RANDOM GRAPHS MODELS



WHY USING RANDOM
GRAPH MODELS

» Several good reasons:

» Study some properties in a “controlled environment”
- How does property X behaves when increasing property Y ?
» Compare an observed network with a randomized version
- |s observed property X “exceptional”, or any similar network with same property Y and Z ?
» Explain a given phenomenon
- Such simple mechanism can reproduce property X and Y
» Generate synthetic datasets
- Testing an algorithm on |00 variations of the same network



WHY USING RANDOM
GRAPH MODELS

* Deterministic models

» Repeated regular patterns (lattices)

» Generative models
» The probability of an edge between 2 nodes depend on their properties

- Erdos Renyi, Configuration model, etc.

* Mechanistic models

» The network is created following a mechanism, a set of rules

- Preferential attachment, Forest fire, etc.



Fundamental network
models




Central quantities in network analysis

e Degree distribution: Pk)
o (Clustering coefficient: C

e Average path length: <d>
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Real world
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Regular lattices

- Graphs where each node has the same degree &

- Translational symmetry in n directions

1D 2D lattices 3D lattices
Z1
XXX X XXX W
Y Y Y Y Y T :ié
XXXXXXX [ 1
k=4 k=4 k=06 k=4 k=06

m

xmmum\\\\
LAY

] :
L]

Lo




Regular lattices

Clustering coefficient

C=0 C=3/6 C=1
- Clustering coefficient depends on the structure (can be large or not)
- It is constant for each node

Path length
- Average path length grows quickly with n
when k << n
o * In a large graph with realistic average

degrees, will be large
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PROBABILISTIC MODEL



The Erdos-Rényi
Random Graph
model
(ER)




Random Graphs

Pal Erd6s Alfréd Rényi
(1913-1996) (1921-1970)

“If we do not know anything else than the number n of nodes and the number L of

links, the simplest thing to do is to put the links at random (no correlations)”

P. Erdés and A. Rényi. On random graphs, |. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
P. Erdés and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61, 1960.



ER Random Graphs

Erdos-Rényi model: simple way to generate random graphs

» The G(n,L) definition * The G(n,p) definition
1. Take n disconnected nodes 1. Take n disconnected nodes
2. Add L edges uniformly at random 2. Add an edge between any of the
Alternativelv: nodes independently with
Y: orobability p
- pick uniformly randomly a graph . _
from the set of all graphs with n Alternatively: . ,
nodes and L links - pick with probability »" (1 — p)b)_L

a network from the set of all
networks with size n
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Random Graphs

In the G(n,p) variant, the number of edges
may vary

)




ER Random Graphs

p=1/6
N=12




Random Graphs

P(L): probabllity to have exactly L links in a network of n nodes and probabllity p

Binomial distribution:

Discrete probability distribution of the number of successes(X) in a
sequence of N independent experiments, with success probability p

N
P(x) = (x > pi(1 = p)N=

Reminder: Binomial coefficient:

!
Number of ways, disregarding order; that k (n) — -
objects can be chosen from among h objects k kl(n —k)!



Random Graphs

Binomial distribution N: Number of experiments
Pairs of nodes
N _ n nn—1)
P()C):( )px(l_p)Nx N = _
X 2 2

P(L): probabllity to have exactly L links in a network of n
nodes (with p the probability to have an edge)

(5)

L1 — p)(5)-L
. p-(1—-p)

P(L) =



Random Graphs

Properties of Binomial distribution

A N X N—x
Definition P(x) = . p(l—-p)

Mean <x>=pN

variance o> = Np(1 — p)



Random Graphs

Expected number of links <[>
nn—1)

2

<L>=pN=p

Expected average degree <k>
<k>=2LIn=pn-1)

Variance

— 1
6> = Np(1 —p) = n(n2 )p(l —P)




Degree distribution - Random Graphs

For each node,
independent probabilities to take each neighbor
=> Binomial distribution

P(K)

<k> hﬁ

K
P(k): probability to have exactly k links among n (total # of
nodes), with p the (overall) probability to have an edge

P(k) = (” ) 1) Pl = p)rh+

Characteristics: o _

<k>

I-p 1 1/2 |
p (N-1) (N-1)'"

<k>=pn-1)

As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.

of = p(n—1)(1 = p)



Degree distribution - Random Graphs

For large m and small k (p,L), we can approximate the degree distribution
using a poisson distribution of parameter (mean) A = < k >

AKe=
Poisson distribution P(K) = -
<k >k —<k>
Distribution of degrees P(k) = k'e

standard deviation o= \/ < k>



Degree distribution - Random Graphs
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Degree distribution - Random Graphs

Conclusion: degree distribution is not
-Heterogeneous
-Long tall
-Scale free




Clustering - Random Graphs

Local clustering of a node

Reminder, clustering coefficient

__2n where n; is the number of links between the neighbours of node i

k(1)
: . ki (kl — 1)
e Edges are independent and have the same probabillity p n=p 5
. — <k-> # possible links
e Earlier we showed P ; btw neighbors
n_
= 2<k> ki(ki-1) / <k>

l

-1 2 ki(kel) n-1 T

e For fixed average degree C is decreasing as N goes large

= | ow clustering coefficient
= |t is vanishing with the system size



Clustering - ER Random Networks

1
- Small clustering coefficient C = N <k>=p
Real-world networks
Network Size (k) / / vand C Crand Reference
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8%10~% Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x10°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3x10~* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 9.5 8.2 059 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solée, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Distance - Random Graphs

low clustering coefficient=>

Random graphs tend to have a tree-like topology with almost constant node degrees.

e nr. of first neighbors: Nu), =<k>
* nr. of second neighbors: N(u), = < k >?

enr. of neighbours at distance d: N(x), = < k >¢

Inturtion: At which distance are all nodes reached!?

log n
log < k >

n=<k>'=log_ . n=d=d=

Diameter, avg. distance in O(log n)



Distance - ER Random Networks

logn
 Logarithmically short distance among nodes d= log (k)
Real-world networks
Network Size (k) / 4 vand C C,and Reference
WWVW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level = 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8X10~* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x107°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3x10~*% Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 9.5 8.2 0.59 5.4x10°° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solée, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Connected components of Random Graphs

(k)
DISCONNECTED NODES NETWORK. 0.5
1 7 T
0.8 |
0.6 |- = =
0.75
0.4 | -
DG )= |
] . 1.0
<k>
1.25

e Network structure goes through a transition

e (Question: How and when does this transition
happen 1.5




Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-
blob/



https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/

ER Random Network - catch up
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Structural (percolation) phase transition at <k>==1 (or equivalently when p=1/N)



ER Random Network - catch up

Basic characteristics

. . . n—1 1k B <k>l~c B
» Degree distribution  pr. = (", )P (1 —p)"! - = e ™
N — o0
Binomial distribution Poisson distribution

Degree distribution without tail

<k>
+ Clustering C=—"—=7p

Vanishing clustering coefficient for large size

» Path length O(log n)

Distance with logarithmic relation to nodes
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ER Random Network - catch up

Degree
distribution

Clustering

Network coefficient

Path length

Real world

networks broad

Regular lattices constant

ER random
networks

Poissonian

It is not capturing the properties of any real system

BUT
it serves as a reference system for any other network model



Configuration
model

More details at [http://tuvalu.santafe.edu/~aaronc/courses/>5352/fall2013/csci5352 2013 LI |.pdf]



http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf

