COMPLEX NETWORKS
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» Rémy Cazabet
» Assoclate Professor (Maitre de conférences)
» Universite Lyon |

» LIRIS, DM2L Team (Data Mining & Machine Learning)

» Computer Scientist => Network Scientist

* Member of [ XX]



CLASS OVERVIEW

* Previous Lecturer: Marton Karsal
| ectures: 24h

B Eiterals (D)

» 3x2h
» Lorenza Pacini

« bvaluation:

» Lectures: Writing exam
» lutorials: projects during semester



COMPLEX NETWORKS

VWHAT?
WHY?
WHY NOW?
WHAT FOR!?




SCIENCE

» Science: understand how things work
» The human body, the motion/characteristics of objects, societies, etc.

* | )Experiment with the object (macro-level)
» What if | throw a ball from that height ? From a moving platform ? If it's a dice ?
In wood or In glass ¢

» What if | give this substance to eat/drink ¢ s sickness related to cold ¢ Humidity
geic



SCIENCE

» 2)Great success of the 19/20 centuries: Reductionism

» lo understand things, | need to understand what they are
made of:

P AThuman body: organs, vessels == cells => DNA, proteins & stuft ==
NEEeatdes .. ..

» Objects: Organic compounds => atoms => protons/electrons/neutrons ==
stuff

« => Now we know. And then what ?



SCIENCE

» 3) Iwo situations:
» The system is homogeneous and/or has a regular structure

- =>You can explain it with a bunch of equations

» The system is heterogeneous and/or has a complex structure
- => Understanding each component is not enough to understand the system
- Understanding each cell tells you little about how the brain works.
- Understanding how each individual works/behave tells you little about societies
acC.

« => [he structure/relations/interactions matters.

» Networks represent structures



EOMPLEX SYS TER

- Complex systems: Systems composed of multiple parts
in interactions

» Complex networks model the interactions between the parts

» A common framework applicable to many systems
» =>Many networks share similar characteristics
» =>Similar processes shape the networks
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WHO /¢

* Network scientists:
» Physicists
» Computer scientists

» Mathematicians
» =>Work on the same problems, with converging vocabularies and references

» Applied network scientists

» Geographers, biologists, social scientists, etc.
» =>Experts of I)their domain, and i)complex networks analysis



0 CONCLUIDRS

» Complex Network Analysis is/should be/will become (In my
opinion) one of the basic tools of the modern scientist (and
Data scientist), much as statistics or linear algebra.



A BRIEF HISTORY



A BRIEF HISTORE

* Graph theory:| /36 - Euler and the bridges of konigsberg

THE BRIDGES OF KONIGSBERG

Can one walk across

the seven bridges and

never cross the same
bridge twice?




A BRIEF HISTORE

THE BRIDGES OF KONIGSBERG

Answer: No




A BRIEF HISTORE

» Social networks: 1934 - |acob Moreno
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e PUBLICATICONS

1998: Wiatts & Strogatz - Small-World:
» 2nd Most cited paper of the year in Nature

|999: Barabasi & Albert - scale-free networks:

» Most cited paper of the year in Science

2002: Girvan & Newman - Community detection:

»  Most cited paper of the year in PNAS

2004: Barabasi & Oltvai - Network Biology:

» Most cited paper (ever) in Nature genetics

2010: Kwak et al. - What is Twitter; a Social Network or a News Media?
» Most cited paper (ever) of the WWWV conference

(As of 2019)



Materials

Lecture books

OXFORD

Mark
Newman

Reviews

SIAM REVIEW

(©) 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 167-256

The Structure and Function of
Complex Networks*

M. E. ). Newman'

REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002

Statistical mechanics of complex networks

Réka Albert* and Albert-LaszI6 Barabasi
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

| ——————— | —

Characterization and Modeling of weighted
networks

Marc Barthélemy!, Alain Barrat?, Romualdo Pastor-Satorras®
and Alessandro Vespignani?
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Albert-Laszl6 Barabasi

