RANDOM GRAPHS MODELS
WHY USING RANDOM GRAPH MODELS

• Several good reasons:
 ‣ Study some properties in a “controlled environment”
 - How does property X behaves when increasing property Y?
 ‣ Compare an observed network with a randomized version
 - Is observed property X “exceptional”, or any similar network with same property Y and Z?
 ‣ Explain a given phenomenon
 - Such simple mechanism can reproduce property X and Y
 ‣ Generate synthetic datasets
 - Testing an algorithm on 100 variations of the same network
WHY USING RANDOM GRAPH MODELS

• Deterministic models
 ‣ Repeated regular patterns (lattices)

• Generative models
 ‣ The probability of an edge between 2 nodes depend on their properties
 - Erdos Renyi, Configuration model, etc.

• Mechanistic models
 ‣ The network is created following a mechanism, a set of rules
 - Preferential attachment, Forest fire, etc.
Fundamental network models
Central quantities in network analysis

- Degree distribution: \(P(k) \)
- Clustering coefficient: \(C \)
- Average path length: \(<d> \)

<table>
<thead>
<tr>
<th>Network</th>
<th>Degree distribution</th>
<th>Path length</th>
<th>Clustering coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real world networks</td>
<td>broad</td>
<td>short</td>
<td>large</td>
</tr>
</tbody>
</table>
Regular lattices

- Graphs where each node has the **same degree** k
- Translational symmetry in n directions

1D

2D lattices

3D lattices

$k=4$

$k=4$

$k=6$

$k=4$

$k=6$
Regular lattices

Clustering coefficient

- Clustering coefficient depends on the structure (can be large or not)
- It is constant for each node

Path length

- Average path length grows quickly with n when k << n
- In a large graph with realistic average degrees, will be large
Regular lattices

<table>
<thead>
<tr>
<th>Network</th>
<th>Degree distribution</th>
<th>Path length</th>
<th>Clustering coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real world networks</td>
<td>broad</td>
<td>short</td>
<td>large</td>
</tr>
<tr>
<td>Regular lattices</td>
<td>constant</td>
<td>long</td>
<td>can be large</td>
</tr>
</tbody>
</table>
PROBABILISTIC MODEL
The Erdős-Rényi Random Graph model (ER)
“If we do not know anything else than the number n of nodes and the number L of links, the simplest thing to do is to put the links at random (no correlations)”

ER Random Graphs

Erdős-Rényi model: simple way to generate random graphs

- The $G(n,L)$ definition
 1. Take n disconnected nodes
 2. Add L edges uniformly at random

 Alternatively:
 - pick uniformly randomly a graph from the set of all graphs with n nodes and L links

- The $G(n,p)$ definition
 1. Take n disconnected nodes
 2. Add an edge between any of the nodes independently with probability p

 Alternatively:
 - pick with probability $p^L (1 - p)^{\binom{n}{2} - L}$ a network from the set of all networks with size n
Random Graphs

In the G(n,p) variant, the number of edges may vary.

\[P(G(N,p)) = \frac{L(N)}{N(N-1)2} \]

Network Science: Random Graphs

\begin{align*}
&n=10 \\
p &= 1/6
\end{align*}
ER Random Graphs

\[p = \frac{1}{6} \quad N = 12 \]

\[p = 0.03 \quad N = 100 \]
Random Graphs

\(P(L) \): probability to have exactly \(L \) links in a network of \(n \) nodes and probability \(p \)

Binomial distribution:

Discrete probability distribution of the number of successes \(x \) in a sequence of \(N \) independent experiments, with success probability \(p \)

\[
P(x) = \binom{N}{x} p^x (1 - p)^{N-x}
\]

Reminder: Binomial coefficient:

Number of ways, disregarding order, that \(k \) objects can be chosen from among \(n \) objects

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]
Random Graphs

Binomial distribution

\[P(x) = \binom{N}{x} p^x (1 - p)^{N-x} \]

N: Number of experiments

Pairs of nodes

\[N = \binom{n}{2} = \frac{n(n - 1)}{2} \]

\(P(L) \): probability to have exactly \(L \) links in a network of \(n \) nodes (with \(p \) the probability to have an edge)

\[P(L) = \binom{n}{2} p^L (1 - p)^{\binom{n}{2} - L} \]
Random Graphs

Properties of Binomial distribution

Definition

\[P(x) = \binom{N}{x} p^x (1 - p)^{N-x} \]

Mean

\[< x > = pN \]

Variance

\[\sigma^2 = Np(1 - p) \]
Random Graphs

Expected number of links $< L >$

$$< L > = pN = p \frac{n(n-1)}{2}$$

Expected average degree $< k >$

$$< k > = \frac{2L}{n} = p(n-1)$$

Variance

$$\sigma^2 = Np(1-p) = \frac{n(n-1)}{2} p(1-p)$$
Degree distribution - Random Graphs

For each node, independent probabilities to take each neighbor => Binomial distribution

\[P(k)\]: probability to have exactly \(k\) links among \(n\) (total # of nodes), with \(p\) the (overall) probability to have an edge

\[P(k) = \binom{n-1}{k} p^k (1-p)^{(n-1)-k}\]

Characteristics:

\(<k> = p(n-1)\)

\[\sigma_k^2 = p(n-1)(1-p)\]

As the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of \(<k>\).
For large \(n \) and small \(k \) \((p,L)\), we can approximate the degree distribution using a Poisson distribution of parameter (mean) \(\lambda = <k> \)

Poisson distribution

\[
P(K) = \frac{\lambda^K e^{-\lambda}}{K!}
\]

Distribution of degrees

\[
P(k) = \frac{<k>^k e^{-<k>}}{k!}
\]

standard deviation

\[
\sigma = \sqrt{<k>}
\]
Degree distribution - Random Graphs

\[P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!} \]
Conclusion: degree distribution is **not**
 - Heterogeneous
 - Long tail
 - Scale free
Clustering - Random Graphs

Local clustering of a node

Reminder, clustering coefficient

\[C_i = \frac{2n_i}{k_i(k_i-1)} \]

where \(n_i \) is the number of links between the neighbours of node \(i \)

• Edges are independent and have the same probability \(p \)

\[n_i = p \frac{k_i(k_i-1)}{2} \]

Earlier we showed

\[p = \frac{<k>}{n-1} \]

\[C_i = \frac{2<k>}{n-1} \frac{k_i(k_i-1)}{2} \frac{1}{k_i(k_i-1)} = \frac{<k>}{n-1} = p \]

• For fixed average degree \(C \) is decreasing as \(N \) goes large

⇒ Low clustering coefficient
⇒ It is vanishing with the system size
Clustering - ER Random Networks

- **Small clustering coefficient**
 \[C_i \equiv \frac{1}{N} < k > = p \]

Real-world networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Size</th>
<th>\langle k \rangle</th>
<th>\langle \ell \rangle</th>
<th>\langle \ell \rangle_{\text{rand}}</th>
<th>\langle C \rangle</th>
<th>\langle C \rangle_{\text{rand}}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW, site level, undir.</td>
<td>153 127</td>
<td>35.21</td>
<td>3.1</td>
<td>3.35</td>
<td>0.1078</td>
<td>0.00023</td>
<td>Adamic, 1999</td>
</tr>
<tr>
<td>Internet, domain level</td>
<td>3015–6209</td>
<td>3.52–4.11</td>
<td>3.7–3.76</td>
<td>6.36–6.18</td>
<td>0.18–0.3</td>
<td>0.001</td>
<td>Pastor-Satorras et al., 2001</td>
</tr>
<tr>
<td>Movie actors</td>
<td>225 226</td>
<td>61</td>
<td>3.65</td>
<td>2.99</td>
<td>0.79</td>
<td>0.00027</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>LANL co-authorship</td>
<td>52 909</td>
<td>9.7</td>
<td>5.9</td>
<td>4.79</td>
<td>0.43</td>
<td>1.8×10^{-4}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>MEDLINE co-authorship</td>
<td>1 520 251</td>
<td>18.1</td>
<td>4.6</td>
<td>4.91</td>
<td>0.066</td>
<td>1.1×10^{-5}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>SPIRES co-authorship</td>
<td>56 627</td>
<td>173</td>
<td>4.0</td>
<td>2.12</td>
<td>0.726</td>
<td>0.003</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>NCSTRL co-authorship</td>
<td>11 994</td>
<td>3.59</td>
<td>9.7</td>
<td>7.34</td>
<td>0.496</td>
<td>3×10^{-4}</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>Math. co-authorship</td>
<td>70 975</td>
<td>3.9</td>
<td>9.5</td>
<td>8.2</td>
<td>0.59</td>
<td>5.4×10^{-5}</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>Neurosci. co-authorship</td>
<td>209 293</td>
<td>11.5</td>
<td>6</td>
<td>5.01</td>
<td>0.76</td>
<td>5.5×10^{-5}</td>
<td>Watts and Fell, 2000</td>
</tr>
<tr>
<td>E. coli, substrate graph</td>
<td>282</td>
<td>7.35</td>
<td>2.9</td>
<td>3.04</td>
<td>0.32</td>
<td>0.026</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>E. coli, reaction graph</td>
<td>315</td>
<td>28.3</td>
<td>2.62</td>
<td>1.98</td>
<td>0.59</td>
<td>0.09</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>Ythan estuary food web</td>
<td>134</td>
<td>8.7</td>
<td>2.43</td>
<td>2.26</td>
<td>0.22</td>
<td>0.06</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Silwood Park food web</td>
<td>154</td>
<td>4.75</td>
<td>3.40</td>
<td>3.23</td>
<td>0.15</td>
<td>0.03</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Words, co-occurrence</td>
<td>460 902</td>
<td>70.13</td>
<td>2.67</td>
<td>3.03</td>
<td>0.437</td>
<td>0.0001</td>
<td>Ferrer i Cancho and Solé, 2001</td>
</tr>
<tr>
<td>Words, synonyms</td>
<td>22 311</td>
<td>13.48</td>
<td>4.5</td>
<td>3.84</td>
<td>0.7</td>
<td>0.0006</td>
<td>Yook et al., 2001b</td>
</tr>
<tr>
<td>Power grid</td>
<td>4941</td>
<td>2.67</td>
<td>18.7</td>
<td>12.4</td>
<td>0.08</td>
<td>0.005</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>C. Elegans</td>
<td>282</td>
<td>14</td>
<td>2.65</td>
<td>2.25</td>
<td>0.28</td>
<td>0.05</td>
<td>Watts and Strogatz, 1998</td>
</tr>
</tbody>
</table>

