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WHY USING RANDOM 
GRAPH MODELS

• Several good reasons:
‣ Study some properties in a “controlled environment” 

- How does property X behaves when increasing property Y ?
‣ Compare an observed network with a randomized version

- Is observed property X “exceptional”, or any similar network with same property Y and Z ?
‣ Explain a given phenomenon

- Such simple mechanism can reproduce property X and Y
‣ Generate synthetic datasets

- Testing an algorithm on 100 variations of the same network



WHY USING RANDOM 
GRAPH MODELS

• Deterministic models
‣ Repeated regular patterns (lattices)

• Generative models
‣ The probability of an edge between 2 nodes depend on their properties

- Erdos Renyi, Configuration model, etc.

• Mechanistic models
‣ The network is created following a mechanism, a set of rules

- Preferential attachment, Forest fire, etc.



Fundamental network
models



Central quantities in network analysis

• Degree distribution:        P(k)

• Clustering coefficient:     C

• Average path length:      <d>

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large



Regular lattices
• Graphs where each node has the same degree k

COMPLEX NETWORKS

boundary and corner e↵ects. Here we are going to outline the main types of the frequently used
boundary conditions.

Proceed from a simple two dimensional square lattice with linear size L (Figure 3.2.a), the
simplest conventional choice is the free boundary condition, where we do not involve any kind
of link between di↵erent boundaries, but let dangling bonds on the circumference. This case
is suitable to study such problems where free edge boundaries are more realistic, like modeling
local surface e↵ects which arise on the boundaries of di↵erent matters.

a) b) c)

Figure 3.2: Two dimensional square lattice with free boundary condition (a), half periodical boundary
condition (b) and periodical boundary condition (c).

If we link two opposite boundaries of a square lattice, as we connect each last node to the
first node of a given row, it forms a cylinder (Figure 3.2.b). Here parallel with the periodical
condition, the system is homogeneous and the correlation length is maximally L/2. The name
of such a geometry is the half periodical condition. Another cylindrical structure, which is the
easiest to implement, is the helical (also called screw periodical) boundary condition, where the
nodes of the lattice sit on a one dimensional chain and wrapped around the system. Practically
in the end of the chain the very last node connected to the very first node and cause an
inhomogeneity which is only negligible in the limit of infinite size.

The d dimensional lattice which has periodical boundary condition in each d direction covers
a d + 1 dimensional torus (Figure 3.2.c). Here the system is translational invariant in each
directions, and eliminates every boundary e↵ects, however the correlation length is still reduced
by the system size so finite size e↵ects arise in the system.

Another boundary condition which reduces finite size e↵ects, and which does not need any
additional edges is the mean-field boundary condition. Here an additional external field is in-
troduced on the boundaries, which induces the mean bulk conditions on the borders, eliminates
boundary and corner e↵ects.

3.3 Geometrically disordered graphs

A spontaneously evolving network in the real world usually follows rules which are controlled
by random properties. Such self-organized systems exclude regularity and show a fairly di↵erent
structure which finds its origin in special features like dynamical growth or randomness. In the
following section we are going to overview the brief history of random networks and define
general models which belong to this segment.
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COMPLEX NETWORKS

coming from the random matrix theory [93], as ⇢(�) =
P

N

i=1
�(���i)

N
, where �i the ith biggest

eigenvalue of A [94]. This density becomes continuous if N !1 and is related directly to the
topology of the network.

3.2 Geometrically ordered graphs

3.2.1 Regular lattices

Since the atoms of a crystal are arranged in a fix periodical structure, in solid state physics
a special type of graph is used to describe such systems which is called lattice. A lattice is
defined as a symmetry group with translational symmetry in n direction, or in other words, it
is a space ordered graph with translational invariance. It is arranged by unit cells which fill
periodically the d-dimensional space. In theoretical physics many models defined on lattices
(lattice models) are exactly solvable and also easy to simulate using computational methods.

a) b)

Figure 3.1: The triangular lattice (a) and the Kagomé lattice (b) are the most studied regular structure
which can induce geometrical frustration in antiferromagnetic lattice models.

Another usually required main property of a lattice is the regularity. In graph theory a graph
is called regular if its each vertex p 2 V has the same number of neighbors, thus they have the
same degree k. We called k-regular graphs those graphs which contain vertices with degree k
only.

The geometrical properties of a crystal lattice can induce frustration in condensed matters
like in antiferromagnetic systems. The simplest regular lattices which cause such frustration
in two dimension are the triangular lattice and the Kagomé lattice (Figure 3.1), which were
intensively studied from the early 50s [95]. In these lattices a geometrical constrain arises from
the structure of the lattice which does not let the system relax to its ground state and induce
residual entropy at zero temperature. The water ice was the first example which presented such
behaviour, found in 1936 [96], but later other matters showed similar features.

