1)+(kj-1)-nij maximum number possible triangles 

between nodes i and j

Oij =
nij

(ki � 1) + (ki � 1)� nij

Link clustering coefficient: Overlap
• Link property
• Fraction of common neighbours of a connected pair
• Jaccard index of common neighbours

Oij = 3/(6+5-3) = 3/8

• ni - number of common neighbours of nodes i and j 
• (ki-1)+(kj-1)-nij maximum number possible triangles 

between nodes i and j

Oij =
nij

(ki � 1) + (ki � 1)� nij

ji



Path length



Path length



Path length



Path length

hdi = 1

N(N � 1)

X

i 6=j

dij

• dmax  diameter- the maximum distance between any pairs of nodes

• ⟨d⟩ average path length - for directed graphs

• where dij is the shortest distance between 
nodes i and j

• multiplicative is (2 x max number of links)
• distance between unconnected nodes is 0

• ⟨d⟩ average path length - for un-directed graphs

hdi = 2

N(N � 1)

X

i<j

dij

• since dij = dji

• multiplicative is (max number of links)



AVERAGE PATH LENGTH

• The famous 6 degrees of separation (Milgram experiment)
‣ In fact 6 hops
‣ (More on that next slide)

• Not too sensible to noise

• Tells you if the network is “stretched” or “hairball” like



SIDE-STORY: MILGRAM 
EXPERIMENT

• Small world experiment (60’s)
‣ Give a (physical) mail to random people
‣ Ask them to send to someone they don’t know

- They know his city, job
‣ They send to their most relevant contact

• Results: In average, 6 hops to arrive



SIDE-STORY: MILGRAM 
EXPERIMENT

• Many criticism on the experiment itself: 
‣ Some mails did not arrive
‣ Small sample
‣ …

• Checked on “real” complete graphs (giant component):
‣ MSN messenger
‣ Facebook
‣ The world wide web
‣ …



SIDE-STORY: MILGRAM 
EXPERIMENT

Facebook



Weighted path length

length of a shortest path P(i  j)    ≠   length of a weighted shortest path P(i  j)   

Shortest path ≠ Weighted shortest path 

dAB=1 tij=3 

A B A B

3 1

51
1



All shortest path algorithm

proc FloydWarshall(G=(V,E,w))
1 // let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
2 for each edge (u,v)
3    dist[u][v] ← w(u,v)  // the weight of the edge (u,v)
4 for each vertex v
5    dist[v][v] ← 0
6 for k from 1 to |V|
7    for i from 1 to |V|
8       for j from 1 to |V|
9          if dist[i][j] > dist[i][k] + dist[k][j] 
10             dist[i][j] ← dist[i][k] + dist[k][j]
11         end if

finding shortest paths in a weighted graph with positive or negative edge weights
(but with no negative cycles)

Checking and updating all paths going 
through nodes k=1, 2, 3, … , N by 
assuming that:

Complexity: O(n3)

shp(i,j,k)=
min(shp(i,j,k-1)), shp(i,k,k-1)+shp(k,j,k-1))



Connectivity and components

• A connected component is a subset of vertices 
with at least one path connecting each of them

• A network may consist of a single connected 
component (a connected network) or several of 
those

• Distances between nodes in disjoint 
components are not defined (infinite)

• Bridge: if we remove it, the graph becomes 
disconnected.

• The adjacency matrix of a network with several 
components can be written in a block-diagonal 
form, so that nonzero elements are confined to 
squares, with all other elements being zero

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero: 

Figure after Newman, 2010 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix 

Network Science: Graph Theory   2012 

The adjacency matrix of a network with several components can be written in a block-
diagonal form, so that nonzero elements are confined to squares, with all other elements 
being zero: 

Figure after Newman, 2010 

CONNECTIVITY OF UNDIRECTED GRAPHS        Adjacency Matrix 

Network Science: Graph Theory   2012 



Connected components algorithm
proc connectedComponents(G=(V,E))

// Mark all the vertices as not visited
bool visited=[V]
for v from 0 to V-1

visited[v] ← false
 

for v from 0 to V-1
if visited[v]==false

// print all reachable vertices from v
DFSUtil(v, visited)
print(“\n")

end if

proc DFSUtil(v, visited[])
// Mark the current node as visited and print it
visited[v] ← true
print(v)