Random graphs tend to have a tree-like topology with almost constant node degrees.

- Number of first neighbors:
 \[N(u)_1 = \langle k \rangle \]

- Number of second neighbors:
 \[N(u)_2 = \langle k \rangle^2 \]

- Number of neighbors at distance \(d \):
 \[N(u)_d = \langle k \rangle^d \]

Intuition: At which distance are all nodes reached?

\[n = \langle k \rangle^d \Rightarrow \log_{\langle k \rangle} n = d \Rightarrow d = \frac{\log n}{\log \langle k \rangle} \]

Diameter, avg. distance in \(\mathcal{O}(\log n) \)
Logarithmically short distance among nodes

\[d = \frac{\log n}{\log \langle k \rangle} \]

Real-world networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Size</th>
<th>\langle k \rangle</th>
<th>\langle l \rangle</th>
<th>\langle l_{\text{rand}} \rangle</th>
<th>C</th>
<th>\text{C}_{\text{rand}}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW, site level, undir.</td>
<td>153 127</td>
<td>35.21</td>
<td>3.1</td>
<td>3.35</td>
<td>0.1078</td>
<td>0.00023</td>
<td>Adamic, 1999</td>
</tr>
<tr>
<td>Internet, domain level</td>
<td>3015–6209</td>
<td>3.52–4.11</td>
<td>3.7–3.76</td>
<td>6.36–6.18</td>
<td>0.18–0.3</td>
<td>0.001</td>
<td>Pastor-Satorras et al., 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>Movie actors</td>
<td>225 226</td>
<td>61</td>
<td>3.65</td>
<td>2.99</td>
<td>0.79</td>
<td>0.000027</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>LANL co-authorship</td>
<td>52 909</td>
<td>9.7</td>
<td>5.9</td>
<td>4.79</td>
<td>0.43</td>
<td>1.8×10^{-4}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>MEDLINE co-authorship</td>
<td>1 520 251</td>
<td>18.1</td>
<td>4.6</td>
<td>4.91</td>
<td>0.066</td>
<td>1.1×10^{-5}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>SPIRES co-authorship</td>
<td>56 627</td>
<td>173</td>
<td>4.0</td>
<td>2.12</td>
<td>0.726</td>
<td>0.003</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>NCSTRL co-authorship</td>
<td>11 994</td>
<td>3.59</td>
<td>9.7</td>
<td>7.34</td>
<td>0.496</td>
<td>3×10^{-4}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>Math. co-authorship</td>
<td>70 975</td>
<td>3.9</td>
<td>9.5</td>
<td>8.2</td>
<td>0.59</td>
<td>5.4×10^{-5}</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>Neurosci. co-authorship</td>
<td>209 293</td>
<td>11.5</td>
<td>6</td>
<td>5.01</td>
<td>0.76</td>
<td>5.5×10^{-5}</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>E. coli, substrate graph</td>
<td>282</td>
<td>7.35</td>
<td>2.9</td>
<td>3.04</td>
<td>0.32</td>
<td>0.026</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>E. coli, reaction graph</td>
<td>315</td>
<td>28.3</td>
<td>2.62</td>
<td>1.98</td>
<td>0.59</td>
<td>0.09</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>Ythan estuary food web</td>
<td>134</td>
<td>8.7</td>
<td>2.43</td>
<td>2.26</td>
<td>0.22</td>
<td>0.06</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Silwood Park food web</td>
<td>154</td>
<td>4.75</td>
<td>3.40</td>
<td>3.23</td>
<td>0.15</td>
<td>0.03</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Words, co-occurrence</td>
<td>460 902</td>
<td>70.13</td>
<td>2.67</td>
<td>3.03</td>
<td>0.437</td>
<td>0.0001</td>
<td>Ferrer i Cancho and Solé, 2001</td>
</tr>
<tr>
<td>Words, synonyms</td>
<td>22 311</td>
<td>13.48</td>
<td>4.5</td>
<td>3.84</td>
<td>0.7</td>
<td>0.0006</td>
<td>Yook et al., 2001b</td>
</tr>
<tr>
<td>Power grid</td>
<td>4941</td>
<td>2.67</td>
<td>18.7</td>
<td>12.4</td>
<td>0.08</td>
<td>0.005</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>C. Elegans</td>
<td>282</td>
<td>14</td>
<td>2.65</td>
<td>2.25</td>
<td>0.28</td>
<td>0.05</td>
<td>Watts and Strogatz, 1998</td>
</tr>
</tbody>
</table>

\(C \) and \(\text{C}_{\text{rand}} \) are the clustering coefficients of the network and the corresponding random graph, respectively.
Components in ER networks

- When k_i is small, the ER network consists of several disjoint components.
- Because $C_i = p < 1$, the components are tree-like.
- For k_i large enough, a giant connected component (GCC) appears.
- GCC occupies a finite fraction of nodes even as $n \to 1$.
- The transition from a fragmented to a connected phase is called a percolation transition.

Network structure goes through a transition

- Question: How and when does this transition happen
Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-blob/
Structural (percolation) phase transition at $\langle k \rangle = 1$ (or equivalently when $p=1/N$)
ER Random Network - catch up

Basic characteristics

- **Degree distribution**

 \[p_k = \binom{n-1}{k} p^k (1 - p)^{n-1-k} \]

 \[\lim_{N \to \infty} p_k = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \]

 Binomial distribution

 Poisson distribution

- **Clustering**

 \[C_i = \frac{\langle k \rangle}{n-1} = p \]

 Vanishing clustering coefficient for large size

- **Path length**

 \[O(\log n) \]

 Distance with logarithmic relation to nodes
It is not capturing the properties of any real system

BUT

it serves as a reference system for any other network model
Configuration model

Random graphs with specified degrees

Problem

- The ER Random Graph model has a Poisson degree distribution
- Most real-world networks have heavy-tailed degree distributions
- **We need to generate networks which have pre-determined degrees or degree distribution, but they are maximally random otherwise**
- The observed properties (clustering coefficient, etc.) might be due *only* to the difference in degree distribution
Random graphs with specified degrees

Configuration model

How much of some observed pattern is driven by the degrees alone?

Based on an observed network

- Defined as $G(n, \overrightarrow{k})$ where $\overrightarrow{k} = \{k_i\}$ is a degree sequence on n nodes, with k_i being the degree of node i.

Ad hoc degree distribution

- The degree sequence $\overrightarrow{k} = \{k_i\}$ can be sampled from a probability distribution

 - Delta/Dirac function \Rightarrow Random regular graph
 - Poisson \Rightarrow Similar to ER for proper parameters
 - Scale-free \Rightarrow Power-law random graph
 - Only global condition to satisfy is: $\sum_{i} k_i \text{ mod } 2 = 0$

 (even degree sum) i.e. each edge has to have ending nodes.
Random graphs with specified degrees

Configuration model How much of some observed pattern is driven by the degrees alone?

Exact or approximate degree distribution

- The model can preserve the **expected** degree sequence, or the **exact** degree sequence
 - Chung-lu (approximate)
 - Molloy-reed (Exact)
Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree distribution

• Probabilistic model which produce a network with degrees approximating (on average) the original degree

• It is a “coin-flipping” process as ER model but the probability that two nodes \(i \) and \(j \) are connected depends on the degree \(k_i \) and \(k_j \) of the ending nodes

• From the point of node \(i \) with degree \(k_i \), the probability that one of its edges will connect to \(j \) with \(k_j \):

\[
\frac{k_j}{2m}
\]

• This can happen via \(k_i \) links, thus the probability that they are connected:

\[
P_{ij} = \frac{k_i k_j}{2m}
\]

assuming that: \([\max(k_i)]^2 < 2m \)

(/\ inconsistent probability, it is rather expected number of edges)

• Chung-Lu model takes each pairs of nodes and connects them with this probability

\[
\forall i > j \quad A_{ij} = A_{ji} = \begin{cases}
1 & \text{with probability } p_{ij} \\
0 & \text{otherwise}
\end{cases}
\]
Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree distribution

\[\forall i > j \quad A_{ij} = A_{ji} = \begin{cases} 1 & \text{with probability } p_{ij} \\ 0 & \text{otherwise} \end{cases} \]

where \[p_{ij} = \frac{k_i k_j}{2m} \]

- Each pairs of nodes are considered once, thus it produces a simple graph (without self-loops and multi edges)

- Degree of a node equals only in “expectation” to the originally assigned degree

- It is easy to generalise for directed graphs

- Inconsistency for large degrees in small networks \([\max (k_i)]^2 < 2m\)

Complexity:

- \(O(n^2)\): We need \(n(n-1)\) flips to test all node pairs

EXPENSIVE!
Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree preservation

Original idea:

1. Given a degree sequence \(\vec{k} = \{k_1, k_2, \ldots, k_n\} \)
2. Assign each node \(i \in V \) with \(k_i \) number of stubs
3. Select random pairs of unmatched stubs and connect them
4. Repeat 3 while there are unmatched stubs

This process will produce a configuration model with exact degree sequence

- Possible to select multiple times stubs of the same pair of nodes \(\rightarrow \) Multilinks
- Possible to select the stubs of the same node to connect \(\rightarrow \) Self-links

The obtained graph is not simple…but the density of multi and self-links \(\rightarrow 0 \) as \(N \rightarrow \infty \)
Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree preservation

Non-unique problem

- Matching of stubs appears with equal probability
- BUT networks with the same \(\{k_i\} \) do not appear with equal probability
- More than one matching can correspond to the same network (topologically)

Different matchings yield same graphs

Some graphs produced by less combinations => less likely to appear
Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree preservation

An effective algorithm:

1. Take an array \vec{v} with length $2m$ and fill it with exactly k_i indices of each node $i \in V$
2. Make a random permutation of the array \vec{v}
3. Read the content of the array in an order and in pairs
4. Pairs of consecutive node indices will assign links in the configuration network

Complexity:

- $O(m)$: Random permutation of an array
- $O(m \log m)$: assigning uniformly random variables to indices and quick-sort them
Configuration model - mathematical properties

Expected clustering coefficient

It is the average probability that two neighbours of a vertex are neighbours

- Start at some vertex v (with degree $k \geq 2$)
- Choose a random pair of its neighbours i and j
- The probability that i and j are themselves connected is $k_ik_j/2m$

Clustering coefficient

$$C = \ldots = \frac{1}{n} \frac{[\langle k \rangle^2 - \langle k \rangle]^2}{\langle k \rangle^3}$$

- It is a vanishing quantity $O(1/n)$ as long as the second moment is finite (not power law)

For details, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L12.pdf
Neighbors's degrees

What is the degree distribution of neighbors of a randomly chosen vertex?

- Let p_k be the fraction of vertices in the network with degree k.
- There are np_k vertices of degree k in the network.
- The end point of every edge in the network has the same probability $\frac{k}{2m}$ of connecting to a vertex of degree k.
- **Degree distribution of a randomly picked neighbor (of any node)**

\[p_{\text{neigh}, k} = \frac{k}{2m} np_k = \frac{kp_k}{\langle k \rangle} \]
Configuration model - mathematical properties

- Degree distribution of a randomly picked neighbor (of any node)

\[p_{\text{neigh},k} = \frac{k}{2m} np_k = \frac{kp_k}{\langle k \rangle} \]

- Average degree of a randomly picked neighbor

\[\langle k_{\text{neigh}} \rangle = \sum_k kp_{\text{neigh},k} = \frac{\langle k^2 \rangle}{\langle k \rangle} \]

- Larger than \(\langle k \rangle \) as soon as degrees are heterogeneous ➡ Friendship paradox

1 node with degree 10, 10 nodes with degree 1:

\[\langle k \rangle = \frac{10 + 1 \times 10}{11} = 1.81.. \]
\[\langle k^2 \rangle = \frac{10^2 + 1^2 \times 10}{11} = 10 \]
\[\frac{\langle k^2 \rangle}{\langle k \rangle} = \frac{10}{1.82} = 5.5 \]
ER Random Network - catch up

<table>
<thead>
<tr>
<th>Network</th>
<th>Degree distribution</th>
<th>Path length</th>
<th>Clustering coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real world networks</td>
<td>broad</td>
<td>short</td>
<td>large</td>
</tr>
<tr>
<td>Regular lattices</td>
<td>constant</td>
<td>long</td>
<td>large</td>
</tr>
<tr>
<td>ER random networks</td>
<td>Poissonian</td>
<td>short</td>
<td>small</td>
</tr>
<tr>
<td>Configuration Model</td>
<td>Custom, can be broad</td>
<td>short</td>
<td>small</td>
</tr>
</tbody>
</table>
Watts-Strogatz model of small-world networks
Small-world networks

- On of the first paper of Network Science...

