GRAPH EMBEDDING
AND

GCN

(GRAPH CONVOLUTIONAL NEURAL NETWORKS)



GRAPH EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.



NAMES

» Graph embedding / Network embedding

* Representation learning on networks

» Representation learning = feature learning, as opposed to
manual feature engineering (heuristics)

* Embedding => Latent space



VARIAN T

* We can differentiate:

» Node embedding

» Edge Embedding

» Substructure embedding
» Whole graph Embedding

* In this course, only node embedding (often called graph
embedding)
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IN CONCRETE TERMS

* A graph Is composed of

» Nodes (possibly with labels)
» Edges (possibly directed, weighted, with labels)

* A graph/node embedding technique in d dimensions will
assign a vector of length d to each node, that will be useful for
*what we want to do with the graph™.

» A vector can be assigned to an edge (u,v) by combining
vectors of u and v



WHATI 10O DO WITH
EMBEDDINGS!

* [wo possible ways to use an embedding:

» Unsupervised learning:
- The distance between vectors in the embedding is used for *something™*
» Supervised learning:

- Algorithm learn to predict *something* from the features in the embedding



Al CANWE DO VI
EMBEDDINGS ¢



EMBEDDING TASKS

» Common tasks:

» Link prediction (supervised)
Graph reconstruction (unsupervised link prediction ? / ad hoc)
Community detection (unsupervised)
Node classification (supervised community detection ?)
Role definrtion (Variant of node classification, can be unsupervised)
Visualisation (distances, like unsupervised)
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OVERVIEW OF MOST
POPULAR METHCE



B | ORIC ME THOES

(PRE NEURAL NETWORKS)



L& LAPLACIAN EIGENMAPS

* Introduced 200 |

» Objective function:
yE=min ) |ly; - yII*W;
1% ]
- y*: optimal embedding
- y; embedding of node |
- W, weight between nodes j and |

* Nodes connected (close) in the graph should be close In the
embedding, Highest welights = strongest influence



L& LAPLACIAN EIGENMAPS

L yE=min ) |ly; - ylI*W;
=]

* Can be written In matrix form as:
» miny’ Ly

» L: Laplacian, D: Degree matrix

» o avoid trivial solution, we impose the constraint:
Dy =]

+ Solution: d eigenvectors of lowest eigenvalues of D~12LD =1/

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.



HOPE: HIGHER-ORDER PROXIMITY
PRESERVED EMBEDDING

* Preserve a proximity matrix

yF= minz H)sz_yiy]‘T‘
L

» W can be the adjacency matrix, or number of common neighbors,
Adamic Adar, etc.

* As similarity tends towards 0, associated embeddings should tend
towards orthogonality

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.



LLE: LOCALLY LINEAR
EMBEDDING

* Introduced 2000

» A node features can be represented as a linear combination of
its neighbors’

> Yi: ZA’JY]
J

» Objective function:

¥ =min ) |IY;— > A
l J



RANDOM WALKS BASED



DEEPWALK

* The first “'modern” graph embedding method

 Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



SKIPGRAM

VWord embedding
Corpus => Word = vectors

Similar embedding= similar context

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

[http://mccormickml.com/2016/04/ | 9/word2vec-tutorial-the-skip-gram-model/]



SKIPGRAM

Output Layer
Softmax Classifier

Hldden Layer Probability that the word at a
Linear Neurons /;
Input Vector Ay /

> randomly chosen, nearby
position is “abandon”
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SKIPGRAM

Output
Input softmax
A 7 )
X110 Hidden O /I
X2| O N /Khl\ 0 |¥Y2
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GENERIC “SKIPGRAM"
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM"

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

|https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM"

» Algorithm that takes an input:

» The element to embed
» A list of “‘context’” elements

* Provide as output:

» An embedding with interesting properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure



DEEPWALK

» Skipgram for graphs:

» [)Generate “sentences’” using random walks
» 2)Apply Skipgram

» Parameters: dimensions d, RWV length k

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



NODEZ2VEC

» Use biased random walk to tune the context to capture

*what we want*

» "Breadth first” like RW => |ocal neighborhood (edge probability ?)
» "Depth-first” like RW => global structure ¢ (Communirties ?)