SCIENCE

available free online

CAMBRIDGE

Physics Reports 486 (2010) 75-174

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Community detection in graphs

Santo Fortunato *
Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I, Italy

| — | —

Physics Reports 519 (2012) 97-125

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Temporal networks

Petter Holme #P<*, Jari Saramki 4

2 IceLab, Department of Physics, Umea University, 901 87 Umed, Sweden

b Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea

© Department of Sociology, Stockholm University, 106 91 Stockholm, Sweden

9 Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, 00076 Aalto, Espoo, Finland

| — | ———

Copyrighted Material

NETWORKS

CROWDS

avo MARKETS

ng about a Highly Connected World

DAVID EASLEY

and

JON KLEINBERG

available free online

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Spatial networks

Marc Barthélemy *

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The structure and dynamics of multilayer networks

S. Boccaletti*>*, G. Bianconi®, R. Criado ¢, C.I. del Genio "™,
J. Gémez-Gardefies', M. Romance %, I. Sendifia-Nadal'¢, Z. Wang ",
M. Zanin ™"

...and many more...all of them on arXiv.org!


http://arXiv.org
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Related books
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of the Internet
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BIOLOGICAL
“NETWORKS
W o scianic

ANALYSIS OF
BIOLOGICAL NETWORKS

R. Pastor-Satorras, A. Vespignani, Evolution
and Structure of the Internet: A Statistical
Physics Approach (Cambridge University
Press, 2007), rst edn.

F. Kopos, Biological Networks (Complex
Systems and Interdisciplinary Science) (World
Scientic Publishing Company, 2007), rst edn.

B. H. Junker, F. Schreiber, Analysis of
Biological Networks (Wiley Series in
Bioinformatics) (Wiley-Interscience, 2008).

NETWORK
SCIENCE

Theory and Applications

SOCIAL AND
ECONOMIC
NETWORKS

Matthew O¢? Jacksdn

T. G. Lewis, Network Science: Theory and
Applications (Wiley, 2009).

E. Ben Naim, H. Frauenfelder, Z.Torotzai, Complex
Networks (Lecture Notes in Physics) (Springer,
2010), rst edn.

M. O. Jackson, Social and Economic Networks
(Princeton University Press, 2010).



Materials

Pop-science books

"Actgssibla and engaging A good introdustion to the topic.” —Nature
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Materials

Journals

Volume 1 Number2 December 2013 ISSN 2051-1310 (PRINT)
ISSN 2051-1329 (ONLIINE)
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Materials

Related books

Handbook of
Graphs and Networks

Handbook of Graphs and Networks: From the
Genome to the Internet (Wiley-VCH, 2003).

S. N. Dorogovtsev and J. F. F. Mendes,
Evolution of Networks: From Biological Nets
to the Internet and WWW (Oxford University
Press, 2003).

S. Goldsmith, W. D. Eggers, Governing by
Network: The New Shape of the Public Sector

(Brookings Institution Press, 2004).

Social Network

P. Csermely, Weak Links: The Universal Key to the
Stability of Networks and Complex Systems (The

Frontiers Collection) (Springer, 2006), rst edn.

S. Wasserman and K. Faust
Social Network Analysis (Methods and Applications)
Cambridge University Press (1994)

L. L. F. Chung, Complex Graphs and Networks
(CBMS Regional Conference Series in
Mathematics) (American Mathematical Society,
2006).



GRAPHS & NETWORKS



GRAPHS & NETWORKS

Networks often refers to real systems \

*WWW,
*social network
* metabolic network.

* Language: (Network, node, link)

Graph is the mathematical person | friendship
representation of a network

- Language: (Graph, vertex, edge)

neuron | synapse
Website = hyperlink

company lownership

gene | regulation
In most cases we will use the two terms interchangeably.