- Observation in real world networks:

Contradiction: Real-world networks have

High clustering coefficient **AND** Short distances

Table 1 Empirical examples of small-world networks

<table>
<thead>
<tr>
<th>Network</th>
<th>(L_{\text{actual}})</th>
<th>(L_{\text{random}})</th>
<th>(C_{\text{actual}})</th>
<th>(C_{\text{random}})</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film actors</td>
<td>3.65</td>
<td>2.99</td>
<td>0.79</td>
<td>0.00027</td>
<td>22500</td>
</tr>
<tr>
<td>Power grid</td>
<td>18.7</td>
<td>12.4</td>
<td>0.080</td>
<td>0.005</td>
<td>4941</td>
</tr>
<tr>
<td>C. elegans</td>
<td>2.65</td>
<td>2.25</td>
<td>0.28</td>
<td>0.06</td>
<td>262</td>
</tr>
</tbody>
</table>

letters to nature

During exploratory simulations presented here we suggest that when a young, non-porous asteroid (if such exist) suffers extensive impact damage, the resulting fracture pattern largely defines the asteroid’s response to future impacts. The stochastic nature of collisions implies that small asteroid interiors may be as diverse as their shapes and spin states. Detailed numerical simulations of impacts, using accurate shape models and rheologies, could shed light on how asteroid collisional response depends on internal configuration and shape, and hence on how planetesimals evolve. Detailed simulations are also required before one can predict the quantitative effects of nuclear explosions on Earth-crossing comets and asteroids, either for hazard mitigation through disruption and deflection, or for resource exploitation. Such predictions would require detailed reconnaissance concerning the composition and internal structure of the targeted object.

Collective dynamics of ‘small-world’ networks

Duncan J. Watts & Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them ‘small-world’ networks, by analogy with the small-world
Clustering vs. Interconnectedness

Random networks

- Logarithmically short distance among nodes
 \[d = \frac{\log N}{\log \langle k \rangle} \]

- Vanishing clustering coefficient for large size
 \[C_i \equiv \frac{1}{N} \langle k \rangle = p \]

Real-world networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Size</th>
<th>\langle k \rangle</th>
<th>\langle l \rangle</th>
<th>\langle l_{\text{rand}} \rangle</th>
<th>\text{C}</th>
<th>\text{C}_{\text{rand}}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW, site level, undir.</td>
<td>153,127</td>
<td>35.21</td>
<td>3.1</td>
<td>3.35</td>
<td>0.1078</td>
<td>0.00023</td>
<td>Adamic, 1999</td>
</tr>
<tr>
<td>Internet, domain level</td>
<td>3015–6209</td>
<td>3.52–4.11</td>
<td>3.7–3.76</td>
<td>6.36–6.18</td>
<td>0.18–0.3</td>
<td>0.001</td>
<td>Yook et al., 2001a, Pastor-Satorras et al., 2001</td>
</tr>
<tr>
<td>Movie actors</td>
<td>225,226</td>
<td>61</td>
<td>3.65</td>
<td>2.99</td>
<td>0.79</td>
<td>0.00027</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>LANL co-authorship</td>
<td>52,909</td>
<td>9.7</td>
<td>5.9</td>
<td>4.79</td>
<td>0.43</td>
<td>1.8×10^{-4}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>MEDLINE co-authorship</td>
<td>1,520,251</td>
<td>18.1</td>
<td>4.6</td>
<td>4.91</td>
<td>0.066</td>
<td>1.1×10^{-5}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>SPIRES co-authorship</td>
<td>56,627</td>
<td>173</td>
<td>4.0</td>
<td>2.12</td>
<td>0.726</td>
<td>0.003</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>NCSTRL co-authorship</td>
<td>11,994</td>
<td>3.59</td>
<td>9.7</td>
<td>7.34</td>
<td>0.496</td>
<td>3×10^{-4}</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>Math. co-authorship</td>
<td>70,975</td>
<td>3.9</td>
<td>9.5</td>
<td>8.2</td>
<td>0.59</td>
<td>5.4×10^{-5}</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>Neurosci. co-authorship</td>
<td>209,293</td>
<td>11.5</td>
<td>6</td>
<td>5.01</td>
<td>0.76</td>
<td>5.5×10^{-5}</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>E. coli, substrate graph</td>
<td>282</td>
<td>7.35</td>
<td>2.9</td>
<td>3.04</td>
<td>0.32</td>
<td>0.026</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>E. coli, reaction graph</td>
<td>315</td>
<td>28.3</td>
<td>2.62</td>
<td>1.98</td>
<td>0.59</td>
<td>0.09</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>Ythan estuary food web</td>
<td>134</td>
<td>8.7</td>
<td>2.43</td>
<td>2.26</td>
<td>0.22</td>
<td>0.06</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Silwood Park food web</td>
<td>154</td>
<td>4.75</td>
<td>3.40</td>
<td>3.23</td>
<td>0.15</td>
<td>0.03</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Words, co-occurrence</td>
<td>460,902</td>
<td>70.13</td>
<td>2.67</td>
<td>3.03</td>
<td>0.437</td>
<td>0.0001</td>
<td>Ferrer i Cancho and Solé, 2001</td>
</tr>
<tr>
<td>Words, synonyms</td>
<td>22,311</td>
<td>13.48</td>
<td>4.5</td>
<td>3.84</td>
<td>0.7</td>
<td>0.0006</td>
<td>Yook et al., 2001b</td>
</tr>
<tr>
<td>Power grid</td>
<td>4941</td>
<td>2.67</td>
<td>18.7</td>
<td>12.4</td>
<td>0.08</td>
<td>0.005</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>C. Elegans</td>
<td>282</td>
<td>14</td>
<td>2.65</td>
<td>2.25</td>
<td>0.28</td>
<td>0.05</td>
<td>Watts and Strogatz, 1998</td>
</tr>
</tbody>
</table>