» 2 parameters to tune:
- Pp: bias towards revisiting the previous node
- @ bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in nodeZvec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases c.

S

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



RANDOM WALK METHODS

* What Is the objective function ¢

BElE BleNnterpret the distance between nodes In the
embedding !



ENCODER DECODER
FRAMEWORK

Minimize a global loss defined as:

i — Z K(DEC(ZZ, Zj), Sfi;(via V]))

(v,v))EE

DEC: Decoder function (e.g, DEC(z;, 2;) = zisz)
S¢: Ground truth similarity (e.g, S () = Ajj)
£ Chosen loss function (e.g., £(a,b) = |a — b|)

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 :



ENCODER DECODER
FRAMEWORK

Type Method Decoder  Proximity measure Loss function (¥)
Laplacian Eigenmaps [4]  ||z; — ;|3 general DEC(z,2;) - sg(vi, v;)
Matrix Graph Factorization [1] ,L-sz A; ; DEC(Z;,2;) — sg(vi, v;) %
factorization GraRep [9] z, 7, AR S A%,j, S Aﬁj DEC(%;, ;) — sg(vi,v;)||3
HOPE [44] z; 7, general DEC(z;,2;) — sg(vi,v;)||3
sz :
DeepWalk [46] g ijzk pg(vi|v;) —sg(vi,v;) log(DEC(Z4,25))
Random walk ZkEVTe Z
Bzi z;

node2vec [27]

Z;l_Zk:
kcy €

pg(vj|v;) (biased)

—5g(vi, vj) log(DEC(24, 25))

pg(vj | v;): probability of visiting V;on a fixed-length random walk started

from v

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.



ENCODER DECODER
FRAMEWORK

Higher probability to
encounter in random
walks 4

Higher values
(V- | V-) » Lower values
Pz TS (Because log of a

(Ground truth, fraction)
can't be fitted)

>

More orthogonal e More similar

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.



SOME REMARKS ON WHAT
ARE EMBEDDINGS



ADJACENCY MATRIX

* An adjacency matrix is an embedding... (in high dimension)

» [ hat represents the structural equivalence

» 2 nodes have similar “embeddings” if they have similar neighborhoods

» Standard dimensionality reduction of this matrix can be

meaningful
» Isomap, I-SNE, etc.



GRAPH LAYOU T

» Graph layouts are also embeddings.
» Force layout, kamada-kawal ...

* [hey try to put connected nodes close to each other and
non-connected ones “not close”

* Problem: they try to avoid overlaps

» Usually not scalable



VISUALLY ¢



CLIQUE RING

5> cliques or size 20 with | edge between them




EMBEDDING ROLES



B RUCTZVES

* In node2vec/Deepwalk, the context collected by RW contain
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
attributes It avallable, or computed attributes (degrees, CC, ...)

« =>Nodes with a same context will be nodes In a same
“position’ In the graph

» =>(Capture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.
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MEANING OF DISTANCE [N
EMBEDDINGS



DISTANCE IN EMBEDDINGS

* In embeddings, each node has an associated vector

* We can compute the distance between vectors

» Euclidean distance (L2 norm)

» Manhattan distance (L1 norm)

» Cosine distance (angle)

» Dot product (angle and magnrtude, =cosine distance for normalized vectors)

» Objective function tells us what the distance should mean

» Does algorithm succeed in embedding what they want?
» Does embedding one property preserves somewhat others?




DISTANCE IN EMBEDDINGS

» Several possibilities:
» Distance preserves the probability of having an edge

- We can reconstruct the network from distances

» Distance preserves the similarity of nheighborhood
- (Called Structural equivalence

» Distance preserves the role in the network
Sslci o deline

» Distance preserves the community structure

- Or another type of mesoscopic organization?



DISTANCE IN EMBEDDINGS

» Distance <=> having an edge!

