
GRAPH EMBEDDING
AND

GCN
(GRAPH CONVOLUTIONAL NEURAL NETWORKS)

GRAPH EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.

NAMES

• Graph embedding / Network embedding

• Representation learning on networks
‣ Representation learning = feature learning, as opposed to

manual feature engineering (heuristics)

• Embedding => Latent space

VARIANT
• We can differentiate:

‣ Node embedding
‣ Edge Embedding
‣ Substructure embedding
‣ Whole graph Embedding

• In this course, only node embedding (often called graph
embedding)

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, SEPT 2017 2

8

2

1

3

7
5

6 9 4

1.5

0.3

1.2

0.8

1.5

1

0.6
0.2

1.5

1

(a) Input Graph G1
0.0 1.5 3.0

3

0

-3

1
2

3
4
5

6
7

8 9

(b) Node Embedding
0.0 1.5 3.0

3

0

-3

e67

e79

e78
e45

e56 e46

e13

e12
e23

e34

(c) Edge Embedding
0.0 1.5 3.0

3

0

-3

G{7,8,9}

G{4,5,6}

G{1,2,3}

(d) Substructure Embedding
 0.0 1.5 3.0

3

0

-3

G1

(e) Whole-Graph Embedding

Fig. 1. A toy example of embedding a graph into 2D space with different granularities. G{1,2,3} denotes the substructure containing node v1, v2, v3.

aims to represent a graph as low dimensional vectors while
the graph structures are preserved. On the one hand, graph
analytics aims to mine useful information from graph data.
On the other hand, representation learning obtains data
representations that make it easier to extract useful informa-
tion when building classifiers or other predictors [9]. Graph
embedding lies in the overlap of the two problems and
focuses on learning the low-dimensional representations.
Note that we distinguish graph representation learning
and graph embedding in this survey. Graph representation
learning does not require the learned representations to be
low dimensional. For example, [10] represents each node as
a vector with dimensionality equals to the number of nodes
in the input graph. Every dimension denotes the geodesic
distance of a node to each other node in the graph.

Embedding graphs into low dimensional spaces is not
a trivial task. The challenges of graph embedding depend
on the problem setting, which consists of embedding input
and embedding output. In this survey, we divide the input
graph into four categories, including homogeneous graph,
heterogeneous graph, graph with auxiliary information and graph
constructed from non-relational data. Different types of em-
bedding input carry different information to be preserved
in the embedded space and thus pose different challenges
to the problem of graph embedding. For example, when
embedding a graph with structural information only, the
connections between nodes are the target to be preserved.
However, for a graph with node label or attribute infor-
mation, the auxiliary information provides graph property
from other perspectives, and thus may also be considered
during the embedding. Unlike embedding input which is
given and fixed, the embedding output is task driven. For
example, the most common type of embedding output is
node embedding which represents close nodes as similar
vectors. Node embedding can benefit node related tasks
such as node classification, node clustering, etc. However, in
some cases, the tasks may be related to higher granularity
of a graph e.g., node pairs, subgraph, whole graph. Hence,
the first challenge in terms of embedding output is to find a
suitable embedding output type for the application of inter-
est. We categorize four types of graph embedding output,
including node embedding, edge embedding, hybrid embedding
and whole-graph embedding. Different output granularities
have different criteria for a “good” embedding and face
different challenges. For example, a good node embedding
preserves the similarity to its neighbouring nodes in the
embedded space. In contrast, a good whole-graph embedding
represents a whole graph as a vector so that the graph-level

similarity is preserved.
In observations of the challenges faced in different prob-

lem settings, we propose two taxonomies of graph em-
bedding work, by categorizing graph embedding literature
based on the problem settings and the embedding tech-
niques. These two taxonomies correspond to what chal-
lenges exist in graph embedding and how existing studies
address these challenges. In particular, we first introduce
different settings of graph embedding problem as well as
the challenges faced in each setting. Then we describe how
existing studies address these challenges in their work,
including their insights and their technical solutions.

Note that although a few attempts have been made to
survey graph embedding ([11], [12], [13]), they have the fol-
lowing two limitations. First, they usually propose only one
taxonomy of graph embedding techniques. None of them
analyzed graph embedding work from the perspective of
problem setting, nor did they summarize the challenges in
each setting. Second, only a limited number of related work
are covered in existing graph embedding surveys. E.g., [11]
mainly introduces twelve representative graph embedding
algorithms, and [13] focuses on knowledge graph embed-
ding only. Moreover, there is no analysis on the insight
behind each graph embedding technique. A comprehensive
review of existing graph embedding work and a high level
abstraction of the insight for each embedding technique can
foster the future researches in the field.

