COMPLEX NETWORKS



Centrality
measures




NODE

* We can measure nodes importance using so-called
centrality.

* Bad term: nothing to do with being central in general

» Usage:
» Some centralities have straightforward interpretation

» Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)



Connectivity

centrality measures



Degree centrality - recap
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INODE DEGREE

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

A

» But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

1SN



NODE CLUS TERING
EOEFHICIERNES

- Clustering coefficient: closed triangles/triads
» lells you If the neighbors of the node are connected

e Be carefull

» Degree 2:value O or |
» Degree 1000: Not O or | (usually)
» Ranking them is not meaningful

» Can be used as a proxy for “communities’” belonging:

» |f node belong to single group: high CC
» |f node belong to several groups: lower CC



RECURSIVE DEFINITIONS

* Recursive importance:
» Important nodes are those connected to important nodes

e Several centralities based on this idea:

» Eigenvector centrality
» PageRank
» Katz centrality

270 S



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» |f every node “sends’ its score to its neighbors, the sum of all scores received
oy each node will be equal to its original score

x§t+1) o ZAzng-t)

yel

X; Is the centrality of node 1.

A;; = if there is an edge, O otherwise



RECURSIVE DEFINITION

* [ his problem can be solved by what Is called the power
method: S _ 4,00
» |) We initialize all scores to random values =l

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!?

» Perron-Frobenius theorem for real and irreducible square matrices wrth non-
negative entries

» =>True for undirected graphs with a single connected component



CIGENVECTOR CENTRALITY

* What we just described is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a vector of size n, which can be interpreted as the scores of nodes

» Ax yield a new vector of size n, which corresponds for each node to receive the
sum of the scores of its neighbors (like in the power method)

» The equality means that the new scores are proportional to the previous scores

* What Perron-rrobenius algorithm says Is that the power
method will always converge to the leading eigenvector, 1.e., the
elgenvector associated with the highest eigenvalue



CIGENVECTOR CENTRALITY
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Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) A b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f/\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree) — —

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-"[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[...], we expect that advertising funded search engines will be inherently biased towards the
advertisers and away from the needs of the consumers.”



PageRank Centrality

& Ele hotes)

& Sergey Brin received his B.S. degree in mathematics and computer science

" from the University of Maryland at College Park in 1993. Currently, he is a
Ph.D. candidate in computer science at Stanford University where he received
. his M.S. in 1995. He is a recipient of a National Science Foundation Graduate
Fellowship. His research interests include search engines, information
extraction from unstructured sources, and data mining of large text collections
and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E.
in Computer Engineering at the University of Michigan Ann Arbor in 1995.
He is currently a Ph.D. candidate in Computer Science at Stanford University.
Some of his research interests include the link structure of the web, human
computer interaction, search engines, scalability of information access
interfaces, and personal data mining.




PAGERANK

» 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node

» Nodes with very high centralities give very high centralities to all their neighbors
(even If that is their only in-coming link)

- =>What each node "is worth" is divided equally among its neigshbors (normalization by the
degree)

x§t+1) £ Z Aij$§-t) = T =0 ZAW kout
j=1

With by convention =1 and a a parameter (usually 0.85)



PAGERANK

Inturtion = aZAw ot

Left term dominates when nodes have many neighbors.
Right term dominate with few neighbors

Matrix interpretation @ (

cCcCco=C
SO =O -
S = O
_— 0O = = O
ccCcooccC

Principal eigenvector of the “Google Matrix' / /
. : (c) 1/2 1/3 0 1/5
First, define matrix S as; ( 0 13 1/3 1/5
1/2 0 1/3 1/5

0 1/3 0 1/5

0 0 1/3 1/5

OO —=O

-Normalization by columns of A

-Columns with only O receives |/n
0.88 0.03 0.313 0.313 0.2
0.03 0.455 0.03 0.313 0.2
0.03 0.03 0313 0.03 0.2
0.03 0.03 0.03 0313 0.2

E—

() ( 0.03 0.455 0.313 0.03 0.2

-Finally, G;; = aS;; + (1 — a)/n

|



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk
process with restart

- In the Google Matrix, Elements in each row are summing up to 1
- It is a stochastic matrix which can be interpreted as a stationary transition matrix of a
random walk process

- Probability that the RW will be in node i next step depends only on the current node j and
the transition probability j — i determined by the stochastic matrix

- Consequently this is a first-order Markov process

- Stationary probabilities (i.e., when walk length tends towards oo0) of the RW to be in
node i gives the PageRank of the actual node

Teleportation probability: the parameter a gives the probability that in the next step of
the RW will follow a Markov process or with probability 7-a it will jump to a random node

- If a<l, it assures that the RW will never be stuck at nodes with ko«=0, but it can
restart the RW from a randomly selected other node



PAGERANK

* Then how do Google rank when we do a research!?
» Compute pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
"Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



Katz Centrality

It measures the relative degree of influence of a node within a network

oo N
; k 7 connected
CKatz(l) — E E a (A )l] pairs of nodes

in distance k
k=1 j=1

attenuation factor to
penalise influence
by distance

- Attenuation factor oo must be smaller than 1//44/,1.e.
the reciprocal of the absolute value of the largest
eigenvalue of A.

Matrix form:

Cu. = (U —aATy ' — DT

- where [ is the identity matrix, and I is the identity vector

- Katz centrality is useful for directed networks (citation nets, WWW) where
Eigenvector centrality fails



AT Z CENTRALTESE

Katz centrality of node 1=



AT Z CENTRALTESE

™ }

Repeat for all distances as long
As possible (convergence)



AT Z CENTRALTESE

Sum for each node }



AT Z CENTRALTESE

Alpha Is a parameter.
[ts strength decreases at
each rteration (Increased distance)



AT Z CENTRALTESE

Number of differaths from I to }
of length k



AT Z CENTRALTESE

Sum of paths to all other nodes at each
distance multiplied by a factor decreasing
with distance




Katz Centrality

It measures the relative degree of influence of a node within a network

oo N
; k 7 connected
CKatz(l) — E E a (A )l] pairs of nodes

in distance k
k=1 j=1

attenuation factor to
penalise influence
by distance

- Attenuation factor oo must be smaller than 1//44/,1.e.
the reciprocal of the absolute value of the largest
eigenvalue of A.

Matrix form:

Cu. = (U —aATy ' — DT

- where [ is the identity matrix, and I is the identity vector

- Katz centrality is useful for directed networks (citation nets, WWW) where
Eigenvector centrality fails



Geometric
centrality measures



EEOSENESS CENTRALHSS

C (i) n—1
c\l) =
zdl-j<oo dl“
- Farness: average of length of shortest paths to all other

nodes.

- Closeness: inverse of the Farness (normalized by number of

nodes)

» Highest closeness = More central
» Closness=|: directly connected to all other nodes

* Well defined only on connected networks



EEOSENESS CENTRALHSS

Z d;j<oo dij

(22—, S
¢ p-adX
T C )

, 12 -1 11
C.,(i) = = —i=1055
Bx1+7%x2+1x%x3) 20

Ccl(i) =




EEOSENESS CENTRALHSS

Closeness Centrality Scores - Unweighted x10° ‘:"“Ste'dampa"-c"s-"°"m"-
. . . . . . . . . . oseness
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Harmonic Centrality

- Harmonic mean of the geodesic (shorted paths) distances from a given node to all others

amaay
Ch(l)_n—lzd--

i#

d

- In case of no path between nodes i and j: %ij =

l

 Well defined on disconnected networks




Betweenness Centrality

Assumption: important vertices are bridges over which information flows

Practically: if information spreads via shortest paths, important nodes are found on many

shortest paths

Notation: 0,(i) = number of geodesic path from jtokviai:j— ... > i — ..

oy = humber of geodesic path from jto k:j — ... =k

Definition:

C.(i) Z #{geodesicpath:j— ... =i > ... = k} Z o (1)
=
/ #{geodesic path: j - ... - k}

j#k

Normalised definition:

1 o o)
Cl)=—= Y = where ¢, € [0,1]

Total number of ordered vertex pairs

.=k



Betweenness Centrality

Zachary’s karate club network

. 1 0 (1)
C,(1) = o 2 / where C, € [0,1]
ke Ok

. 78
=
Z 144

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity betweenness



BE [ WEENNESS CENTRALITY
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BE T WEENNESS
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o TS

» Many other centralities have been proposed
* [ he problem Is how to interpret them ¢

» Can be used as supervised tool:

Compute many centralities on all nodes

Learn how to combine them to find chosen nodes

Discover new similar nodes

(roles In social networks, key elements in an infrastructure, ...)

v

v

v

v
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Caveats of centrality measures

- Each centrality measures is a proxy of an
underlying network process

- If this process is irrelevant for the actual network
than the centrality measure makes no sense

- E.g. If information does not pass via the
shortest paths in a network, betweenness

centrality is irrelevant

 Centrality measures should be used with caution
for (a) for exploratory purposes and (b) for
characterisation
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WIKIPEDIA

* What are the most important pages on Wikipedia ?

* Wikipedia network:

» Nodes are pages
» Links are hypertext links

» Wikipedia In english: Cultural bias !

* Results from http://wikirank-20 | 9.di.unimi.it



http://wikirank-2019.di.unimi.it

WIKIPEDIA

Table 1
Page views harmonic centrality indegree PageRank
0. Main Page 0. United States . United States . United States
1. Hyphen-minus 1. World War |l . Association football . Association football
2. Louis Tomlinson 2. United Kingdom . World War |l . France
3. Darth Vader 3. Association football . France . Iran
4. Lists of deaths by year 4. World War | . Germany . World War I
5. Exo (band) 5. France . India . Germany
6. List of stand-up comedians 6. Catholic Church . New York City . India
from the United Kingdom
7. List of United States stand- 7. Germany . United Kingdom . Moth
up comedians
8. List of stand-up comedians 8. China . Iran . United Kingdom
9. List of Australian stand-up 9. India . London . Australia

comedians



PageRank

WIKIPEDIA

Harmonic Centrality

Table 1

Indegree

Page Views

0. Gone with the Wind (film)

. The Wizard of Oz (1939 film)

. Cinema of Japan

. Star Wars (film)

. Titanic (1997 film)
. The Godfather

. Citizen Kane

. Avatar (2009 film)

. Casablanca (film)

. Blade Runner

0. Avatar (2009 film)

. Gone with the Wind (film)

. The Wizard of Oz (1939 film)

. The Godfather

. Citizen Kane
. Casablanca (film)

. Lawrence of Arabia (film)

. On the Waterfront

. Titanic (1997 film)

. Schindler's List

0.

2.

The Wizard of Oz (1939 film)

. Star Wars (film)

Titanic (1997 film)

. Gone with the Wind (film)

. Avatar (2009 film)
. The Godfather

. The Lion King

. The Matrix

. The Dark Knight (film)

. Blade Runner

0. Black Panther (film)

1. Deadpool 2

2. Venom (2018 film)

3. A Quiet Place (film)

4. The Shape of Water
5. Avengers: Endgame

6. Ant-Man and the Wasp

7. The Greatest Showman

8. A Star Is Born (2018 film)

9. Ready Player One (film)



Similarity
measures




Node similarity

Similarity between nodes based on their neighborhood

How much two nodes are similarly connected

- What does it mean that they have 3 neighbours in common?

- |t is relative to their degree (different meaning for nodes with 3 or 100 neighbours)

=Normalisation to penalise nodes with small degrees
We can define it using existing measures:
- Cosine Similarity

- Pearson Coefficient



Cosine similarity

Cosine similarity between two non-zero vectors: Number of common neighbours:

r-Y Nij = Z Aik Ak

cos 0 =

Vectors are the rows of adjacency matrix
Zk AikAkj
2 2
VI A S A2,

0;; = cosf =

with properties for adjacency vectors as

Ai,j = O/]. A?] — Azg ;Ai: ;Aik= ki

Number of common
_ Zk Air Ay neighbours normalised

_ M
 Kik; v/ kik; | Dby the geometric mean

of their degrees

Cosine similarity:  o;;



Pearson coefficient

Correlation between rows of the adjacency matrix
GOV D (Aik — (Ai)) (Aji — (4;))
F oo VLA — (AP VA = (4)))°

cov: covariance, expected product of deviations from individual expected values
o. std deviation, square root of the expected squared deviation from the mean

Intuition, numerator: Number of common neighbours compared to the
expected number of common neighbours

D (A — (AN(Ak = (4) = T Apdy - N

)
3 n

Properties
 r(i,j)=0 - if the number of common neighbours exactly as many as we

would expect by chance
 r(i,j)>0 - if nodes have more neighbours in common than expected

* r(i,j)<0 - if nodes have fewer neighbours in common than expected



Homophily - Assortative mixing

"birds of a feather flock together"

- Property of (social) networks that nodes of the same attitude tends to be connected with
a higher probability than expected

- |t appears as correlation between vertex properties of x(i) and x(j) if (i,j)EE

Vertex properties

- age

* gender

 nationality

- political beliefs

* socioeconomic status
- habitual place

« oObesity .

- Homophily can be a link creation mechanism
or consequence of social influence (and it is

Hig?]school network

d|ff|CU|t tO dlStII‘]QUISh) colored by race (J Moody)

? Connected people of the same political opinion are connected because they were a priori similar
(homophily) or they become similar after they become connected (social influence)?



Homophily - Assortative mixing

Dissasortative mixing

- Contrary of homophily, where dissimilar nodes are tend to be connected

Examples

2o
- Sexual networks .,
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Homophily - Assortative mixing

To quantify homophily

D .iCii

Discrete properties

a;b;

e

women
black  hispanic white other a;
black | 0.258 0.016 0.035 0.013 | 0.323
& | hispanic | 0.012 0.157 0.058 0.019 | 0.247
g white | 0.013 0.023 0.306 0.035 | 0.377
other | 0.005 0.007 0.024 0.016 | 0.053
b; | 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix e;; and the values of a; and
h; for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

No assortative mixing :

Per

=0 (e;; = a;b;)
Perfectly assortat
ectly disassortative: - | <r<(

eie=—1

-y,

a;b;



Homophily - Assortative mixing

To quantify homophily Scalar properties
O Pearson correlation coefficient of properties
' ' at both extremities of edges
£ 301 S - | ey fraction of edges joining nodes with values x and y
:120 20 — l. d‘.--:'f"" .;_::' . '_ ) . B Ty Y x
N ny xy(efﬂy R afl?by)
" 1 T )
1010'"'2|0'"'3|0'H'4|0'”'5|0H Ta0b
age of husband [years| with o, standard deviation of a,

r=0, no assortative mixing,
>0 assortative mixing,
r<0 disassortative mixing



Degree-degree correlation

« A particular type of application is the degree correlation:

« Are important nodes connected to other important nodes with a higher probability than

expected?

« The degree can be used as any other scalar property

social <

technological <

biological <

network type size n | assortativity r | error o,
physics coauthorship undirected 52 909 0.363 0.002
biology coauthorship undirected | 1520251 0.127 0.0004
mathematics coauthorship | undirected 253 339 0.120 0.002
film actor collaborations undirected 449913 0.208 0.0002
company directors undirected 7673 0.276 0.004
student relationships undirected 573 —0.029 0.037
email address books directed 16 881 0.092 0.004
power grid undirected 4941 —0.003 0.013
Internet undirected 10 697 —0.189 0.002
World-Wide Web directed 269 504 —0.067 0.0002
software dependencies directed 3162 —0.016 0.020
protein interactions undirected 2115 —0.156 0.010
metabolic network undirected 765 —0.240 0.007
neural network directed 307 —0.226 0.016
marine food web directed 134 —0.263 0.037
freshwater food web directed 92 —0.326 0.031

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



Average nearest-neighbour degree

R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)

- More detailed characterisation of degree-degree correlations
* kanna: @verage nearest neighbours degree
Zk'ekk,

 kamd CaN be Written as: (0= LKPE 1D =5

k/

— - —

« where P(k’lk) is the conditional probability that an edge of a
node with degree £ points to a node with degree k’

- If there are no degree correlations:

2
haa )= ... =

* kanna 1S INdependent of k (nodes of any degrees should have the same
nearest neighbors degree)

- |f the network is assortative k..(k) is a positive function
- If the network is disassortative k,n.(k) is a negative function



Nearest neighbour degree
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Nearest neighbour degree

/\ These definitions suppose a finite
variance.
One of the properties of power-law degree distributions is that they
have infinite variance

Imagine a network with a node of degree |0 and |0 nodes of degree |: by
construction, they cannot have the same average degree of neighbors

Other measures need to be applied
(see for Iinstance https://arxiv.org/pdi/| /04.05/0/.pdf )



https://arxiv.org/pdf/1704.05707.pdf

Rich-club coefficient

* How well connected are the well connected among themselves

¢ (k) =

2E>k

It is calculated on a list of node degree sorted in ascendant order as

N_(N.y—1)

N-x denotes the number of nodes with degree k or larger than k
E-x measures the number of links between them
Results are usually compared to random references

- configuration model of equivalent synthetic network

- configuration model of the empirical network

ratio @()rig/@rand
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Colizza et al, Nature Physics 2,2006

 3ng
o

-
n

-
o

ot
n

e
o

: 0 N
B DDDW
11 lllllll L1 lllllll | llllllll |
100 10 102 108
k
Scientific g W=

30

2.0

collaborations

| IlIlIIll | llIIIIIl

10 10°

degree k

Algorithm

rank nodes by degree

remove nodes in an
ascendant degree order
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