* For each node:

» [)FIind the neighbors in the graph. Number of N Is k
» 2)Find the k closest nodes in the embedding
» 3)Compute the fraction of nodes in common in |) and 2)

» Compute the average over all nodes



DISTANCE IN EMBEDDINGS

Neighbors similarity
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STRUCTURAL EQUIVALENCE

* For each pair of nodes:

» | )Compute distance between rows of the adjacency matrix
- Distance between neighborhoods

» 2)Compute distance in the embedding
» 3)Compute Correlation (Spearman) between both ordered sets of values

» =>How strongly both distances are correlated



STRUCTURAL EQUIVALENCE
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ROLES:
SOMORPHIC EQUIVALENCE

BReleach palr of hodes:
» | )Retrieve their unlabeled ego-network

- Compute the Edit-distance between those networks (# atomic changes to go from one to
the other (node/edge addition/removal)

» 2)Compute distance in the embedding
» 3)Compute Correlation (Spearman) between both ordered sets of values

» =>How strongly both distances are correlated



SOMORPHIC EQUIVALENCE
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COMMUNITY STRUCTURE

» |dea: If distance preserves community structure:

» Nodes belonging to the same community should be close in the embedding

* We can use clustering algorithms (k-means...) to discover the
communities



COMMUNITY STRUCTURE

» | )Create a network with a community structure

» 2)Use k-means clustering on embedding to detect the
community structure

» 3)Compare expected to k-means using the aNM|



COMMUNITY STRUCTURE

Planted partitions. 8 communities
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COMMUNITY STRUCTURE

* Note: If:

» we know the number of clusters to find
» And we can use a large number of dimensions

» =>Embeddings can be better than traditional algorithms



NODE CLASSIFICATICN
WITH EMBEDDINGS



NODE CLASSIFICATION

» [0 each node Is associated a vector In the embedding

» This vector corresponds to topological features of the node, used instead of,
for instance, centralities

» Both types of features can be combined

» As usual, a classifier can be trained using those features



NODE CLASSIFICATION

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) | 0.25,0.25 4,1 4, 0.5
Gain of node2vec [ %] 22.3 1.3 21.8

S Ene comntroversies (Very recentfEsulisy

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



LINK PREDICTION WITH
EMBEDDINGS

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In International
Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



UNSUPERVISED
LINK PREDICTION

* Unsupervised link prediction from embeddings
» =>Compute the distance between nodes In the embedding

» =>Use It as a similarity score



SUPERVISED
LINK PREDICTION

* Supervised link prediction from embeddings

» =>embeddings provide features for nodes (nb features:
dimensions)

» Combine nodes features to obtain edge features

» =>Train a classifier to predict edges based on features from
the embedding



SUPERVISED
LINK PREDICTION

Operator Result

Average (a+b)/2

Concat (0,550 5 5 Aty Dy s s by]
Hadamard [a; xbq,..., ag *by]
Weighted L1 [|la; — b1l,...,|lag — byl]
Weighted L2 (a; —b1)%, ..., (ag —by)?]

Combining nodes vectors Into edge vectors



 How well does 1t works !

SUPERVISED
LINK PREDIC [TON

» According to recent

@S

Node2vec (2016)
R EROE (201 6)

« =>[hese methods are

be

'

ter than the state of

the art

Algorithm Dataset
Facebook | PPI arXiv
Common Neighbors | 0.8100 0.7142 | 0.8153
Jaccard’s Coefficient | 0.8880 0.7018 | 0.8067
Adamic-Adar 0.8289 0.7126 | 0.8315
Pref. Attachment 0.7137 0.6670 | 0.6996
Spectral Clustering 0.5960 0.6588 | 0.5812
(a) | DeepWalk 0.7238 0.6923 | 0.7066
LINE 0.7029 0.6330 | 0.6516
node2vec 0.7266 0.7543 | 0.7221
Spectral Clustering 0.6192 0.4920 | 0.5740
(b) | DeepWalk 0.9680 0.7441 | 0.9340
LINE 0.9490 0.7249 | 0.8902
node2vec 0.9680 0.7719 | 0.9366
Spectral Clustering 0.7200 0.6356 | 0.7099
(¢) | DeepWalk 0.9574 0.6026 | 0.8282
LINE 0.9483 0.7024 | 0.8809
node2vec 0.9602 0.6292 | 0.8468
Spectral Clustering 0.7107 0.6026 | 0.6765
(d) | DeepWalk 0.9584 0.6118 | 0.8305
LINE 0.9460 0.7106 | 0.8862
node2vec 0.9606 0.6236 | 0.8477