1.1 Our Contributions

Below, we summarize our major contributions in this survey.
• We propose a taxonomy of graph embedding based on
problem settings and summarize the challenges faced in
each setting. We are the first to categorize graph embedding
work based on problem setting, which brings new perspec-
tives to understanding existing work.
• We provide a detailed analysis of graph embedding tech-
niques. Compared to existing graph embedding surveys,
we not only investigate a more comprehensive set of graph
embedding work, but also present a summary of the insights
behind each technique. In contrast to simply listing how the
graph embedding was solved in the past, the summarized
insights answer the questions of why the graph embedding
can be solved in a certain way. This can serve as an insightful
guideline for future research.
• We systematically categorize the applications that graph
embedding enables and divide the applications as node

IN CONCRETE TERMS

• A graph is composed of
‣ Nodes (possibly with labels)
‣ Edges (possibly directed, weighted, with labels)

• A graph/node embedding technique in d dimensions will
assign a vector of length d to each node, that will be useful for
what we want to do with the graph.

• A vector can be assigned to an edge (u,v) by combining
vectors of u and v

WHAT TO DO WITH
EMBEDDINGS?

• Two possible ways to use an embedding:
‣ Unsupervised learning:

- The distance between vectors in the embedding is used for *something*
‣ Supervised learning:

- Algorithm learn to predict *something* from the features in the embedding

WHAT CAN WE DO WITH
EMBEDDINGS ?

EMBEDDING TASKS

• Common tasks:
‣ Link prediction (supervised)
‣ Graph reconstruction (unsupervised link prediction ? / ad hoc)
‣ Community detection (unsupervised)
‣ Node classification (supervised community detection ?)
‣ Role definition (Variant of node classification, can be unsupervised)
‣ Visualisation (distances, like unsupervised)

OVERVIEW OF MOST
POPULAR METHODS

HISTORIC METHODS
(PRE NEURAL NETWORKS)

LE: LAPLACIAN EIGENMAPS

• Introduced 2001

• Objective function:
‣

- : optimal embedding
- : embedding of node i
- : weight between nodes i and j

• Nodes connected (close) in the graph should be close in the
embedding, Highest weights = strongest influence

y* = min ∑
i≠j

∥yi − yj∥2Wij

y*
yi
Wij

LE: LAPLACIAN EIGENMAPS
•

• Can be written in matrix form as:
‣

‣ : Laplacian, : Degree matrix

• To avoid trivial solution, we impose the constraint:
‣

• Solution: eigenvectors of lowest eigenvalues of

y* = min ∑
i≠j

∥yi − yj∥2Wij

min yTLy

L D

yTDy = I

d D−1/2LD−1/2

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

HOPE: HIGHER-ORDER PROXIMITY
PRESERVED EMBEDDING

• Preserve a proximity matrix

•

• can be the adjacency matrix, or number of common neighbors,
Adamic Adar, etc.

• As similarity tends towards 0, associated embeddings should tend
towards orthogonality

y * = min ∑
i,j

|Wij − yiyT
j |

W

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

LLE: LOCALLY LINEAR
EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

• Introduced 2000

• A node features can be represented as a linear combination of
its neighbors’

‣

• Objective function:

‣

Yi = ∑
j

AijYj

y* = min ∑
i

∥Yi − ∑
j

AijYj∥2

RANDOM WALKS BASED

DEEPWALK

• The first “modern” graph embedding method

• Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

SKIPGRAM
Word embedding

Corpus => Word = vectors
Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

GENERIC “SKIPGRAM”

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM”

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with interesting properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

DEEPWALK

• Skipgram for graphs:
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters: dimensions d, RW length k

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

NODE2VEC
• Use biased random walk to tune the context to capture

what we want
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.

RANDOM WALK METHODS

• What is the objective function ?

• How to interpret the distance between nodes in the
embedding ?

ENCODER DECODER
FRAMEWORK

L = ∑
(vi,vj)∈E

ℓ(DEC(zi, zj), s𝒢(vi, vj))

: Decoder function (e.g.,)DEC DEC(zi, zj) = zT
i zj

: Ground truth similarity (e.g.,)s𝒢 s𝒢(vi,vj) = Aij
: Chosen loss function (e.g.,)ℓ ℓ(a, b) = |a − b |

Minimize a global loss defined as:

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.

ENCODER DECODER
FRAMEWORKTable 1: A summary of some well-known direct encoding embedding algorithms. Note that the decoders and proximity

functions for the random-walk based methods are asymmetric, with the proximity function, pG(vj |vi), corresponding to
the probability of visiting vj on a fixed-length random walk starting from vi.

Type Method Decoder Proximity measure Loss function (!)

Laplacian Eigenmaps [4] ‖zi − zj‖22 general DEC(zi, zj) · sG(vi, vj)
Matrix Graph Factorization [1] z!i zj Ai,j ‖DEC(zi, zj)− sG(vi, vj)‖22

factorization GraRep [9] z!i zj Ai,j ,A2
i,j , ...,A

k
i,j ‖DEC(zi, zj)− sG(vi, vj)‖22

HOPE [44] z!i zj general ‖DEC(zi, zj)− sG(vi, vj)‖22

Random walk
DeepWalk [46] ez

!
i zj

∑
k∈V ez

!
i zk

pG(vj |vi) −sG(vi, vj) log(DEC(zi, zj))

node2vec [27] ez
!
i zj

∑
k∈V ez

!
i zk

pG(vj |vi) (biased) −sG(vi, vj) log(DEC(zi, zj))

2.2 Direct encoding approaches

The majority of node embedding algorithms rely on what we call direct encoding. For these direct encoding
approaches, the encoder function—which maps nodes to vector embeddings—is simply an “embedding lookup”:

ENC(vi) = Zvi, (5)

where Z ∈ Rd×|V| is a matrix containing the embedding vectors for all nodes and vi ∈ IV is a one-hot indicator
vector indicating the column of Z corresponding to node vi. The set of trainable parameters for direct encoding
methods is simply ΘENC = {Z}, i.e. the embedding matrix Z is optimized directly.

These approaches are largely inspired by classic matrix factorization techniques for dimensionality reduc-
tion [4] and multi-dimensional scaling [36]. Indeed, many of these approaches were originally motivated as
factorization algorithms, and we reinterpret them within the encoder-decoder framework here. Table 1 summa-
rizes some well-known direct-encoding methods within the encoder-decoder framework. Table 1 highlights how
these methods can be succinctly described according to (i) their decoder function, (ii) their graph-based prox-
imity measure, and (iii) their loss function. The following two sections describe these methods in more detail,
distinguishing between matrix factorization-based approaches (Section 2.2.1) and more recent approaches based
on random walks (Section 2.2.2).

2.2.1 Factorization-based approaches

Early methods for learning representations for nodes largely focused on matrix-factorization approaches, which
are directly inspired by classic techniques for dimensionality reduction [4, 36].
Laplacian eigenmaps. One of the earliest, and most well-known instances, is the Laplacian eigenmaps (LE)
technique [4], which we can view within the encoder-decoder framework as a direct encoding approach in which
the decoder is defined as

DEC(zi, zj) = ‖zi − zj‖22
and where the loss function weights pairs of nodes according to their proximity in the graph:

L =
∑

(vi,vj)∈D

DEC(zi, zj) · sG(vi, vj). (6)

Inner-product methods. Following on the Laplacian eigenmaps technique, there are a large number of recent
embedding methodologies based on a pairwise, inner-product decoder:

DEC(zi, zj) = z!i zj , (7)

6

: probability of visiting on a fixed-length random walk started
from

p𝒢(vj |vi) vj
vi

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.

ENCODER DECODER
FRAMEWORK

p𝒢(vj |vi)

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.

zT
i zjMore orthogonal More similar

Higher probability to
encounter in random

walks

Higher values
(Because log of a

fraction)

Lower values

(Ground truth,
can’t be fitted)

SOME REMARKS ON WHAT
ARE EMBEDDINGS

ADJACENCY MATRIX

• An adjacency matrix is an embedding… (in high dimension)

• That represents the structural equivalence
‣ 2 nodes have similar “embeddings” if they have similar neighborhoods

• Standard dimensionality reduction of this matrix can be
meaningful
‣ Isomap, T-SNE, etc.

GRAPH LAYOUT

• Graph layouts are also embeddings.
‣ Force layout, kamada-kawai ….

• They try to put connected nodes close to each other and
non-connected ones “not close”

• Problem: they try to avoid overlaps

• Usually not scalable

VISUALLY ?

CLIQUE RING
5 cliques or size 20 with 1 edge between them

LE LLE

Spring layout n2v

EMBEDDING ROLES

STRUCT2VEC

• In node2vec/Deepwalk, the context collected by RW contain
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes:
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same
“position” in the graph

• =>Capture the role of nodes instead of proximity
Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC

MEANING OF DISTANCE IN
EMBEDDINGS

DISTANCE IN EMBEDDINGS

• In embeddings, each node has an associated vector

• We can compute the distance between vectors
‣ Euclidean distance (L2 norm)
‣ Manhattan distance (L1 norm)
‣ Cosine distance (angle)
‣ Dot product (angle and magnitude, =cosine distance for normalized vectors)

• Objective function tells us what the distance should mean
‣ Does algorithm succeed in embedding what they want?
‣ Does embedding one property preserves somewhat others?

DISTANCE IN EMBEDDINGS

• Several possibilities:
‣ Distance preserves the probability of having an edge

- We can reconstruct the network from distances
‣ Distance preserves the similarity of neighborhood

- Called Structural equivalence
‣ Distance preserves the role in the network

- Hard to define
‣ Distance preserves the community structure

- Or another type of mesoscopic organization?

DISTANCE IN EMBEDDINGS

• Distance <=> having an edge?