NETWORK
REPRESENTATIONS



NETWORK REPRESEN TATIONS

[Cw U, U, I CNRN N NN AN I SN
Foo~uds B

G =(V,E)
» edge: (u,v) € E
» Often encoded as edge list or adjacency list

» Software: custom data structure and manipulation
- add_nodes([1,/]), add_edge(l,), ...

ol
|

G B

OFw;mbBurbroNREND
o

PO~k wrn

(o

» Adjacency Matrix A
e A
» Graph lLaplacian L = D — A with D the degree matrix

- Powerful graph spectral properties, more later




Types of
Networks



Undirected networks

Opte project

G=(V E)
(u,v) € £

(vu) € £

» The directions of edges do
not matter

* Interactions are possible
between connected entities
In both directions

117
207.205.25!

The Internet: Nodes - routers, Links - physical wires



Directed networks

Moritz Stefaner, eigenfactor.com

G=(V, E)
(u,v) EE =z (vu) € E

* The directions of
edges matter

* Interactions are
possible between
connected entities
only in specified
directions

Citation network: Nodes - publications, Links - references



http://eigenfactor.com

Weighted networks

Onnela et.al. New Journal of Physics 9, 179 (2007).

G=(V, E, w)
w: (u,v) EE=R

» Strength of
Interactions are
assigned by the
weight of links

o
a¥-e
So00!

®e

Social interaction network: Nodes - individuals
Links - social interactions




Bipartite network

® O

Disease
Gene
Up-reg.
Dn-reg.

<

P AP o 0

2881

. Emﬂh 62

Genes (mostly up-regulated) by
SLE, FSGS, and MGN

Genes (mostly down-regulated) by
SLE, FSGS, MGN, and IgAN

G, NN
Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3

Gene-desease network:
Nodes - Desease (7)&Genes (747)
G=(U, V, E) Links - gene-desease relationship

UNV=9
Yuv)€EE ucUandveEeV



Multiplex and multilayer networks

G=(V E), i=1..M

* Nodes can be present in
multiple networks
simultaneously

* These networks are
connected (can influence
each other) via the
common nodes

=

(=

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)

[Mendez-Bermudez et al. 2017]



Temporal and evolving networks
G=(V, Ey, (uvtd) € E;

t - time of interaction (u,v)
d - duration of interaction (u,v,t)

- Temporal links encode time varying interactions

G=(Vr, Er)
v(t) e Ve
(lxl,V,l) EEt

* Dynamical nodes and
links encode the
evolution of the
network

Mobile communication network
Nodes - individuals
Links - calls and SMS



DESCRIPTION OF GRAPHS



DESCRIPTION OF GRAPHS

* When confronted with a graph, how to describe it/
* How to compare graphs?

» What can we say about a graph?



o3 Vi

* A network Is composed of hodes and edges.

* Size: How many nodes and edges ! (n & m)

#nodes (n) | #edges (m)

Wikipedia HL
Twitter 2015
Facebook 2015
Brain c. Elegans
Roads US
Airport traffic




DENSITY

|E|

Directed  °~“wiwvi-y
Defined as: R s

2|E|

Undirected °~wigvi-y

B ———

WIEEnRmore relevant: average degree ( Z|E[NE s

#nodes  i#edges Density

Wikipedia
Twitter 2015
Facebook
Brain c.
Roads Calif.
Airport




DENSITY

* [t has been observed that: [Leskovec. 2006]

» When graphs increase In size, the average degree increases
» This Increase Is very slow

* Think of friends In a social network



DENSITY
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Node degree
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Number of connections of a node
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Node degree
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Number of connections of a node
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Weighted degree: strength

» Weighted networks

The sum of the weights of links connected to node i

= 2 Wij
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DEGREE

Normal Distribution

P(V) (humber of observations of value V)

V (value of observation)

DISTRIBUTION

Power Law Distribution

>

P(V) (number of observations of value V)

V (value of observation)

L r———

PDF (Probability

Distribution Function)

Sometimes with CDF (Cumulative Distribution Function)



DEGREE DISTRIBUTION

* In a fully random graph (Erdos-Renyi), degree distribution is a
normal distribution centered on the average degree

* In real graphs, in general, it Is not the case:

» A high majority of small degree nodes
» A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law
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To Be or Not to Be Scale-Free

Scientists study complex networks by looking at the distribution of the number of links (or “degree”) of each node.