(a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-L.2

(AUC)



LINK PREDICTION

REIlEESTs: Not really

» Embeddings are better only If we use some particular tests
settings
» Accuracy score on balanced test sets (VWRONG)
» Supervised LP for embeddings compared with unsupervised heuristics

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



LINK PREDICTION

ROC(-1) S _FACEBOOK

AP(-1)_S_FACEBOOK

0.8
1.00 | :/.f - o - - o * o L &
0.7 1
0.95 A
0.6 -
0.90 A
0.5 -
0.85 A 0.4
0.80 A 0.3 1
0.75 0.2 1 ——&— HEURISTICS
. —&— LE
0.1 - _*_ HOPE
0.70 A —¥— N2V
T T T T T I ! ! 0'0 1 T T T T T T T T VERSE
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
L re—————— T — —————




LINK PREDICTION

» Possible explanations:

» Cherry picking in original articles
» Implementation biases (some methods hard to reproduce)
» Hyper-parameter tuning (hard to do, might lead to overfit if incorrectly done)

» Despite controversies, very Interesting research question

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



GRAPH CONVOLUTIONAL
NE TWORKS

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Zhang, Z., Cui, P., & Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint arXiv:1812.04202.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.



(DEEP) NEURAL NETWORKS

A deep neural networks can be seen as the chaining of multiple simple
machine learning models (e.g., logistic classifier).
The output of a model is the input of the other, all weights optimized
simultaneously (backpropagation)

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3
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Figure 12.2 Deep network architecture with multiple layers.

https://medium.com/tebs-lab/introduction-to-deep-learning-a46e92cb0022
https://en.wikipedia.org/wiki/Backpropagation



CONVOLUTIONAL NE

E—

» All outputs of a layer connected to all inputs of the next Is
called fully connected layer

» Learned weights will “cut” some edges (zero weights)
* In Input data Is structured, one can already use this structure

» Convolutions were introduced to work with pictures
» Adjacency In pixels Is meaningful



CONVOLUTION

1x1 1x0 1x1 0 0
QL 1/1]0| |4
Oxl Oxo 1x1 1 1
0|0(1(1]|0
0|1(1(/0]|0
Image Convolved
Feature

S idcr (editires of higher level”

- Pixels => lines, curves, dots => circles, long lines, curvy shapes => eye, hand, leaves =>
Animal, Car, sky ...



CONVOLUTION

0 0 0
Identity 0 1 0
0 0 0

weights of its kernel [ - ]

» A convolution Is defined by the [ : 1 .

* Which kernel(s) should we use!? ;

* Weights of the kernel can be sharpen s
learnt, too [ | ]

Gaussian blur 3 x 3 1
(approximation) 16

https://en.wikipedia.org/wiki/ Kemel_(image_processmg)



CONVOLUTIONAL NEURAL
NETWORK

Convolution Pooling Convolution Pooling Fully Fully Output
+RelU +RelU Connected Connected perdictions

dog (0.01)

Cat (0.01)
Boat (0.94)
Bird (0.94)

-
-
-




CONVOLUTIONAL NEURAL
NETWORK

» Convolution on a picture can be 1 1 I 1
NNNVININANY

seen as a special case of a graph KD DK
operation: gumﬁngumm

» Combine weights of neighboors I/ N/ EOEEEEO
> V;{gth an Image represented as a regular RKOKORORORTK
: NENENYNENZINY
NN N

e Define convolutions on networks

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-20 | 6-2/



GRAPH CONVOLUTION

»— =

9 v

(@) 2D Convolution. Analo-
gous to a graph, each pixel
in an image is taken as a
node where neighbors are de-
termined by the filter size.
The 2D convolution takes a
weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of
a node are ordered and have a
fixed size.