• For each node:
‣ 1)Find the neighbors in the graph. Number of N is k
‣ 2)Find the k closest nodes in the embedding
‣ 3)Compute the fraction of nodes in common in 1) and 2)

• Compute the average over all nodes

DISTANCE IN EMBEDDINGS

6 R. Vaudaine et al.

community membership (P4). Due to lack of space, we cannot present the re-
sults for all datasets but we show the most representative ones and provide the
others as additional materials3. For the same reason, to evaluate P2 and P3,
both Pearson and Spearman correlation coe�cients have been computed but we
only show results for Pearson as they are similar with Spearman. For readability,
every algorithm successfully captures a property when its corresponding score is
at 1 and 0 means unsuccessful. Moreover, a dash (-) in a Table indicates that a
method has not been able to provide a result. Note that due to high complexity,
KKL and MDS are not computed for every graph. Finally, in order to reproduce
our results, the code and datasets are available online on our GitHub3.

4.1 Neighborhood (P1)

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 1: Neighborhood (P1) as a function of embedding dimension.

For the first order proximity (P1), we measure the similarity S as a function
of the dimension d for all the embedding methods. For computational reasons,
for large graphs, the measure is computed on 10% of the nodes. Results are
shown in Figure 1 and Table 3. We can make several observations: for networks
with communities (Dancer and ZKC), only LE and LLE reasonably capture this

3https://github.com/vaudaine/Comparing embeddings

Only LE,LLE capture this property

STRUCTURAL EQUIVALENCE

• For each pair of nodes:
‣ 1)Compute distance between rows of the adjacency matrix

- Distance between neighborhoods
‣ 2)Compute distance in the embedding
‣ 3)Compute Correlation (Spearman) between both ordered sets of values

• =>How strongly both distances are correlated

STRUCTURAL EQUIVALENCE

8 R. Vaudaine et al.

(a) BA100 (b) Dancer 100

(c) Gnp (d) ZKC

Fig. 2: Structural equivalence (P2) as a function of embedding dimension.

Dimensions 2 10 100 995
LE 0.593 0.281 0.052 0.044
LLE 0.079 -0.069 -0.244 -0.441
HOPE 0.726 0.909 0.967 0.947
S2V 0.041 0.134 0.137 0.131
N2VA 0.043 -0.038 -0.018 -0.033
N2VB 0.05 -0.055 -0.042 -0.036
SDNE 0.174 0.037 0.034 0.626
SVD 0.823 0.933 0.987 1.0
Verse 0.036 -0.038 0.023 0.141
MDS -0.053 -0.015 -0.048 -0.079

(a) Dancer 1k

Dimensions 2 10 100 1000
LE 0.06 0.077 0.189 0.192
LLE - - -0.724 -0.785
HOPE 0.844 0.723 0.799 0.967
S2V 0.003 0.457 0.744 0.717
N2VA 0.438 0.144 -0.289 0.297
N2VB 0.445 -0.175 -0.342 0.402
SDNE 0.678 0.787 0.952 0.954
SVD 0.795 0.621 0.873 0.983
Verse -0.036 -0.386 -0.186 0.642

(b) BA10k

Table 4: Structural equivalence (P2). Italic: Best in row. Bold: best.

to learn properly. In the end, SVD seems to be the best algorithm to capture
the second order proximity. It computes a singular value decomposition which is
fast and scalable but SDNE performs also very well on the largest graphs and,
in that case, it can outperform SVD.

svd: dimensionality reduction via SVD
HOPE with Common neighbors as similarity

ROLES:
ISOMORPHIC EQUIVALENCE

• For each pair of nodes:
‣ 1)Retrieve their unlabeled ego-network

- Compute the Edit-distance between those networks (# atomic changes to go from one to
the other (node/edge addition/removal)

‣ 2)Compute distance in the embedding
‣ 3)Compute Correlation (Spearman) between both ordered sets of values

• =>How strongly both distances are correlated

ISOMORPHIC EQUIVALENCE

Network properties captured by graph embeddings 9

4.3 Isomorphic equivalence (P3)

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 3: Isomorphic Equivalence (P3) as a function of embedding dimension.

Dimensions 2 10 100 995
LE 0.058 0.053 0.023 0.023
LLE 0.004 -0.055 -0.05 -0.111
HOPE 0.687 0.295 0.299 0.126
S2V 0.468 0.761 0.759 0.753
N2VA 0.18 0.08 -0.119 -0.107
N2VB 0.327 0.041 -0.053 -0.03
SDNE nan 0.088 -0.057 0.004
SVD 0.39 0.295 0.284 0.165
Verse 0.077 -0.017 0.006 0.101
MDS 0.018 -0.011 0.001 0.01

(a) Gnp1000

Dimensions 2 10 100 1000
LE -0.068 0.072 0.05 -0.052
LLE -0.088 0.009 -0.008 -0.102
HOPE 0.086 0.075 0.108 0.103
S2V 0.11 0.258 0.431 0.401
N2VA 0.123 0.166 0.38 0.203
N2VB 0.123 0.161 0.204 0.081
SDNE 0.057 0.083 0.035 0.086
SVD 0.053 0.076 0.1 0.102
Verse 0.036 -0.032 -0.071 -0.148

(b) Dancer 10k

Table 5: Isomorphic equivalence (P3). Italic: Best in row. Bold: best.