3.2.2 Boundary conditions

Since it is possible to study only finite lattice systems via computer simulations, an important
question arises about the influence of the lattice boundaries. Beyond the finite size e↵ects, on
the margin of a finite lattice, all edges which link to the last nodes are hanging and change
the local free energy. However, by applying special boundary conditions we can eliminate these
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1D COMPLEX NETWORKS

d)c)b)a)

Figure 3.4: The evolution of the Strogatz-Watts network. Starting from a regular ring (a), following
the rewiring process (b), it arrives to a random graph structure (c). A alternative definition (d), where
only shortcuts are added to remaining original ring.

where ¯̀= (lnL)/(lnK). In between this two phases there is a crossover regime, where ¯̀ begins
to decrease drastically (Figure 3.5). The reason of this falling is that the additional shortcuts
which appears first at p � 1/NK, decrease suddenly the geodesic distance between opposite
parts of the graph. Many attention have been focused to determine the behavior of ¯̀ in this
range, but it is still not exactly solved. A widely accepted explanation that ¯̀ satisfies a scaling
relation [111]:

¯̀⇠ ⇠g(L/⇠) and g(x) =
⇢

x if x⌧ 1
ln(x) if x� 1

where the correlation length scales as ⇠ ⇠ p�1/d [112]. Using renormalization group treatments
[113] an equivalent scaling form has been found:

¯̀⇠ L

K
f(L/⇠) (3.4)

which di↵ers only by a factor K and where ⇠ = 1/pK. According to the scaling form in Eq.3.4
the graph can pass through the transition controlled by p or L as well, since LKp is equal
to the mean number of shortcuts, which induce the topological change. Finally a mean-field
treatment [114] of the model in one dimension shows approximately that:

f(x) =
1

2
p

x2 + 2x
tanh�1 xp

x2 + 2x
and so ¯̀=

⇠

2K
p

1 + 2⇠/L
tanh�1 1

1 + 2⇠/L
(3.5)

Clustering coe�cient

The clustering coe�cient, which is large at the initial regular graph, is invariant of the system
size L at p = 0 since it depends only on the coordination number z = 2K of the lattice. If
disorder is introduced into the system by rewired edges, it remains close to C(p = 0), as long as
a large fraction of original neighbors keep connected. The probability that three vertices which
were connected at p = 0 still construct a triangle when p > 0 is (1� p)3, since there are three
edges which need to keep intact. It follows that the clustering coe�cient changes as [115]:

C(p) = C(0)(1� p)3 =
3K � 3
4K � 2

(1� p)3 (3.6)
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COMPLEX NETWORKS

boundary and corner e↵ects. Here we are going to outline the main types of the frequently used
boundary conditions.

Proceed from a simple two dimensional square lattice with linear size L (Figure 3.2.a), the
simplest conventional choice is the free boundary condition, where we do not involve any kind
of link between di↵erent boundaries, but let dangling bonds on the circumference. This case
is suitable to study such problems where free edge boundaries are more realistic, like modeling
local surface e↵ects which arise on the boundaries of di↵erent matters.

a) b) c)

Figure 3.2: Two dimensional square lattice with free boundary condition (a), half periodical boundary
condition (b) and periodical boundary condition (c).

If we link two opposite boundaries of a square lattice, as we connect each last node to the
first node of a given row, it forms a cylinder (Figure 3.2.b). Here parallel with the periodical
condition, the system is homogeneous and the correlation length is maximally L/2. The name
of such a geometry is the half periodical condition. Another cylindrical structure, which is the
easiest to implement, is the helical (also called screw periodical) boundary condition, where the
nodes of the lattice sit on a one dimensional chain and wrapped around the system. Practically
in the end of the chain the very last node connected to the very first node and cause an
inhomogeneity which is only negligible in the limit of infinite size.

The d dimensional lattice which has periodical boundary condition in each d direction covers
a d + 1 dimensional torus (Figure 3.2.c). Here the system is translational invariant in each
directions, and eliminates every boundary e↵ects, however the correlation length is still reduced
by the system size so finite size e↵ects arise in the system.

Another boundary condition which reduces finite size e↵ects, and which does not need any
additional edges is the mean-field boundary condition. Here an additional external field is in-
troduced on the boundaries, which induces the mean bulk conditions on the borders, eliminates
boundary and corner e↵ects.

3.3 Geometrically disordered graphs

A spontaneously evolving network in the real world usually follows rules which are controlled
by random properties. Such self-organized systems exclude regularity and show a fairly di↵erent
structure which finds its origin in special features like dynamical growth or randomness. In the
following section we are going to overview the brief history of random networks and define
general models which belong to this segment.
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k=4 k=4 k=6 k=4 k=6

• Translational symmetry in n directions



Regular lattices
Clustering coefficient

Path length

COMPLEX NETWORKS

d)c)b)a)

Figure 3.4: The evolution of the Strogatz-Watts network. Starting from a regular ring (a), following
the rewiring process (b), it arrives to a random graph structure (c). A alternative definition (d), where
only shortcuts are added to remaining original ring.

where ¯̀= (lnL)/(lnK). In between this two phases there is a crossover regime, where ¯̀ begins
to decrease drastically (Figure 3.5). The reason of this falling is that the additional shortcuts
which appears first at p � 1/NK, decrease suddenly the geodesic distance between opposite
parts of the graph. Many attention have been focused to determine the behavior of ¯̀ in this
range, but it is still not exactly solved. A widely accepted explanation that ¯̀ satisfies a scaling
relation [111]:

¯̀⇠ ⇠g(L/⇠) and g(x) =
⇢

x if x⌧ 1
ln(x) if x� 1

where the correlation length scales as ⇠ ⇠ p�1/d [112]. Using renormalization group treatments
[113] an equivalent scaling form has been found:

¯̀⇠ L

K
f(L/⇠) (3.4)

which di↵ers only by a factor K and where ⇠ = 1/pK. According to the scaling form in Eq.3.4
the graph can pass through the transition controlled by p or L as well, since LKp is equal
to the mean number of shortcuts, which induce the topological change. Finally a mean-field
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Clustering coe�cient

The clustering coe�cient, which is large at the initial regular graph, is invariant of the system
size L at p = 0 since it depends only on the coordination number z = 2K of the lattice. If
disorder is introduced into the system by rewired edges, it remains close to C(p = 0), as long as
a large fraction of original neighbors keep connected. The probability that three vertices which
were connected at p = 0 still construct a triangle when p > 0 is (1� p)3, since there are three
edges which need to keep intact. It follows that the clustering coe�cient changes as [115]:

C(p) = C(0)(1� p)3 =
3K � 3
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(1� p)3 (3.6)
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C=0 C=3/6 C=1
• Clustering coefficient depends on the structure (can be large or not)
• It is constant for each node

• Average path length grows quickly with n 
when k << n

• In a large graph with realistic average 
degrees, will be large 



Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long can be large

Regular lattices



PROBABILISTIC MODEL



The Erdős-Rényi
Random Graph

model
(ER)



Random Graphs

“If we do not know anything else than the number n of nodes and the number L of 
links, the simplest thing to do is to put the links at random (no correlations)”

Pál Erdős
(1913-1996)

Alfréd Rényi
(1921-1970)

P. Erdős and A. Rényi. On random graphs, I. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61, 1960.



ER Random Graphs
Erdős-Rényi model: simple way to generate random graphs

Definition
Erdős-Rényi (ER) random network is a simple random graph.
There are two slightly different definitions, G(n, m) and G(n, p):

G(n,m)

I Take an empty graph with n
nodes.

I Add m edges uniformly at
random.

. . . or alternatively:

I Pick uniformly at random a
graph from the set of all
graphs with n nodes and m
edges.

G(n, p)

I Take an empty graph with n
nodes.

I Add an edge between any
pair of nodes independently
with probability p.

. . . or alternatively:

I Pick with probability
pm(1 � p)(

n
2)�m a network

from the set of all networks
with n nodes.

• The G(n,L) definition
1. Take n disconnected nodes
2. Add L edges uniformly at random

Alternatively:
• pick uniformly randomly a graph 

from the set of all graphs with n 
nodes and L links

• The G(n,p) definition
1. Take n disconnected nodes
2. Add an edge between any of the 

nodes independently with 
probability p

Alternatively:
• pick with probability                                

a network from the set of all 
networks with size n

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q#!! 0 if
p"N#

pc"N#
→0

1 if
p"N#

pc"N#
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1#"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E'if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .
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set E1 of edges is a subgraph of a graph G!&P ,E'if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .
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Random Graphs
RANDOM NETWORK MODEL 

N and p do not uniquely define the 
network– we can have many different 
realizations of it. How many? 

€ 

P(G(N, p)) = pL (1− p)
N (N −1)
2

−L

N=10  
p=1/6 

The probability to form a particular  graph G(N,p) is That is, each graph G(N,p) 
appears with probability 
 P(G(N,p)). 

Network Science: Random Graphs  2012 

In the G(n,p) variant, the number of edges
may vary

n=10
p=1/6



ER Random GraphsRANDOM NETWORK MODEL 

p=1/6 
 N=12 

Network Science: Random Graphs  2012 

RANDOM NETWORK MODEL 

p=0.03 
 N=100 

Network Science: Random Graphs  2012 



Binomial distribution:

Random Graphs

(n
k) =

n!
k!(n − k)!

Number of ways, disregarding order, that k 
objects can be chosen from among n objects

Discrete probability distribution of the number of successes(x) in a 
sequence of N independent experiments, with success probability p

P(x) = (N
x ) px(1 − p)N−x

P(L): probability to have exactly L links in a network of n nodes and probability p

Reminder: Binomial coefficient:



Random Graphs

N = (n
2) =

n(n − 1)
2

P(x) = (N
x ) px(1 − p)N−x

Binomial distribution N: Number of experiments

P(L) =
(n

2)
L

pL(1 − p)(n
2)−L

Pairs of nodes

P(L): probability to have exactly L links in a network of n 
nodes (with p the probability to have an edge)



Properties of Binomial distribution

Random Graphs

Definition

Mean

variance

< x > = pN

σ2 = Np(1 − p)

P(x) = (N
x ) px(1 − p)N−x



Slide from CCNR course, A. L. Barabási (2012)

Random Graphs
Expected number of links <L>

< L > = pN = p
n(n − 1)

2

< k > = 2L/n = p(n − 1)
Expected average degree <k> 

Variance

σ2 = Np(1 − p) =
n(n − 1)

2
p(1 − p)



Degree distribution - Random Graphs

Slide from CCNR course, A. L. Barabási (2012)

DEGREE DISTRIBUTION OF A RANDOM GRAPH 

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>. 

Select k  
nodes from N-1 probability of  

having k edges 

probability of  
missing N-1-k 
edges € 

P(k) =
N −1
k

# 

$ 
% 

& 

' 
( pk (1− p)(N −1)−k

€ 

< k >= p(N −1)

€ 

σk
2 = p(1− p)(N −1)

€ 

σk

< k >
=
1− p
p

1
(N −1)

$ 

% 
& 

' 

( 
) 

1/ 2

≈
1

(N −1)1/ 2

Network Science: Random Graphs  2012 

For each node, 
independent probabilities to take each neighbor

=> Binomial distribution

P(k) = (n − 1
k ) pk(1 − p)(n−1)−k

P(k): probability to have exactly k links among n (total # of 
nodes), with p the (overall) probability to have an edge

< k > = p(n − 1)
σ2

k = p(n − 1)(1 − p)

DEGREE DISTRIBUTION OF A RANDOM GRAPH 

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>. 

Select k  
nodes from N-1 probability of  

having k edges 

probability of  
missing N-1-k 
edges € 

P(k) =
N −1
k

# 

$ 
% 

& 

' 
( pk (1− p)(N −1)−k

€ 

< k >= p(N −1)

€ 

σk
2 = p(1− p)(N −1)

€ 

σk

< k >
=
1− p
p

1
(N −1)

$ 

% 
& 

' 

( 
) 

1/ 2

≈
1

(N −1)1/ 2
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Characteristics:



Degree distribution - Random Graphs

For large n and small k (p,L), we can approximate the degree distribution
using a poisson distribution of parameter (mean)  λ = < k >

P(K) =
λKe−λ

K!
Poisson distribution

Distribution of degrees P(k) =
< k >k e−<k>

k!

standard deviation σ = < k >



Slide from CCNR course, A. L. Barabási (2012)

DEGREE DISTRIBUTION OF A RANDOM GRAPH 
P

(k
) 

  k 

€ 

P(k) = e−<k> < k >k

k!

Network Science: Random Graphs  2012 

Degree distribution - Random Graphs



Slide from CCNR course, A. L. Barabási (2012)

Degree distribution - Random Graphs

Conclusion: degree distribution is not
-Heterogeneous

-Long tail 
-Scale free



Clustering - Random Graphs

Since edges are independent and have the same probability p,  

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small. 
  
For fixed degree C decreases with the system size N. 

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT 

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010 

This is valid for random 
networks only, with 

arbitrary degree 
distribution 

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs  2012 

where ni is the number of links between the neighbours of node i

• Edges are independent and have the same probability p

Since edges are independent and have the same probability p,  

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small. 
  
For fixed degree C decreases with the system size N. 

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT 

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010 

This is valid for random 
networks only, with 

arbitrary degree 
distribution 

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs  2012 

• Earlier we showed

Since edges are independent and have the same probability p,  

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small. 
  
For fixed degree C decreases with the system size N. 

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT 

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010 

This is valid for random 
networks only, with 

arbitrary degree 
distribution 

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs  2012 

n-1

Ci= 2<k>
n-1

ki (ki-1)
2

1
ki (ki-1) = <k>

n-1

➡ Low clustering coefficient 
➡ It is vanishing with the system size

• For fixed average degree C is decreasing as N goes large

Local clustering of a node

= p

Reminder, clustering coefficient

# possible links
btw neighbors



Clustering - ER Random Networks
• Small clustering coefficient

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17
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Real-world networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

Since edges are independent and have the same probability p,  

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small. 
  
For fixed degree C decreases with the system size N. 

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT 

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010 

This is valid for random 
networks only, with 

arbitrary degree 
distribution 

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p
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Distance - Random Graphs

Slide from CCNR course, A. L. Barabási (2012)

DISTANCES IN RANDOM GRAPHS 

Random graphs tend to have a tree-like topology with almost constant node degrees. 

•  nr. of first neighbors: 

•  nr. of second neighbors: 

• nr. of neighbours at distance d:  

•  estimate maximum distance: 

€ 

d =
logN
log k

€ 

N =1+ k + k 2
+ ...+ k d

=
k d +1 −1
k −1

≈ k d

kN1≅
2

2 kN≅

€ 

Nd ≅ k d

Network Science: Random Graphs  2012 

n = < k >d ⇒ log<k> n = d ⇒ d =
log n

log < k >

N(u)1 = < k >

N(u)2 = < k >2

N(u)d = < k >d

low clustering coefficient=>

Intuition: At which distance are all nodes reached?

Diameter, avg.  distance in 𝒪(log n)



Distance - ER Random Networks

• Logarithmically short distance among nodes

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17
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Real-world networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

d =
log n

log⟨k⟩



Connected components of Random Graphs
Components in ER networks

I When hki is small, the ER
network consist of several
disjoint components.

I Because Ci = p << 1, the
components are tree-like.

I For hki large enough, a
giant connected

component (GCC) appears
I GCC occupies a finite

fraction of nodes even as
n ! 1.

I The transition from a
fragmented to a connected
phase is called a
percolation transition.

hki
0.5

0.75

1.0

1.25

1.5

<k> 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes   "     NETWORK.  

How does this transition happen?  Network Science: Random Graphs  2012 

• Network structure goes through a transition

• Question: How and when does this transition 
happen



Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-
blob/

https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/


ER Random Network - catch up

I:  
Subcritical 

<k> < 1 

III:  
Supercritical  

<k> > 1 

IV:  
Connected  

<k> >  ln N 

II:  
Critical  

<k> = 1 

<k>=0.5 <k>=1 <k>=3 <k>=5 

N
=1

00
 

<k> 

Structural (percolation) phase transition at <k>=1 (or equivalently when p=1/N)
Slide from CCNR course, A. L. Barabási (2012)



Basic characteristics 

• Degree distribution

• Clustering

• Path length

ER Random Network - catch up
Degree distribution with fixed hki and n ! 1

I Degree distribution is

pk =
�n�1

k

�
pk(1 � p)n�1�k

I We are often interested in
properties of networks in the
limit of large n with hki
fixed.

I Since hki = (n � 1)p, we
may write

�n�1
k

�
pk ' (n � 1)k

k!
pk =

hkik

k!

and

(1�p)n�1�k =
⇣
1� hki

n � 1

⌘n�1�k n!1���! e�hki

I Therefore

pk =
�n�1

k

�
pk(1 � p)n�1�k

! hkik

k!
e�hki

= Poisson(hki)

I For this reason G(n, p) is
often called the Poisson

random graph.
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N !1

Degree distribution with fixed hki and n ! 1

I Degree distribution is
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limit of large n with hki
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I For this reason G(n, p) is
often called the Poisson

random graph.

Binomial distribution Poisson distribution

Distance with logarithmic relation to nodes

Vanishing clustering coefficient for large size

Degree distribution without tail

Ci= <k>
n-1 = p

𝒪(log n)



ER Random Network - catch up

It is not capturing the properties of any real system
BUT 

it serves as a reference system for any other network model

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small



Configuration
model

More details at [http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf]

http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf


Random graphs with specified degrees
Problem

• The ER Random Graph model has a Poisson degree distribution

• Most real-world networks have heavy-tailed degree distributions

• We need to generate networks which have pre-determined degrees or degree 
distribution, but they are maximally random otherwise

• The observed properties (clustering coefficient, etc.) might be due only to the 
difference in degree distribution



Configuration model

Random graphs with specified degrees

• Defined as              where                 is a degree sequence on n nodes, with ki 
being the degree of node i

G(n, ⃗k ) ⃗k = {ki}

∑
i

ki mod 2 = 0

(even degree sum) i.e. each edge has to have ending nodes

• The degree sequence                 can be sampled from a probability distribution

• Delta/Dirac function =>  Random regular graph

• Poisson => Similar to ER for proper parameters

• Scale-free =>  Power-law random graph

• Only global condition to satisfy is:

⃗k = {ki}

How much of some observed pattern is driven by the degrees alone? 

Based on an observed network

Ad hoc degree distribution



Configuration model

Random graphs with specified degrees

• The model can preserve the expected degree sequence, or the exact degree sequence

• Chung-lu (appoximate)

• Molloy-reed (Exact)

How much of some observed pattern is driven by the degrees alone? 

Exact or approximate degree distribution



Chung-Lu model for configuration networks = Approximate degree 
distribution

Random graphs with specified degrees

• Probabilistic model which produce a network with degrees approximating (on 
average) the original degree

• It is a “coin-flipping” process as ER model but the probability that two nodes i 
and j are connected depends on the degree ki and kj of the ending nodes

• From the point of node i with degree ki, the probability that one of its edges will 
connect to j with kj:

kj /2m

pij =
kikj

2m

• This can happen via ki links, thus the probability that they are connected:

• Chung-Lu model takes each pairs of nodes and connects them with this probability
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1.2.1 Simple graphs from flipping coins

The central mathematical property of all random-graph models is the probability that two vertices
i and j are connected. In the random graph models we consider here, this probability depends
only on the degrees ki and kj of that pair. Thus, from the perspective of i, the probability that
one of its edges connects to j is equal to the fraction of the m total edges we choose that point to
j. Because we have chosen j’s degree, this fraction is exactly kj/2m. And, because we have also
chosen i’s degree, this event has ki chances to occur and the probability that (i, j) exists is

pij = ki

✓
kj

2m

◆
=

kikjPn
`=1 k`

. (1)

The Chung-Lu model takes this probability as a parameter and simply flips a single coin for each
of the pairs i, j to generate a simple graph:

8i>j Aij = Aji =

⇢
1 with probability pij

0 otherwise
,

where pij is given by Eq. (1). Just as with generating Erdős-Rényi graphs, each pair is considered
only once; hence, this process produces a simple graph, with no self-loops and no multi-edges. (In
contrast, the Molloy-Reed model produces a random multigraph, which may have multi-edges and
self-loops.) This method can also be used to generate directed networks by first specifying the
in-degree and out-degree sequences, subject to the requirement that

P
i k

in
i =

P
j k

out
j . We then

choose pi!j = k
out
i k

in
j /m and drop the requirement that Aij = Aji.

As a result of this form, the degree of each vertex i under this method of generation equals the
specified value ki only in expectation (and similarly for the in- and out-degrees in the directed
version). The observed degree for node i in the Chung-Lu ensemble is a Poisson distribution with
mean ki (do you see why?). Hence, deviations from the expected value are generally small, when
the graph is sparse and the maximum degree is ⌧

p
n.

Notably, drawing random graphs from the Chung-Lu model is computationally expensive, especially
for large n, as we need to flip ⇥(n2) coins, one for each possible pair of vertices i, j 2 V . This cost
is one reason that the Molloy-Reed model is more commonly used for large empirical studies (but
see Fosdick et al. [2016]).

1.2.2 Multigraphs from random matchings

The standard method for generating a Molloy-Reed random multigraph is to choose a uniformly
random matching on the degree “stubs” (half edges) of the specified degree sequence. Unlike in
the Chung-Lu model described above, which only generates simple graphs by design, this “stub
matching” method will typically produce some number of self-loops and multi-edges. In practice,

3

assuming that:

(/!\ inconsistent probability, it is rather expected

number of edges)

[max(ki)]2 < 2m



Random graphs with specified degrees
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The central mathematical property of all random-graph models is the probability that two vertices
i and j are connected. In the random graph models we consider here, this probability depends
only on the degrees ki and kj of that pair. Thus, from the perspective of i, the probability that
one of its edges connects to j is equal to the fraction of the m total edges we choose that point to
j. Because we have chosen j’s degree, this fraction is exactly kj/2m. And, because we have also
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pij = ki

✓
kj

2m

◆
=

kikjPn
`=1 k`

. (1)

The Chung-Lu model takes this probability as a parameter and simply flips a single coin for each
of the pairs i, j to generate a simple graph:

8i>j Aij = Aji =

⇢
1 with probability pij

0 otherwise
,

where pij is given by Eq. (1). Just as with generating Erdős-Rényi graphs, each pair is considered
only once; hence, this process produces a simple graph, with no self-loops and no multi-edges. (In
contrast, the Molloy-Reed model produces a random multigraph, which may have multi-edges and
self-loops.) This method can also be used to generate directed networks by first specifying the
in-degree and out-degree sequences, subject to the requirement that

P
i k

in
i =

P
j k

out
j . We then

choose pi!j = k
out
i k

in
j /m and drop the requirement that Aij = Aji.

As a result of this form, the degree of each vertex i under this method of generation equals the
specified value ki only in expectation (and similarly for the in- and out-degrees in the directed
version). The observed degree for node i in the Chung-Lu ensemble is a Poisson distribution with
mean ki (do you see why?). Hence, deviations from the expected value are generally small, when
the graph is sparse and the maximum degree is ⌧

p
n.

Notably, drawing random graphs from the Chung-Lu model is computationally expensive, especially
for large n, as we need to flip ⇥(n2) coins, one for each possible pair of vertices i, j 2 V . This cost
is one reason that the Molloy-Reed model is more commonly used for large empirical studies (but
see Fosdick et al. [2016]).

1.2.2 Multigraphs from random matchings

The standard method for generating a Molloy-Reed random multigraph is to choose a uniformly
random matching on the degree “stubs” (half edges) of the specified degree sequence. Unlike in
the Chung-Lu model described above, which only generates simple graphs by design, this “stub
matching” method will typically produce some number of self-loops and multi-edges. In practice,

3

where

• Each pairs of nodes are considered once, thus it produces a simple graph 
(without self-loops and multi edges)

• Degree of a node equals only in “expectation” to the originally assigned degree

• It is easy to generalise for directed graphs

Complexity:

•  O(n2): We need n(n-1) flips to test all node pairs

EXPENSIVE!

pij =
kikj

2m

• Inconsistency for large degrees in small networks [max(ki)]2 < 2m

Chung-Lu model for configuration networks = Approximate degree 
distribution



Molloy-Reed model for configuration networks = exact degree 
preservation
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Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

Original idea:
1. Given a degree sequence 
2. Assign each node i∈V with ki number of stubs
3. Select random pairs of unmatched stubs and connect them
4. Repeat 3 while there are unmatched stubs
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these deviations from a simple graph represent an asymptotically small fraction of all edges, and
we can “simplify” the network by discarding self-loops and collapsing multi-edges, and potentially
also discarding disconnected components.2

Given a degree sequence ~k = {k1, k2, . . . , kn}, we say that each vertex i has a number of “stubs”
equal to its degree. Every matching on these stubs, in which we repeatedly choose an unmatched
stub on some vertex i and connect it with some unmatched stub on vertex j, represents a network.
Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
result in a triangle. The following figure shows the distinct labelings, and hence distinct matchings,
that form a triangle. In the configuration model, we choose each of these with equal probability.
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However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.

a b ab a b

c

d

c d

e

f e f

d f c e

In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.
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Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)
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For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

• This process will produce a configuration model with exact degree sequence

• Possible to select multiple times stubs of the same pair of nodes

• Possible to select the stubs of the same node to connect

Multilinks

Self-links

The obtained graph is not simple…but the density of multi and self-links ➜ 0  as N ➜ ∞



Random graphs with specified degrees

Non-unique problem

• Matching of stubs appears with equal probability

• BUT networks with the same {ki} do not appear with equal probability

• More than one matching can correspond to the same network (topologically)
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these deviations from a simple graph represent an asymptotically small fraction of all edges, and
we can “simplify” the network by discarding self-loops and collapsing multi-edges, and potentially
also discarding disconnected components.2

Given a degree sequence ~k = {k1, k2, . . . , kn}, we say that each vertex i has a number of “stubs”
equal to its degree. Every matching on these stubs, in which we repeatedly choose an unmatched
stub on some vertex i and connect it with some unmatched stub on vertex j, represents a network.
Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
result in a triangle. The following figure shows the distinct labelings, and hence distinct matchings,
that form a triangle. In the configuration model, we choose each of these with equal probability.
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However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.
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In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.
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Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
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that form a triangle. In the configuration model, we choose each of these with equal probability.
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However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.
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In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.

4

Different matchings 
yield same graphs

Some graphs produced by less
combinations =>less likely to appear

Molloy-Reed model for configuration networks = exact degree 
preservation
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Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

An effective algorithm:
1. Take an array      with length 2m and fill it with exactly ki indices of each 

node i∈V

2. Make a random permutation of the array
3. Read the content of the array in an order and in pairs
4. Pairs of consecutive node indices will assign links in the configuration 

network

⃗v

⃗v

Complexity:
• O(m): Random permutation of an array

• O(m log m): assigning uniformly random variables to indices and quick-sort them

CHEAP!

Molloy-Reed model for configuration networks = exact degree 
preservation



Configuration model - mathematical properties
Expected clustering coefficient

It is the average probability that two neighbours of a vertex are neighbours

• Start at some vertex v (with degree k ≥ 2)

• Choose a random pair of its neighbours i and j

• The probability that i and j are themselves connected is kikj/2m 

v

i j

Clustering coefficient
C = . . . =

1
n

[⟨k⟩2 − ⟨k⟩]2

⟨k⟩3

• It is a vanishing quantity O(1/n) as long as the second moment is finite (not power law)

For details, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L12.pdf

independent of network size



Configuration model - mathematical properties
Neighbors's degrees

What is the degree distribution of neighbors of a randomly chosen vertex?

i j

• Let pk be the fraction of vertices in the network with degree k

• There are npk vertices of degree k in the network. 