(b) Graph Convolution. To get
a hidden representation of the
red node, one simple solution
of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

e —

—"

Stacking convolution layers

Outputs
ReLu CeaN
R
R

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.



GRAPH CONVOLUTION

H™D = f(HY, A)

f(H(l),A) — 0 (lfj_%Aﬁ_%H(l)W@)

H: node features

A: adjacency matrix (A =PA)

[: layer index

D: Degree matrix (degrees on the diagonal)
W:learnable weights

0. activation fonction (often RelLU)

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.



GRAPH CONVOLUTION

» Going through an example of the typical GCN

0 5 10 15 20 25 30

0 4

5 -

10 -

Zackary Karate club
(with communities for reference)



GRAPH CONVOLUTION

D~ !A et

Simple average Weighted average

Normalisation of the adjacency matrix



GRAPH CONVOLUTION

f(H(l), A)=o <DA_%A]5—%H(Z)W(Z)>

DD

Features of the nodes become the (weighted)
average of the features of the neighbors

W has shape (X X Y), with X the number of features In
input and Y the desired number of features in output



GRAPH CONVOLUTION

f(H(l),A) —s) <DA_%A]5—%H(Z)W(Z)>
Size of the weight matrices by layer

W, dy X d,
W, :d, Xd,

Wn : dn X dn+1

d is the number of features per node in the original network data,
d, . 1 is the number of desired features (usually followed by a normal
classifier; e.g., logistic)



GRAPH CONVOLUTION

f(H(l), A)=o <DA_%ADA—%H(Z)W(Z))

o I1s called an activation function.
[t 1s used to Introduce non-linearity.

As of 2019, the most common choice Is to use the ReLU,
(Rectified Linear Unit)
=>SIimple to differentiate and to compute

https://medium.com/@danging/a-practical-guide-to-relu-b83ca804f | 7



FORWARD STEP

* We can first look at what happens without weight
learning, i.c.,, doing only the forward step.

* We set the original features to the identity matrix, H, = I. Each

node’s features Is a one hot vector of itself (| at its position, O
otherwise)

* Weights are random (normal distribution centered on 0)

» Two layers, with W sizesn X 5,5 X 2



FORWARD STEP

fHD, A) =0 ( D TAD = HU)WU))

0 B 10 15 20 25 30

aaaaa

[RN=ete > features y

25

30

10

BIE=—t5{0 ) features =

20

25

8 e



FORWARD STEP

Dimension 2

Dimension |

Even with random weights, some structure Is preserved
in the “embedding”



FORWARD STEP

K-means on the 2D “embedding”
(paramater k=3 clusters)

(Node positions based on spring layout)



BACKWARD STEP

* lo learn the weights, we use a mechanism called back-=
propagation

* Short summary

» A loss function Is defined to compare the “predicted values” with ground
truth labels (at this point, we need some labels...)

- Typically, log-likelihood
» The derivative of the cost function relative to welights Is computed

» Weights are updated using grading descent (i.e., weights are modified in
the direction that will minimize the loss)

https://en.wikipedia.org/wiki/Backpropagation



ST TING THE GCIN

* We define the same GCN as before

B el a ‘semi-suUpervised’ process:

» Labels are known only for a few nodes (the 2 instructors)
» The loss Is computed only for them

* We run e steps (‘‘epoch’”) of back-propagation, until
convergence



ST TING THE GCIN

W,

Step2:
Step After averaging over results of
Each node takes the average features of its step| (AH),
neighbors. each node combines its
W, can be seen as “computed” features aggregated features according

(this Is because we used [ as original features) to this matrix

Result:
This is the computed feature
vector.
As expected, values for nodes
0 and 33 are opposed



Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Evpoch

oo s W O

OF o s o B B B B B B B W WwWwWwWwWwwwwwWw NN NNNNNNNNNNDN - O
ocowvwoegooumewWNMHOOVLWEISOANODBBWNMHMOWOVLWOESOOOUBGWNMHOWOLWESIOAWUD B WN -O