Some experts see so-called scale-free networks everywhere. But a new study suggests greater diversity in real-world networks.

Random Network
Randomly connected networks have nodes with
similar degrees. There are no (or virtually no) “hulos” —

nodes with many times the average number of links.

Most nodes
have a few
links.

The distribution of degrees is shaped roughly
like a bell curve that peaks at the network's

“characteristic scale.”

Most nodes have a

T degree close to the

n characteristic scale.

8

z No nodes

o of very high

o degree.

w

o

: |

2 ( )
0 DEGREE 15

o Twitter’s Scale-Free Network
Most real-world networks of interest are not random.
Some nonrandom networks have massive hubs

with vastly higher degrees than other nodes.

The median active user
has about 60 followers.

Some users have millions
of followers, forming enormous hubs.

The degrees roughly follow a power law distribution
that has a “heavy tail.” The distribution has no

characteristic scale, making it scale-free.

Most nodes have a low degree.

Giant hubs form

a heavy fail.
A

NUMBER OF USERS —>

0 FOLLOWERS Millions

o Facebook'’s In-Between Network
Researchers have found that most nonrandom
networks are not strictly scale-free. Many have

a weak heavy tail and a rough characteristic scale.

The medion ——
Facebook user

has about 200
friends.

A few have
Facebook's limit
of 5,000 friends.

This network has fewer and smaller hubs than
in a scale-free network. The distribution of nodes

has a scale and does not follow a pure power law.

Most nodes have a low

T degree and most users
” cluster near the median.
(a d
w
(72]
>
|1
(0]
o The tail is weak.
i
o
2 J
- |
z

0 FRIENDS 5,000

B

[Quanta magazine 2018]




Node clustering coefficient

* Measure of interconnectivity

» What portion of neighbours of a node are connected to each other?

Global clustering coefficient

o 3 x number of triangles

number of connected triples of vertices

number of closed triplets

number of connected triples of vertices

O
0 O

C=9/18=1/2

Cu= (2x2)/(4x3) = 1/3

Local clustering coefficient
2e

u

C, =
k,(k,—1)

¢, - number of links between the
neighbours of node u

* (ku(ku,-1))/2 - maximum number of
triangles

Average local clustering coefficient

|
C=Nzu:cu

Definition: Watts and Strogatz 2002



CLUSTERING COEFFICIENT

Ihe higher the value,
the more locally dense is the network. ®

“Friends of my friends are my friends”

Higher In real networks than random




CLUSTERING COEFFICIENT

M@lewal CC:

» Random (ER): =density: very small for large graphs
» Facebook ego-networks: 0.6

» Twitter lists: 0.56

» California Road networks: 0.04




Link clustering coefficient: Overlap

* Link property
* Fraction of common neighbours of a connected pair
- Jaccard index of common neighbours

0 i - n; - number of common neighbours of nodes i and j
S (e 1) ny;

* (ki-1)+(kj-1)-n; maximum number possible triangles
between nodes i and j

’\ o o
o—0 0<: Oi = 3/(6+5-3) = 3/8

e

| ———




Path length

A path is a sequence of nodes in which each node is adjacent to the next one

P, in of length n between nodes i, and i, is an ordered collection of n+7 nodes and n links

Pn = {ioaipiza---ain} Pn = {(lo ail)’(il 9i2),(i2 ,i3),..,(in_1 ,in)}

A path can intersect itself and pass through the same
link repeatedly. Each time a link is crossed, it is counted

separately ‘ c

*A legitimate path on the graph on the right: D
ABCBCADEEBA

* In a directed network, the path can follow only the
direction of an arrow.




Path length

~B The distance (shortest path, geodesic path) between two
A nodes is defined as the number of edges along the shortest
- path connecting them.
‘C_/ “c
D *If the two nodes are disconnected, the distance is infinity.
~B In directed graphs each path needs to follow the direction of
A / the arrows.
/ j\/ Thus in a digraph the distance from node A to B (on an AB
. Oc path) is generally different from the distance from node B to A
D (on a BCA path).