 
// Recur for all the vertices adjacent to this vertex
for each i in adj[v]

if visited[i]==false
DFSUtil(i, visited)

end if

• Compute with recursive DFS 
(or BFS) algorithm started 
from each unvisited node

• Complexity: O(|V| + |E|)

• Better solution exists using disjoint set structures 



Connectivity and components - directed networks

• Strongly connected component (SCC): has a path from each node to every other 
node in the component

• Weakly connected component (WCC): it is connected if we disregard the 
directions

• In-component: nodes that can reach the SCC

• Out-component: nodes that can be reached from SCC

 

existence of a giant component G, defined as a component whose size scales with the number of nodes of 
the graph, and therefore diverges in the limit foN . The presence of a giant component implies that a 
large fraction of the graph is connected, in the sense that it is possible to find a way across a certain 
number of edges, joining any two nodes. 

The structure of the components of directed graphs is somewhat more complex as the presence of 
a path from the node i to the node j does not necessarily guarantee the presence of a corresponding path 
from j to i. Therefore, the definition of a giant component becomes fuzzy. In general, the component 
structure of a directed graph can be decomposed into a giant weakly connected component (GWCC), 
corresponding to the giant component of the same graph in which the edges are considered as undirected, 
plus a set of smaller disconnected components (DC), see Figure 3. The GWCC is itself composed of 
several parts due to the directed nature of its edges: The giant strongly connected component (GSCC), in 
which there is a directed path joining any pair of nodes. The giant IN-component (GIN), formed by the 
nodes from which it is possible to reach the GSCC by means of a directed path. The giant OUT-
component (GOUT), formed by the nodes that can be reached from the GSCC by means of a directed 
path. Last but not least there are the tendrils that contain nodes that cannot reach or be reached by the 
GSCC (among them, the tubes that connect the GIN and GOUT) that form the rest of the GWCC. 

 

 
 
Figure 3. Component structure of directed networks such as the WWW. Adopted from Broder et al. 
(2000). The component structure of directed graphs has important consequences for the accessibility of 
information in networks such as the World-Wide Web (Broder, Kumar, Maghoul, Raghavan, 
Rajagopalan, Stata, et al., 2000; Chakrabarti, Dom, Gibson, Kleinberg, Kumar, Raghavan, et al., 1999).  

3. Network Sampling 
Using the foregoing notions and notations, this section provides a short discussion of the issues related to 
the gathering of network data. Different application domains have very different affordances ranging from 
the size, type and richness of network data to the scientific questions that are asked. In some application 
domains it is relatively easy to gain access and work with a complete network dataset such as social 
network studies of smaller social groups, for example, all school children in a certain grade at a certain 
school. However, for many applications the acquisition of a complete network dataset is impossible due 
to time, resource or technical constraints. In this case, network sampling techniques are applied to acquire 
the most reliable dataset that exhibits major properties of the entire network. Network sampling thus 
refers to the process of acquiring network datasets and the discussion of statistical and technical 
  

9 

Figure from Broder et. al. (2000)



k-core decomposition

Given graph G = (V, E) 

Definition: A subgraph H = (C,E|C) induced by 
the set C ⊆ V is a k-core or a core of order k iff 
∀v ∈ C : degree(H (v)) ≥ k, and H is the maximum 
subgraph with this property. 

• A k-core of G can be obtained by recursively 
removing all the vertices of degree less than k, 
until all vertices in the remaining graph have at 
least degree k. 

Definition: A vertex i has coreness c if it belongs to the c-core but not to (c + 1)-core. 
 
Definition: A c-shell is composed by all the vertices whose coreness is c. The k-core is thus 
the union of all shells with c ≥ k. 

Goal: To identify dense cores of high degree nodes in networks

Core Decomposition in Graphs:
Concepts, Algorithms and Applications

Fragkiskos D. Malliaros1, Apostolos N. Papadopoulos2, Michalis Vazirgiannis1

1Computer Science Laboratory, École Polytechnique, France
2Department of Informatics, Aristotle University of Thessaloniki, Greece

{fmalliaros, mvazirg}@lix.polytechnique.fr, papadopo@csd.auth.gr

ABSTRACT
Graph mining is an important research area with a plethora of prac-
tical applications. Core decomposition in networks, is a fundamen-
tal operation strongly related to more complex mining tasks such as
community detection, dense subgraph discovery, identification of
influential nodes, network visualization, text mining, just to name a
few. In this tutorial, we present in detail the concept and properties
of core decomposition in graphs, the associated algorithms for its
efficient computation and some of its most important applications.