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

oo oCcoococococoo

.6987
.6804
.6634
.6476
.6326
.6174
.6017
.5852
.5684
.5513

(==l E-R-N-N-R-N-E-N-R-R-R-N-D-N-R-R-R-R-R-ER-E-R-N-N-DB-R-D-N-D-N-N- -]

.5338
.5158
.4976
.4792
.4605
.4416
.4225
.4033
.3842
.3652
.3464
.3279
.3096
.2916
L2741
.2571
.2407
.2248
.2095
.1946
.1803
.1668
.1541
.1422
.1312
.1209
.1113
.1024
.0940
.0863
.0793
L0727
.0667
.0611
.0560
.0513
.0470
.0432
.0396
.0363
.0333

ST TING THE GCN

Epoch: 0




SRS

Features values

VWe retrieve the expected
“communities”




GCN LITERATURE

« Results are claimed to be above the state of the art
» Controversies, which is normal for such recent methods

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7 (26s) 75.7 (

GCN (this paper) 70.3 (7s)

81.5 (4s)

13s) 77.2(25s) 61.9(

79.0 (38s)

185s)

66.0 (48s)

GCN (rand. splits) 67.9 -

0.9 80.1 =

0.9 78.9

= 0.7 58.4 -

- 1.7

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.



0 CONCLUIDRS

Many variations
proposed already

Very active since 2017/

Spawned renewed Interest In
networks in the ML literature

Hard to predict the future of
these techniques.

Approach Category Inputs Pooling Readout Time Complexity
GNN* (2009) [15] RecGNN A X . X® - a dummy super node
GraphESN (2010) [16] RecGNN A X - mean
GGNN (2015) [17] RecGNN A X - attention sum
SSE (2018) [18] RecGNN A X - -
Spectral CNN (2014) [19]  Spectral-based ConvGNN A, X spectral clustering+max pooling  max O(n*)
Henaff et al. (2015) [201___Specl (GNN___ ectealolugiesinodmar pooling _____0mY
& ChebNet (2016) [21] ___Soectzalhased AX afficie -

==GCN (017) [22] — Specual DT COMCNT e -
CayleyNet (2017) T3] Spect T D e C TG e P TITe P OOTIE -
AGCN (2018) [40] Spectral-based ConvGNN A, X max pooling sum O(n?)
DualGCN (2018) [41] Spectral-based ConvGNN A, X - - O(m)
NN4G (2009) [24] Spatial-based ConvGNN A, X . sum/mean O(m)
DCNN (2016) [25] Spatial-based ConvGNN A X - mean O(n?)
PATCHY-SAN (2016) [26]  Spatial-based ConvGNN A X, X - concat
MPNN (2017) [27] Spatial-based ConvGNN A, X, X* - attention sum/ se2set  O(m)
GraphSage (2017) [42] Spatial-based ConvGNN A X - -
GAT (2017) [43] Spatial-based ConvGNN A X - - O(m)
MoNet (2017) [44] Spatial-based ConvGNN A X - - O(m)
PGC-DGCNN (2018) [46]  Spatial-based ConvGNN A X sort pooling attention sum O(n*)
CGMM (2018) [47] Spatial-based ConvGNN A X - concat
LGCN (2018) [45] Spatial-based ConvGNN A X - -
GAAN (2018) [48] Spatial-based ConvGNN A, X . - O(m)
FastGCN (2018) [49] Spatial-based ConvGNN A, X - -
StoGCN (2018) [50] Spatial-based ConvGNN A X - -
Huang et al. (2018) [51] Spatial-based ConvGNN A X - -
DGCNN (2018) [52] Spatial-based ConvGNN A, X sort pooling - O(m)
DiffPool (2018) [54] Spatial-based ConvGNN A X differential pooling mean O(n?)
GeniePath (2019) [55] Spatial-based ConvGNN A X - - O(m)
DGI (2019) [56] Spatial-based ConvGNN A, X . - O(m)
GIN (2019) [57] Spatial-based ConvGNN A X - concat+sum O(m)
ClusterGCN (2019) [58] Spatial-based ConvGNN A X - -

L ee————— e ———

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.