Path Shortest Path

A sequence of nodes such that each The path with the shortest
node is connected to the next node length between two nodes

along the path by a link. (distance).

—



Path length

N.

number of paths between any two nodes / and j:

Length n=1: If there is a link between iand j, then A;=1 and A;=0 otherwise.

Length n=2: If there is a path of length two between i and j, then A;A,=1, and A, A,=0
otherwise.
The numbgr of paths of length 2:

N® = > A, = A%],
k=1

Length n: In general, if there is a path of length n between i and j, then Aik...A,j=1

and Ay...A=0 otherwise.
The number of paths of length n between iand jis”

N =[A"],

*holds for both directed and undirected networks.




Path length

* dmar diameter- the maximum distance between any pairs of nodes

- {(d) average path length - for directed graphs

- where d;; is the shortest distance between

il 1 e nodes i and j

iy - multiplicative is (2 x max number of links)

« distance between unconnected nodes is O

* {d) average path length - for un-directed graphs

2
(d) = NN = 1) > dy

1<J

Shortest Path

« since d;j=d;

- multiplicative is (max number of links)

A sequence of nodes such that each The path with the shortest
node is connected to the next node length between two nodes
along the path by a link. (distance).




AVERAGE PATH LENGTH

* [he famous 6 degrees of separation (Milgram experiment)
» In fact 6 hops
» (More on that next slide)

« Not too sensible to noise

B[N eulil the network Is “stretched™” or " hairball™ liike



SIDE-STORY: MILGRAM
cXPERIMEN T

» Small world experiment (60’s) ' w\ _
» Give a (physical) mail to random people £ o  \

» Ask them to send to someone they don't know ="
- They know his city, job

» They send to their most relevant contact

» Results: In average, 6 hops to arrive

Texas




SIDE-STORY: MILGRAM
cXPERIMEN T

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web



SIDE-STORY: MILGRAM
cXPERIMEN T

1251 |

|
|
| Mean = 3.57
|
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Average degrees of separation

Facebook



Weighted path length

length of a shortest path P(i»/) =# length of a weighted shortest path P(i+)

dij - Amn tl'j = Zwmn
€ EP (1) EP(i—J)

e —— — ———

emn

Shortest path # Weighted shortest path




All shortest path algorithm

finding shortest paths in a weighted graph with positive or negative edge weights
(but with no negative cycles)

proc FloydWarshall(G=(V,E,w))
1 // let dist be a |V| x |V| array of minimum distances initialized to ® (infinity)
2 for each edge (u,v)
3 dist[u][v] < w(u,v) // the weight of the edge (u,v)
for each vertex v
dist[v][Vv] < O
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][j] > dist[i][k] + dist[k][J]
dist[i][j] ¢« dist[i][k] + dist[k][J]
end if

=0: k=1: k = 4:
Checking and updating all paths going @i@ @i@ﬁ@‘ ‘i‘i@
through nodes k=1, 2, 3, ... , N by @

assuming that:

shp(i,j,k)=
min(shp(i,j,k-1)), shp(i,k,k-1)+shp(k,j,k-1))

R P WO 00 J o O &

_ O

Complexity: O(n3)




Connectivity and components

A connected component is a subset of vertices

with at least one path connecting each of them

A network may consist of a single connected

component (a connected network) or several of

those @

Distances between nodes in disjoint

components are not defined (infinite) @
Bridge: if we remove it, the graph becomes

disconnected.