Clustering vs. Interconnectedness

Random networks

- Logarithmically short distance among nodes
 \[d = \frac{\log N}{\log \langle k \rangle} \]
 ✔

- Vanishing clustering coefficient for large size
 \[C_i = \frac{1}{N} \langle k \rangle = p \]
 ✗

Real-world networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Size</th>
<th>\langle k \rangle</th>
<th>\langle \ell \rangle</th>
<th>\langle \ell_{\text{rand}} \rangle</th>
<th>\langle C \rangle</th>
<th>\langle C_{\text{rand}} \rangle</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW, site level, undir.</td>
<td>153 127</td>
<td>35.21</td>
<td>3.1</td>
<td>3.35</td>
<td>0.1078</td>
<td>0.00023</td>
<td>Adamic, 1999</td>
</tr>
<tr>
<td>Internet, domain level</td>
<td>3015–6209</td>
<td>3.52–4.11</td>
<td>3.7–3.76</td>
<td>6.36–6.18</td>
<td>0.18–0.3</td>
<td>0.001</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>Movie actors</td>
<td>225 226</td>
<td>61</td>
<td>3.65</td>
<td>2.99</td>
<td>0.79</td>
<td>0.00027</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>LANL co-authorship</td>
<td>52 909</td>
<td>9.7</td>
<td>5.9</td>
<td>4.79</td>
<td>0.43</td>
<td>1.8×10⁻⁴</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>MEDLINE co-authorship</td>
<td>1 520 251</td>
<td>18.1</td>
<td>4.6</td>
<td>4.91</td>
<td>0.066</td>
<td>1.1×10⁻⁵</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>SPIRES co-authorship</td>
<td>56 627</td>
<td>173</td>
<td>4.0</td>
<td>2.12</td>
<td>0.726</td>
<td>0.003</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>NCSTRL co-authorship</td>
<td>11 994</td>
<td>3.59</td>
<td>9.7</td>
<td>7.34</td>
<td>0.496</td>
<td>3×10⁻⁴</td>
<td>Newman, 2001a, 2001b, 2001c</td>
</tr>
<tr>
<td>Math. co-authorship</td>
<td>70 975</td>
<td>3.9</td>
<td>9.5</td>
<td>8.2</td>
<td>0.59</td>
<td>5.4×10⁻⁵</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>Neurosci. co-authorship</td>
<td>209 293</td>
<td>11.5</td>
<td>6</td>
<td>5.01</td>
<td>0.76</td>
<td>5.5×10⁻⁵</td>
<td>Barabási et al., 2001</td>
</tr>
<tr>
<td>E. coli, substrate graph</td>
<td>282</td>
<td>7.35</td>
<td>2.9</td>
<td>3.04</td>
<td>0.32</td>
<td>0.026</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>E. coli, reaction graph</td>
<td>315</td>
<td>28.3</td>
<td>2.62</td>
<td>1.98</td>
<td>0.59</td>
<td>0.09</td>
<td>Wagner and Fell, 2000</td>
</tr>
<tr>
<td>Ythan estuary food web</td>
<td>134</td>
<td>8.7</td>
<td>2.43</td>
<td>2.26</td>
<td>0.22</td>
<td>0.06</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Silwood Park food web</td>
<td>154</td>
<td>4.75</td>
<td>3.40</td>
<td>3.23</td>
<td>0.15</td>
<td>0.03</td>
<td>Montoya and Solé, 2000</td>
</tr>
<tr>
<td>Words, co-occurrence</td>
<td>460,902</td>
<td>70.13</td>
<td>2.67</td>
<td>3.03</td>
<td>0.437</td>
<td>0.0001</td>
<td>Ferrer i Cancho and Solé, 2001</td>
</tr>
<tr>
<td>Words, synonyms</td>
<td>22,311</td>
<td>13.48</td>
<td>4.5</td>
<td>3.84</td>
<td>0.7</td>
<td>0.0006</td>
<td>Yook et al., 2001b</td>
</tr>
<tr>
<td>Power grid</td>
<td>4941</td>
<td>2.67</td>
<td>18.7</td>
<td>12.4</td>
<td>0.08</td>
<td>0.005</td>
<td>Watts and Strogatz, 1998</td>
</tr>
<tr>
<td>C. Elegans</td>
<td>282</td>
<td>14</td>
<td>2.65</td>
<td>2.25</td>
<td>0.28</td>
<td>0.05</td>
<td>Watts and Strogatz, 1998</td>
</tr>
</tbody>
</table>