1. INTRODUCTION
Core decomposition is a well-studied topic in graph mining. In-

formally, the k-core decomposition is a threshold-based hierarchi-
cal decomposition of a graph into nested subgraphs. The basic idea
is that a threshold k is set on the degree of each node; nodes that
do not satisfy the threshold, are excluded from the process. There
exists a rich literature studying algorithmic aspects of core decom-
position by taking different viewpoints, such as distributed, stream-
ing, disk-resident data, to name a few. In addition, core decompo-
sition has been used successfully in many diverse application do-
mains, including social networks analysis and text analytics tasks.

Next, we formally define the concept of k-core decomposition
in graphs. Let G = (V,E) be an undirected graph. Let H be a
subgraph of G, i.e., H ⊆ G. Subgraph H is defined to be a k-core
of G, denoted by Gk, if it is a maximal connected subgraph of G in
which all nodes have degree at least k. The degeneracy δ∗(G) of a
graph G is defined as the maximum k for which graph G contains
a non-empty k-core subgraph. A node i has core number ci = k,
if it belongs to a k-core but not to any (k+1)-core. The k-shell is
the subgraph defined by the nodes that belong to the k-core but not
to the (k + 1)-core.

Based on the above definitions, it is evident that if all the nodes
of the graph have degree at least one, i.e., dv ≥ 1, ∀v ∈ V , then
the 1-core subgraph corresponds to the whole graph, i.e., G1 ≡ G.
Furthermore, assuming that Gi, i = 0, 1, 2, . . . , δ∗(G) is the i-
core of G, then the k-core subgraphs are nested, i.e., G0 ⊇ G1 ⊇
G2 ⊇ . . . ⊇ Gδ∗(G). Typically, subgraph Gδ∗(G) is called maxi-
mal k-core subgraph of G.
Figure 1 depicts an example of a graph and the corresponding k-
core decomposition. As we observe, the degeneracy of this graph

c⃝2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
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Figure 1: Example of the k-core decomposition.

is δ∗(G) = 3; thus, the decomposition creates three nested k-core
subgraphs, with the 3-core being the maximal one. The nested
structure of the k-core subgraphs is indicated by the dashed lines.
Furthermore, the color on the nodes indicates the core number c of
each node. Lastly, we should note here that the k-core subgraphs
are not necessarily connected.

2. GOALS AND OUTLINE
The goal of this tutorial is to present in detail the algorithmic

paradigm of core decomposition in graphs. In particular, we will
focus on the following points:

(i) Fundamental concepts of core decomposition. We present
the notion of k-core decomposition for unweighted and undi-
rected graphs and then extensions for weighted, directed, pro-
babilistic and signed ones. We also present generalizations of
the decomposition to node properties beyond the degree.

(ii) Algorithms for core decomposition. Computing the k-core
decomposition of a graph can be done through a simple pro-
cess that is based on the following property: to extract the
k-core subgraph, all nodes with degree less than k and their
adjacent edges should be recursively deleted. In the tutorial,
we present efficient algorithms for the k-core decomposition.
We also examine several extensions that have been proposed
by the databases community for large scale k-core decom-
position under various computation frameworks, including
streaming, distributed and disk-based algorithms. We also
examine how to estimate the k-core number of each node
using only local information.