The adjacency matrix of a network with several
components can be written in a block-diagonal
form, so that nonzero elements are confined to

.-
squares, with all other elements being zero A = o - )

Figure after Newman, 2010



Connected components algorithm

proc connectedComponents (G=(V,E)) e Compute with recursive DFS
// Mark all the vertices as not visited (OI’ BFS) algorithm started
bool visited=[V] e
oo <o e () (e T from each unvisited node
visited[v] ¢« false e Complexity: O(IVI + IE|)

for v from 0 to V-1
if visited[v]==false
// print all reachable vertices from v
DFSUtil(v, visited)
print (“\n")
end if

proc DFSUtil(v, visited[])
// Mark the current node as visited and print it
visited[v] ¢ true
print(v)

// Recur for all the vertices adjacent to this vertex
for each i in adj[vVv]
if visited[i]==false
DFSUtil (i, visited)
end if

e Better solution exists using disjoint set structures



Connectivity and components - directed networks

e Strongly connected component (SCC): has a path from each node to every other

node in the component

e Weakly connected component (WCC): it is connected if we disregard the

directions

e [n-component: nodes that can reach the SCC

e (Qut-component: nodes that can be reached from SCC

Glant strongly

connected component

Glant [N component //—\ Glant OUT companent

Tendril

<] [

Ay

*—-""

Tendril

Tube Tendril

(Siant weakly connected component

Disconnected companents

Figure from Broder et. al. (2000)



kK-core decomposition

Goal: To identify dense cores of high degree nodes in networks

Given graph G = (V, E)

Definition: A subgraph H = (C,EIC) induced by
the set C C V is a k-core or a core of order K iff '
Vv &€ C : degree(H (v)) = k, and H is the maximum
subgraph with this property. :

* A k-core of G can be obtained by recursively
removing all the vertices of degree less than k, :
until all vertices in the remaining graph have at SRR
least degree k. @ 1-shell @ 2-shell @ 3-shell

Definition: A vertex i has coreness c if it belongs to the c¢-core but not to (¢ + 1)-core.

Definition: A c-shell is composed by all the vertices whose coreness is ¢. The k-core is thus
the union of all shells with ¢ > k.



core decomposition

Intuitive algorithm
1. Take a directed or undirected network

2. Remove nodes with degree k(=1) and all of those which degree
became k(=1) because of the removal process

3. Repeat step 2 for k=2,3,... until no node can be removed

* Nodes removed in the ki turn are in the k-shell and the remaining nodes form
the k-core

proc CoreDecomposition(G=(V,E))
compute the degrees of vertices
order veV in increasing degree order
core[V]=0
for each veV in the order
core[v] := degree[V];
for each u € adj(v) do
if deg[u] > deg[v] then
degree[u] := degree[u] - 1;
reorder V
end if

Batagelj, Zversnik (2002)

@ 1-shell @® 2-shell @ 3-shell



TRIADS COUNTING
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TRIADS COUNTING

—e— Anomalous group (18 countries)
—e— Majority group (166 countries)

0.4+
3
2

S S S
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<A<
<
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0.5
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Triad type




EIRAPHEE TS

2-nod i}

gra%%lgt 3-node graphlets 4-node graphlets
0 1
G, & @6 6 G

3- node graphlets

49




MATRIX PROPERTIES

Labeled graph Adjacency matrix

0 1 0 1 0
/ 0

=0 = O O

O = O = O

O O = O =

O O = O -
-

* What I1s a Matrix?

» Not a 2D data table
» It describes a linear transformation, or linear function
» Said differently, It represents a set of equations



Sl
Sk
R
SN
X6’

MATRIX PROPERTIES

x| X2 X3 x4 x5 x6

(O

o = O = O

0

O O = O =

_ = O = O

© O = O =

9

x1" = 0x; + 1x, + Ox5 + Oxy + 1x5 + Oxg
x2' = x; + X3 + x5
X3 =Xy + x4



MATRIX PROPERTIES

g °
— [ L'2 N e)

s R
N L
000100*
- - O - O O
O O ™ O ™
O - O - O O
- O - O - O
010010;
~ -

/A

A AX=

A

)

(

/

O
S+ T+ +
+ 0+ S
S+ S+ +

— N e

= XX\
— N
000100*
- O +H O O
O O - O ™ ™
O +H O +H O O
101010&
O - O © - O
~_ -

AX=



MATRIX PROPERTIES

« Question: What is the result of Ax If
T — 06| !