Struc2vec only method to embed this property

COMMUNITY STRUCTURE

• Idea: if distance preserves community structure:
‣ Nodes belonging to the same community should be close in the embedding

• We can use clustering algorithms (k-means…) to discover the
communities

COMMUNITY STRUCTURE

• 1)Create a network with a community structure

• 2)Use k-means clustering on embedding to detect the
community structure

• 3)Compare expected to k-means using the aNMI

COMMUNITY STRUCTURE
Planted partitions. 8 communities

10 R. Vaudaine et al.

With the property P3, we investigate the ability of an embedding algorithm
to capture roles in a graph. To do so, we compute the graph edit distance (GED)
between every pair of nodes in the graph and the distance between the vectors
of the embedding. Moreover, we sample nodes at random and compute the GED
only between every pair of the sampled nodes thus reducing the computing time
drastically. We sample 10% of the nodes for medium graphs and 1% of the
nodes for large graphs. We present, in Figure 3 and Table 5, the evolution of the
correlation coe�cient according to the dimension of the embedding space. The
only algorithm that is supposed to perform well for this property is Struc2vec.
Note also that algorithms which capture the structural equivalence can also give
results since two nodes that are structurally equivalent are also isomorphically
equivalent but the converse is not true. For small graphs, as illustrated in Figure
3, Struc2vec (S2V) is nearly always the best. It performs well on medium and
large graphs too as shown in Table 5. However results obtained on other graphs
(available in supplementary material) indicate that Stru2vec is not always much
better than the other algorithms. As a matter of fact, Struc2vec remains the best
algorithm for this measure but it is not totally accurate since the correlation
coe�cient is not close to 1 on every graph e.g on Dancer10k in Table 5 (b).

4.4 Community membership (P4)

(a) Embedding in 2 dimensions (b) Embedding in 128 dimensions

(c) Embedding in 2 dimensions (d) Embedding in 128 dimensions

Fig. 4: AMI for community detection on PPG (top) and Dancer (bottom)

Node2vec, VERSE, HOPE => Good results in “high”
dimensions

COMMUNITY STRUCTURE

• Note: If:
‣ we know the number of clusters to find
‣ And we can use a large number of dimensions

• =>Embeddings can be better than traditional algorithms

NODE CLASSIFICATION
 WITH EMBEDDINGS

NODE CLASSIFICATION

• To each node is associated a vector in the embedding
‣ This vector corresponds to topological features of the node, used instead of,

for instance, centralities
‣ Both types of features can be combined

• As usual, a classifier can be trained using those features

NODE CLASSIFICATION

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.

Some controversies (very recent results)

LINK PREDICTION WITH
EMBEDDINGS

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In International
Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.

UNSUPERVISED
LINK PREDICTION

• Unsupervised link prediction from embeddings

• =>Compute the distance between nodes in the embedding

• =>Use it as a similarity score

SUPERVISED
LINK PREDICTION

• Supervised link prediction from embeddings

• =>embeddings provide features for nodes (nb features:
dimensions)
‣ Combine nodes features to obtain edge features

• =>Train a classifier to predict edges based on features from
the embedding

SUPERVISED
LINK PREDICTION

Combining nodes vectors into edge vectors

SUPERVISED
LINK PREDICTION

• How well does it works ?

• According to recent
articles
‣ Node2vec (2016)
‣ VERSE (2018)

• =>These methods are
better than the state of
the art

Score Definition

Common Neighbors | N (u) \N (v) |
Jaccard’s Coefficient |N (u)\N (v)|

|N (u)[N (v)|
Adamic-Adar Score

P
t2N (u)\N (v)

1
log|N (t)|

Preferential Attachment | N (u) | · | N (v) |
Table 3: Link prediction heuristic scores for node pair (u, v) with
immediate neighbor sets N (u) and N (v) respectively.

our search parameters adds an overhead. However, as our exper-
iments confirm, this overhead is minimal since node2vec is semi-
supervised and hence, can learn these parameters efficiently with
very little labeled data.

4.7 Link prediction

In link prediction, we are given a network with a certain frac-
tion of edges removed, and we would like to predict these missing
edges. We generate the labeled dataset of edges as follows: To ob-
tain positive examples, we remove 50% of edges chosen randomly
from the network while ensuring that the residual network obtained
after the edge removals is connected, and to generate negative ex-
amples, we randomly sample an equal number of node pairs from
the network which have no edge connecting them.

Since none of feature learning algorithms have been previously
used for link prediction, we additionally evaluate node2vec against
some popular heuristic scores that achieve good performance in
link prediction. The scores we consider are defined in terms of the
neighborhood sets of the nodes constituting the pair (see Table 3).
We test our benchmarks on the following datasets:

• Facebook [14]: In the Facebook network, nodes represent
users, and edges represent a friendship relation between any
two users. The network has 4,039 nodes and 88,234 edges.