(iii) Applications. We demonstrate applications of the k-core de-
composition in various domains, including dense subgraph

hmiQ`B�H

g

g

a2`B2b AaaL, kjed@kyy8 dky RyX899Rfyykf2/#iXkyReXRy9

1-shell 2-shell 3-shell



core decomposition
Intuitive algorithm

1. Take a directed or undirected network
2.  Remove nodes with degree k(=1) and all of those which degree 

became k(=1) because of the removal process
3. Repeat step 2 for k=2,3,… until no node can be removed

• Nodes removed in the kth turn are in the k-shell and the remaining nodes form 
the k-core

proc CoreDecomposition(G=(V,E))
compute the degrees of vertices
order v∈V in increasing degree order
core[V]=0
for each v∈V in the order

core[v] := degree[v];
for each u ∈ adj(v) do

if deg[u] > deg[v] then
degree[u] := degree[u] − 1;
reorder V

end if

Batagelj, Zversnik (2002)
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ABSTRACT
Graph mining is an important research area with a plethora of prac-
tical applications. Core decomposition in networks, is a fundamen-
tal operation strongly related to more complex mining tasks such as
community detection, dense subgraph discovery, identification of
influential nodes, network visualization, text mining, just to name a
few. In this tutorial, we present in detail the concept and properties
of core decomposition in graphs, the associated algorithms for its
efficient computation and some of its most important applications.

1. INTRODUCTION
Core decomposition is a well-studied topic in graph mining. In-

formally, the k-core decomposition is a threshold-based hierarchi-
cal decomposition of a graph into nested subgraphs. The basic idea
is that a threshold k is set on the degree of each node; nodes that
do not satisfy the threshold, are excluded from the process. There
exists a rich literature studying algorithmic aspects of core decom-
position by taking different viewpoints, such as distributed, stream-
ing, disk-resident data, to name a few. In addition, core decompo-
sition has been used successfully in many diverse application do-
mains, including social networks analysis and text analytics tasks.

Next, we formally define the concept of k-core decomposition
in graphs. Let G = (V,E) be an undirected graph. Let H be a
subgraph of G, i.e., H ⊆ G. Subgraph H is defined to be a k-core
of G, denoted by Gk, if it is a maximal connected subgraph of G in
which all nodes have degree at least k. The degeneracy δ∗(G) of a
graph G is defined as the maximum k for which graph G contains
a non-empty k-core subgraph. A node i has core number ci = k,
if it belongs to a k-core but not to any (k+1)-core. The k-shell is
the subgraph defined by the nodes that belong to the k-core but not
to the (k + 1)-core.

Based on the above definitions, it is evident that if all the nodes
of the graph have degree at least one, i.e., dv ≥ 1, ∀v ∈ V , then
the 1-core subgraph corresponds to the whole graph, i.e., G1 ≡ G.
Furthermore, assuming that Gi, i = 0, 1, 2, . . . , δ∗(G) is the i-
core of G, then the k-core subgraphs are nested, i.e., G0 ⊇ G1 ⊇
G2 ⊇ . . . ⊇ Gδ∗(G). Typically, subgraph Gδ∗(G) is called maxi-
mal k-core subgraph of G.
Figure 1 depicts an example of a graph and the corresponding k-
core decomposition. As we observe, the degeneracy of this graph
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Figure 1: Example of the k-core decomposition.

is δ∗(G) = 3; thus, the decomposition creates three nested k-core
subgraphs, with the 3-core being the maximal one. The nested
structure of the k-core subgraphs is indicated by the dashed lines.
Furthermore, the color on the nodes indicates the core number c of
each node. Lastly, we should note here that the k-core subgraphs
are not necessarily connected.

2. GOALS AND OUTLINE
The goal of this tutorial is to present in detail the algorithmic

paradigm of core decomposition in graphs. In particular, we will
focus on the following points:

(i) Fundamental concepts of core decomposition. We present
the notion of k-core decomposition for unweighted and undi-
rected graphs and then extensions for weighted, directed, pro-
babilistic and signed ones. We also present generalizations of
the decomposition to node properties beyond the degree.

(ii) Algorithms for core decomposition. Computing the k-core
decomposition of a graph can be done through a simple pro-
cess that is based on the following property: to extract the
k-core subgraph, all nodes with degree less than k and their
adjacent edges should be recursively deleted. In the tutorial,
we present efficient algorithms for the k-core decomposition.
We also examine several extensions that have been proposed
by the databases community for large scale k-core decom-
position under various computation frameworks, including
streaming, distributed and disk-based algorithms. We also
examine how to estimate the k-core number of each node
using only local information.