O
Eao=o
A, X = @.@‘Q

=
H—@
Ade & L



MATRIX PROPERTIES

« Question: What Is the result of Ax If
» X | =x2=x3=x4=x5=x6=1"!
» =>New values are degrees

O
O @
Axs DS
O
A, Ax= ®.@‘



MATRIX PROPERTIES

. What about A2 ?

* Define a new function
» A encodes the number of paths of lengths exactly I between pairs of nodes

» A? encodes the number of baths of lengths exactly 2 between pairs of nodes
» A2 encodes the number of paths of lengths exactly 3 between pairs of nodes

SHA

» Graph matrices operations can be interpreted as:

» Diffusion phenomenons
» Random walks



Graph Spectral properties

Adjacency matrix

Given a simple graph G = (V, E) with an adjacency matrix A
 if G is undirected it has a complete set of real eigenvalues
» Set of eigenvalues define the spectrum of G

* Interesting properties:

- The largest eigenvalue 4, of a graph G lies between the average
and maximum degrees

. The number of closed walks of length k in G equals Z?zo A

A graph is bipartite if and only if its spectrum is symmetric (ie if A is
an eigenvalue, then so is —A, and with the same multiplicity).

* If G is connected, then the diameter of G is strictly less than its
number of distinct eigenvalues



Graph Spectral properties

Graph Laplacian Lnw=D-A where D is the degree matrix of G

(deg(vz)
Lz’,j = < —1

L 0
Labeled graph Degree matrix
/2 0 0 0 O
e 0 3 0 0 O
e e 0 0 0 2 0 O
.‘ 0O 00 3 O
e e 0000 3
\O 0 0 0 O

* Interesting properties (assuming G is undirected with eigenvalues A< A <.

ifi =7
if ¢« # j and v; is adjacent to v;
otherwise

Adjacency matrix Laplacian matrix
0\ (00100 10\ (2 -1 0 0 -1 0)
0 1010 1 1 3 -1 0 -1 0
0 1010 0 -1 2 -1 0 0
0 01011 0 0 -1 3 -1 -1
0 11010 1 -1 0 -1 3 0
1/ \oooz100/ Lo 0o o0o-1 o 1)

» L is symmetric and positive definite (4; = O for all i)

* 1o = 0 and the number of 0 eigenvalues gives the number of connected
components in G

A1)

- If G has multiple connected components, L is a block diagonal matrix, where
each block is the respective Laplacian matrix for each component



Graph Spectral properties

* Graph Spectral Analysis is a whole field of research

* We will introduce more of it in later parts of the course
« Centralities
 Community Detection
e embedding



EXEMPLE OF GRAPH
ANALYSIS

» Source: [ The Anatomy of the Facebook Social Graph, Ugander
st 2l AR

* The Facebook friendship network in 201 |



EXEMPLE OF GRAPH
ANALYSIS

» /21 M users (nodes) (active in the last 28 days)
e ocdocs
» Average degree: |90 (average # friends)

SRlcclian desree: 99

BEifiected component: 99.9 1%



EXEMPLE OF GRAPH
ANALYSIS
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Fraction

EXEMPLE OF GRAPH
ANALYSIS
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EXEMPLE OF GRAPH
ANALYSIS

T o
O W —
o O
D
o
8 & —
o ©
£
h —d
Q
7
= W
T © —
o ©
(®))
©
g —
<L
—
Q—
o

-----

- [\lean
- == 5/95th Pct

I |
20 50 200
Degree

|
1000

|
5000

Clustering coefficient
By degree

Median user: O. | 4:

| 496 of users with a common
friend are friends



EXEMPLE OF GRAPH
ANALYSIS
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Fraction
0.00 0.05 0.10 0.15 0.20

EXEMPLE OF GRAPH
ANALYSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

20 40 60 80 100
Neighbor’s age




EXEMPLE OF GRAPH
ANALYS\S

g%

Country similarity

84.2% percent of edges are

within countries

(More In the comimmGifie
detection class)