• Protein-Protein Interactions (PPI) [5]: In the PPI network for
Homo Sapiens, nodes represent proteins, and an edge indi-
cates a biological interaction between a pair of proteins. The
network has 19,706 nodes and 390,633 edges.

• arXiv ASTRO-PH [14]: This is a collaboration network gen-
erated from papers submitted to the e-print arXiv where nodes
represent scientists, and an edge is present between two sci-
entists if they have collaborated in a paper. The network has
18,722 nodes and 198,110 edges.

Experimental results. We summarize our results for link pre-
diction in Table 4. The best p and q parameter settings for each
node2vec entry are omitted for ease of presentation. A general ob-
servation we can draw from the results is that the learned feature
representations for node pairs significantly outperform the heuris-
tic benchmark scores with node2vec achieving the best AUC im-
provement on 12.6% on the arXiv dataset over the best performing
baseline (Adamic-Adar [1]).

Amongst the feature learning algorithms, node2vec outperforms
both DeepWalk and LINE in all networks with gain up to 3.8% and
6.5% respectively in the AUC scores for the best possible choices
of the binary operator for each algorithm. When we look at opera-
tors individually (Table 1), node2vec outperforms DeepWalk and
LINE barring a couple of cases involving the Weighted-L1 and
Weighted-L2 operators in which LINE performs better. Overall,
the Hadamard operator when used with node2vec is highly stable
and gives the best performance on average across all networks.

5. DISCUSSION AND CONCLUSION

In this paper, we studied feature learning in networks as a search-
based optimization problem. This perspective gives us multiple ad-
vantages. It can explain classic search strategies on the basis of

Op Algorithm Dataset

Facebook PPI arXiv
Common Neighbors 0.8100 0.7142 0.8153
Jaccard’s Coefficient 0.8880 0.7018 0.8067
Adamic-Adar 0.8289 0.7126 0.8315
Pref. Attachment 0.7137 0.6670 0.6996
Spectral Clustering 0.5960 0.6588 0.5812

(a) DeepWalk 0.7238 0.6923 0.7066
LINE 0.7029 0.6330 0.6516
node2vec 0.7266 0.7543 0.7221
Spectral Clustering 0.6192 0.4920 0.5740

(b) DeepWalk 0.9680 0.7441 0.9340
LINE 0.9490 0.7249 0.8902
node2vec 0.9680 0.7719 0.9366

Spectral Clustering 0.7200 0.6356 0.7099
(c) DeepWalk 0.9574 0.6026 0.8282

LINE 0.9483 0.7024 0.8809
node2vec 0.9602 0.6292 0.8468
Spectral Clustering 0.7107 0.6026 0.6765

(d) DeepWalk 0.9584 0.6118 0.8305
LINE 0.9460 0.7106 0.8862
node2vec 0.9606 0.6236 0.8477

Table 4: Area Under Curve (AUC) scores for link prediction. Com-
parison with popular baselines and embedding based methods boot-
stapped using binary operators: (a) Average, (b) Hadamard, (c)
Weighted-L1, and (d) Weighted-L2 (See Table 1 for definitions).

the exploration-exploitation trade-off. Additionally, it provides a
degree of interpretability to the learned representations when ap-
plied for a prediction task. For instance, we observed that BFS can
explore only limited neighborhoods. This makes BFS suitable for
characterizing structural equivalences in network that rely on the
immediate local structure of nodes. On the other hand, DFS can
freely explore network neighborhoods which is important in dis-
covering homophilous communities at the cost of high variance.

Both DeepWalk and LINE can be seen as rigid search strategies
over networks. DeepWalk [24] proposes search using uniform ran-
dom walks. The obvious limitation with such a strategy is that it
gives us no control over the explored neighborhoods. LINE [28]
proposes primarily a breadth-first strategy, sampling nodes and op-
timizing the likelihood independently over only 1-hop and 2-hop
neighbors. The effect of such an exploration is easier to charac-
terize, but it is restrictive and provides no flexibility in exploring
nodes at further depths. In contrast, the search strategy in node2vec
is both flexible and controllable exploring network neighborhoods
through parameters p and q. While these search parameters have in-
tuitive interpretations, we obtain best results on complex networks
when we can learn them directly from data. From a practical stand-
point, node2vec is scalable and robust to perturbations.

We showed how extensions of node embeddings to link predic-
tion outperform popular heuristic scores designed specifically for
this task. Our method permits additional binary operators beyond
those listed in Table 1. As a future work, we would like to explore
the reasons behind the success of Hadamard operator over oth-
ers, as well as establish interpretable equivalence notions for edges
based on the search parameters. Future extensions of node2vec
could involve networks with special structure such as heteroge-
neous information networks, networks with explicit domain fea-
tures for nodes and edges and signed-edge networks. Continuous
feature representations are the backbone of many deep learning al-
gorithms, and it would be interesting to use node2vec representa-
tions as building blocks for end-to-end deep learning on graphs.