• The end point of every edge in the network has the same probability  of 

connecting to a vertex of degree k

• Degree distribution of a randomly picked neighbor (of any node)

k
2m

pneighb,k =
k

2m
npk =

kpk

⟨k⟩



Configuration model - mathematical properties

pneighb,k =
k

2m
npk =

kpk

⟨k⟩

• Degree distribution of a randomly picked neighbor (of any node)

• Average degree of a randomly picked neighbor

⟨kneighb⟩ = ∑
k

kpneighb,k =
⟨k2⟩
⟨k⟩

• Larger than ⟨k⟩ as soon as degrees are heterogeneous ➡ Friendship paradox

1 node with degree 10, 10 nodes with degree 1:

⟨k⟩ =
10 + 1 * 10

11
= 1.81..

⟨k2⟩ =
102 + 12 * 10

11
= 10

⟨k2⟩
⟨k⟩

=
10

1.82
= 5.5



ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient
Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

Configuration 
Model

Custom, can be 
broad short small



Watts-Strogatz
model of

small-world 
networks



Small-world networks
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M

Received 4 February; accepted 18 March 1998.
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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Clustering vs. Interconnectedness
Random networks

d =
logN

loghki
• Logarithmically short distance among nodes

• Vanishing clustering coefficient for large size Ci ⌘
1
N
hki = p

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Real-world networks

✔

Albert, R. et.al. Rev. Mod. Phy. (2002)
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et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.
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Clustering vs. Interconnectedness
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Clustering vs. Interconnectedness

Real networks have high clustering and short distances



Strength of weak ties

• Mark granovetter, (sociologist)
• The Strength of weak ties (1973)

• Very influential paper

• Weak ties (distant friendship, relatives) are very 
important for information flow (marketing, politics, 
job seeking, etc.)
• Strong ties connect similar people, and lead to high redundancy
• Weak ties, connect distant people, allow to leave the “community”



The Watts-Strogatz model
A model to capture large clustering coefficient and short 
distances observed in real networks
• It interpolates between an ordered finite lattice and a random graph
• Fixed parameters:

• n - system size
• K - initial coordination number

• Variable parameters:
• p - rewiring probability

• Algorithm:
1.Start with a ring lattice with n nodes in which every node is connected to its 

first K neighbours (K/2 on either side).
2.Randomly rewire each edge of the lattice with probability p such that self-

connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered (p=0) to
a completely random (p=1) structure

D.J. Watts and S. Strogatz, Nature (1998)

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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The Watts-Strogatz model
• n and K are chosen n≫K≫ln(n)≫1 thus the random graph remains connected (K≫ln(n))

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Small-world 
regime

Low clustering,
Short distances

High clustering,
 Long distances
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• Definition 1:
1.Start with a ring lattice with N nodes in 

which every node is connected to its 
first K neighbours (K/2 on either side).

2.Randomly rewire each edge of the 
lattice with probability p such that self-
connections and duplicate edges are 
excluded.

• Definition 2:
1.Start with a ring lattice with N nodes in 

which every node is connected to its 
first K neighbours (K/2 on either side).

2.For every edge in the network we add 
an additional edge with independent 
probability p, connected two nodes 
selected uniformly at random
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The Watts-Strogatz model
(Global) Clustering coefficient (Definition 2)

• p=0 - regular ring with constant clustering:
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C =
3(K � 2)

4(K � 1)- 0 ≤ C ≤ 3/4
- Independent of n

• p>0 - we can count triangles and tuples

Global clustering coefficient

C =
1
4NK( 12K � 1)⇥ 3

1
2NK(K � 1) +NK2p+ 1

2NK2p2
=

3(K � 2)

4(K � 1) + 8Kp+ 4Kp2

• Independent of n

• if p→0 it recovers the ring value

• if p→1 it well approximates 1



The Watts-Strogatz model
Average path length (Definition 2)
• No closed form solution
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• From numerical simulations:

• average path length

C
/C

m
ax

 a
nd

 l/
l m

ax

p shortcut probability

l =
ln(nKp)

K2p



The Watts-Strogatz model
Degree distribution (Definition 2)

• p=0 - each node has the same degree K (Dirac delta function)
• p>0 - each node has degree K + shortcut links

• Number of shortcut edges:
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s =
1

2
NK ⇥ p

• Each node will have on average Kp number of shortcuts

• The degree distribution is

P (k) = e�Kp (Kp)(k�K)

(k �K)!
if k≥K  and  P(k)=0  if  k<K

• p>0 - approximates a Poisson distribution just like a random network



ER Random Network - catch up

Network Degree distribution Path length Clustering 
coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

Configuration 
Model

Custom, can be 
broad short small

Watts & Strogatz 
(in SW regime) Poissonian short large