(iii) Applications. We demonstrate applications of the k-core de-
composition in various domains, including dense subgraph
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GRAPHLETS



MATRIX PROPERTIES

• What is a Matrix?
‣ Not a 2D data table
‣ It describes a linear transformation, or linear function
‣ Said differently, it represents a set of equations



MATRIX PROPERTIES

x1 x2 x3 x4 x5 x6

x1’
x2’
x3’
x4’
x5’
x6’

x1′� = 0x1 + 1x2 + 0x3 + 0x4 + 1x5 + 0x6
x2′� = x1 + x3 + x5

…
x3′� = x2 + x4



MATRIX PROPERTIES
x1
x2
x3
x5
x5
x6

A= x=

Ax=

x1
x2
x3
x5
x5

x2 + x4
x1 + x3 + x5

x2 + x4
x3 + x5 + x6
x1 + x2 + x4

x4

x1

x2

x4x5
x6

x3

x1’

x2’

x4’x5’
x6’

x3’

A, x =

A, Ax=



MATRIX PROPERTIES

• Question: What is the result of Ax if
‣ x1=x2=x3=x4=x5=x6=1 ?

x1

x2

x4x5
x6

x3

x1’

x2’

x4’x5’
x6’

x3’

A, x =

A, Ax=



MATRIX PROPERTIES

• Question: What is the result of Ax if
‣ x1=x2=x3=x4=x5=x6=1 ?
‣ =>New values are degrees

x1

x2

x4x5
x6

x3

x1’

x2’

x4’x5’
x6’

x3’

A, x =

A, Ax=



MATRIX PROPERTIES
• What about   ?

• Define a new function
‣ �  encodes the number of paths of lengths exactly 1 between pairs of nodes
‣ �  encodes the number of paths of lengths exactly 2 between pairs of nodes
‣ �  encodes the number of paths of lengths exactly 3 between pairs of nodes
‣ …

• Graph matrices operations can be interpreted as:
‣ Diffusion phenomenons
‣ Random walks

A2

A
A2

A3



Graph Spectral properties

Given a simple graph G = (V, E) with an adjacency matrix A
• if G is undirected it has a complete set of real eigenvalues 
• Set of eigenvalues define the spectrum of G

• Interesting properties:
• The largest eigenvalue �  of a graph G lies between the average 

and maximum degrees
• The number of closed walks of length k in G equals �  
• A graph is bipartite if and only if its spectrum is symmetric (ie if �  is 

an eigenvalue, then so is � , and with the same multiplicity).
• If G is connected, then the diameter of G is strictly less than its 

number of distinct eigenvalues

λ0

∑n
i=0 λk

i
λ

−λ

Adjacency matrix



Graph Spectral properties
L(NxN)=D-A where D is the degree matrix of GGraph Laplacian 

• Interesting properties (assuming G is undirected with eigenvalues                                 )
• L is symmetric and positive definite (            for all i) 
•

λ0 ≤ λ1 ≤ . . . λn−1

λi ≥ 0
λ0 = 0 and the number of 0 eigenvalues gives the number of connected 

components in G

• If G has multiple connected components, L is a block diagonal matrix, where 
each block is the respective Laplacian matrix for each component



Graph Spectral properties

• Graph Spectral Analysis is a whole field of research
• We will introduce more of it in later parts of the course 

• Centralities
• Community Detection
• embedding
• …



EXEMPLE OF GRAPH 
ANALYSIS

• Source: [The Anatomy of the Facebook Social Graph, Ugander 
et al. 2011]

• The Facebook friendship network in 2011



EXEMPLE OF GRAPH 
ANALYSIS

• 721M users (nodes) (active in the last 28 days)

• 68B edges

• Average degree: 190 (average # friends)

• Median degree: 99

• Connected component: 99.91%



EXEMPLE OF GRAPH 
ANALYSIS

Component size
Distribution 



EXEMPLE OF GRAPH 
ANALYSIS

Degree distribution

Cumulative



EXEMPLE OF GRAPH 
ANALYSIS

Clustering coefficient
By degree

Median user : 0.14:
14% of users with a common 

friend are friends



EXEMPLE OF GRAPH 
ANALYSIS

My friends have more
Friends than me!

Many of my friends have the 
Same # of friends than me!



EXEMPLE OF GRAPH 
ANALYSIS

Age homophily



EXEMPLE OF GRAPH 
ANALYSIS

Country similarity

84.2% percent of edges are 

within countries 

(More in the community 
detection class)