(AUC)
(a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-L2

LINK PREDICTION

• Our tests: not really

• Embeddings are better only if we use some particular tests
settings
‣ Accuracy score on balanced test sets (WRONG)
‣ Supervised LP for embeddings compared with unsupervised heuristics

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.

LINK PREDICTION

LINK PREDICTION

• Possible explanations:
‣ Cherry picking in original articles
‣ Implementation biases (some methods hard to reproduce)
‣ Hyper-parameter tuning (hard to do, might lead to overfit if incorrectly done)

• Despite controversies, very interesting research question

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.

GRAPH CONVOLUTIONAL
NETWORKS

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Zhang, Z., Cui, P., & Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint arXiv:1812.04202.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

(DEEP) NEURAL NETWORKS

https://medium.com/tebs-lab/introduction-to-deep-learning-a46e92cb0022

A deep neural networks can be seen as the chaining of multiple simple
machine learning models (e.g., logistic classifier).

The output of a model is the input of the other, all weights optimized
simultaneously (backpropagation)

https://en.wikipedia.org/wiki/Backpropagation

CONVOLUTIONAL NEURAL
NETWORK

• All outputs of a layer connected to all inputs of the next is
called fully connected layer
‣ Learned weights will “cut” some edges (zero weights)

• In input data is structured, one can already use this structure

• Convolutions were introduced to work with pictures
‣ Adjacency in pixels is meaningful

CONVOLUTION

‣ Extract “features” of “higher level”
- Pixels => lines, curves, dots => circles, long lines, curvy shapes => eye, hand, leaves =>

Animal, Car, sky …

CONVOLUTION

• A convolution is defined by the
weights of its kernel

• Which kernel(s) should we use?

• Weights of the kernel can be
learnt, too

https://en.wikipedia.org/wiki/Kernel_(image_processing)

CONVOLUTIONAL NEURAL
NETWORK

CONVOLUTIONAL NEURAL
NETWORK

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/

• Convolution on a picture can be
seen as a special case of a graph
operation:
‣ Combine weights of neighboors
‣ With an image represented as a regular

grid

• Define convolutions on networks

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 5

Graph

&

'()* '()*
Outputs

Gconv

…

Gconv

…

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

GconvGraph

Readout

Gconv

Pooling
3456789

:

… …

MLP =

∑

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer is followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

!	

φ(
!%!

∗)

'

(

')

DecoderEncoder

…

Gconv	Gconv

…

(c) A GAE for network embedding [61]. The encoder uses graph convolutional
layers to get a network embedding for each node. The decoder computes the
pair-wise distance given network embeddings. After applying a non-linear
activation function, the decoder reconstructs the graph adjacency matrix. The
network is trained by minimizing the discrepancy between the real adjacency
matrix and the reconstructed adjacency matrix.

!

"

Ti
me

			Gconv			CNN				Gconv				CNN

… …

MLP 2

Tim
e

(d) A STGNN for spatial-temporal graph forecasting [74]. A graph convolu-
tional layer is followed by a 1D-CNN layer. The graph convolutional layer
operates on A and X

(t) to capture the spatial dependency, while the 1D-CNN
layer slides over X along the time axis to capture the temporal dependency.
The output layer is a linear transformation, generating a prediction for each
node, such as its future value at the next time step.

Fig. 2: Different Graph Neural Network Models built with
graph convolutional layers. The term Gconv denotes a graph
convolutional layer (e.g., GCN [22]). The term MLP denotes
multilayer perceptrons. The term CNN denotes a standard
convolutional layer.

latent representation upon which a decoder is used to re-
construct the graph structure [61], [62]. Another popular
way is to utilize the negative sampling approach which
samples a portion of node pairs as negative pairs while
existing node pairs with links in the graphs are positive
pairs. Then a logistic regression layer is applied after the
convolutional layers for end-to-end learning [42].

In Table III, we summarize the main characteristics of
representative RecGNNs and ConvGNNs. Input sources, pool-
ing layers, readout layers, and time complexity are compared
among various models.

IV. RECURRENT GRAPH NEURAL NETWORKS

Recurrent graph neural networks (RecGNNs) are mostly pi-
oneer works of GNNs. They apply the same set of parameters
recurrently over nodes in a graph to extract high-level node
representations. Constrained by computation power, earlier
research mainly focused on directed acyclic graphs [13], [80].