Reference Nr. 2

Clustering vs. Interconnectedness

High clustering
- Locally structured
- No connections between nodes apart

Random
- Globally interconnected
- Low clustering
Real networks have high clustering and short distances
Strength of weak ties

• Mark Granovetter, (sociologist)
• The Strength of weak ties (1973)
 • Very influential paper

• Weak ties (distant friendship, relatives) are very important for information flow (marketing, politics, job seeking, etc.)
 • Strong ties connect similar people, and lead to high redundancy
 • Weak ties, connect distant people, allow to leave the “community”
The Watts-Strogatz model

A model to capture large clustering coefficient and short distances observed in real networks

• It interpolates between an ordered finite lattice and a random graph
• Fixed parameters:
 • n - system size
 • K - initial coordination number
• Variable parameters:
 • p - rewiring probability
• Algorithm:
 1. Start with a ring lattice with n nodes in which every node is connected to its first K neighbours ($K/2$ on either side).
 2. Randomly rewire each edge of the lattice with probability p such that self-connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered ($p=0$) to a completely random ($p=1$) structure

The Watts-Strogatz model

- n and K are chosen $n \gg K \gg \ln(n) \gg 1$ thus the random graph remains connected $(K \gg \ln(n))$
The Watts-Strogatz model

- **Definition 1:**
 1. Start with a ring lattice with \(N \) nodes in which every node is connected to its first \(K \) neighbours (\(K/2 \) on either side).
 2. Randomly rewire each edge of the lattice with probability \(p \) such that self-connections and duplicate edges are excluded.

- **Definition 2:**
 1. Start with a ring lattice with \(N \) nodes in which every node is connected to its first \(K \) neighbours (\(K/2 \) on either side).
 2. For every edge in the network we add an additional edge with independent probability \(p \), connected two nodes selected uniformly at random.
The Watts-Strogatz model

(Global) **Clustering coefficient** (Definition 2)

- $p=0$ - regular ring with constant clustering: $C = \frac{3(K - 2)}{4(K - 1)}$
 - $0 \leq C \leq 3/4$
 - Independent of n

- $p>0$ - we can count triangles and tuples

Global clustering coefficient

$$C = \frac{\frac{1}{4} NK \left(\frac{1}{2} K - 1\right) \times 3}{\frac{1}{2} NK (K - 1) + NK^2 p + \frac{1}{2} NK^2 p^2} = \frac{3(K - 2)}{4(K - 1) + 8Kp + 4Kp^2}$$

- Independent of n
- if $p\to 0$ it recovers the ring value
- if $p\to 1$ it well approximates 1
The Watts-Strogatz model

Average path length (Definition 2)
- No closed form solution

- From numerical simulations:

\[l = \frac{\ln(nKp)}{K^2p} \]
The Watts-Strogatz model

Degree distribution (Definition 2)

- $p=0$ - each node has the same degree K (Dirac delta function)
- $p>0$ - each node has degree K + shortcut links
 - Number of shortcut edges: $s = \frac{1}{2}NK \times p$
 - Each node will have on average Kp number of shortcuts
 - The degree distribution is
 \[
 P(k) = e^{-Kp} \frac{(Kp)^{k-K}}{(k-K)!}
 \]
 if $k \geq K$ and $P(k) = 0$ if $k < K$
 - $p>0$ - approximates a Poisson distribution just like a random network
<table>
<thead>
<tr>
<th>Network</th>
<th>Degree distribution</th>
<th>Path length</th>
<th>Clustering coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real world networks</td>
<td>broad</td>
<td>short</td>
<td>large</td>
</tr>
<tr>
<td>Regular lattices</td>
<td>constant</td>
<td>long</td>
<td>large</td>
</tr>
<tr>
<td>ER random networks</td>
<td>Poissonian</td>
<td>short</td>
<td>small</td>
</tr>
<tr>
<td>Configuration Model</td>
<td>Custom, can be</td>
<td>short</td>
<td>small</td>
</tr>
<tr>
<td>Watts & Strogatz (in SW regime)</td>
<td>Poissonian</td>
<td>short</td>
<td>large</td>
</tr>
</tbody>
</table>