Graph Neural Network (GNN*2) proposed by Scarselli et
al. extends prior recurrent models to handle general types of
graphs, e.g., acyclic, cyclic, directed, and undirected graphs
[15]. Based on an information diffusion mechanism, GNN*
updates nodes’ states by exchanging neighborhood information
recurrently until a stable equilibrium is reached. A node’s
hidden state is recurrently updated by

h
(t)
v =

X

u2N(v)

f(xv,x
e
(v,u),xu,h

(t�1)
u), (1)

where f(·) is a parametric function, and h
(0)
v is initialized

randomly. The sum operation enables GNN* to be applicable
to all nodes, even if the number of neighbors differs and no
neighborhood ordering is known. To ensure convergence, the
recurrent function f(·) must be a contraction mapping, which
shrinks the distance between two points after mapping. In the
case of f(·) being a neural network, a penalty term has to
be imposed on the Jacobian matrix of parameters. When a
convergence criterion is satisfied, the last step node hidden
states are forwarded to a readout layer. GNN* alternates the
stage of node state propagation and the stage of parameter
gradient computation to minimize a training objective. This
strategy enables GNN* to handle cyclic graphs. In follow-up
works, Graph Echo State Network (GraphESN) [16] extends
echo state networks to improve efficiency. GraphESN consists
of an encoder and an output layer. The encoder is randomly
initialized and requires no training. It implements a contractive
state transition function to recurrently update node states until
the global graph state reaches convergence. Afterward, the
output layer is trained by taking the fixed node states as inputs.

Gated Graph Neural Network (GGNN) [17] employs a gated
recurrent unit (GRU) [81] as a recurrent function, reducing the
recurrence to a fixed number of steps. The advantage is that it
no longer needs to constrain parameters to ensure convergence.

2As GNN is used to represent broad graph neural networks in the survey,
we name this particular method GNN* to avoid ambiguity.

Stacking convolution layers

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))
: node features
: adjacency matrix ()

: layer index
: Degree matrix (degrees on the diagonal)
: learnable weights

: activation fonction (often ReLU)

H
A ̂A = A + I
l
D
W
σ

H(l+1) = f(H(l), A)

GRAPH CONVOLUTION

• Going through an example of the typical GCN

Zackary Karate club
(with communities for reference)

̂A

GRAPH CONVOLUTION

D−1 ̂A D− 1
2 ̂AD− 1

2

Normalisation of the adjacency matrix
Simple average Weighted average

GRAPH CONVOLUTION

D− 1
2 ̂AD− 1

2 H

Features of the nodes become the (weighted)
average of the features of the neighbors

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

 has shape (), with the number of features in
input and the desired number of features in output
W X × Y X

Y

GRAPH CONVOLUTION

…

W0 : d0 × d1
W1 : d1 × d2

Wn : dn × dn+1

Size of the weight matrices by layer

 is the number of features per node in the original network data,
 is the number of desired features (usually followed by a normal

classifier, e.g., logistic)

d0
dn+1

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

GRAPH CONVOLUTION
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

 is called an activation function.
It is used to introduce non-linearity.

As of 2019, the most common choice is to use the ReLU,
(Rectified Linear Unit)

=>Simple to differentiate and to compute

σ

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

FORWARD STEP

• We can first look at what happens without weight
learning, i.e., doing only the forward step.

• We set the original features to the identity matrix, . Each
node’s features is a one hot vector of itself (1 at its position, 0
otherwise)

• Weights are random (normal distribution centered on 0)

• Two layers, with sizes

H0 = I

W n × 5,5 × 2

FORWARD STEP
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

=

=

L1 = n to 5 features

L1 = 5 to 2 features

=>σ

FORWARD STEP

Dimension 1

Dimension 2

Even with random weights, some structure is preserved
in the “embedding”

FORWARD STEP
K-means on the 2D “embedding”

(paramater k=3 clusters)

(Node positions based on spring layout)

BACKWARD STEP

• To learn the weights, we use a mechanism called back-
propagation

• Short summary
‣ A loss function is defined to compare the “predicted values” with ground

truth labels (at this point, we need some labels…)
- Typically, log-likelihood

‣ The derivative of the cost function relative to weights is computed
‣ Weights are updated using grading descent (i.e., weights are modified in

the direction that will minimize the loss)

https://en.wikipedia.org/wiki/Backpropagation

FITTING THE GCN

• We define the same GCN as before

• We define a “semi-supervised” process:
‣ Labels are known only for a few nodes (the 2 instructors)
‣ The loss is computed only for them

• We run e steps (“epoch”) of back-propagation, until
convergence

FITTING THE GCN
W1 W2 H

Step1:
Each node takes the average features of its

neighbors.
 can be seen as “computed” features

(this is because we used as original features)
W1

I

Step2:
After averaging over results of

step1 (),
each node combines its

aggregated features according
to this matrix

AH
Result:

This is the computed feature
vector.

As expected, values for nodes
0 and 33 are opposed

FITTING THE GCN

RESULTS

Features values Highest
feature as

label

We retrieve the expected
“communities”

GCN LITERATURE
• Results are claimed to be above the state of the art

‣ Controversies, which is normal for such recent methods

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

TO CONCLUDE
Many variations

proposed already

Very active since 2017

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Hard to predict the future of
these techniques.

Spawned renewed interest in
networks in the ML literature

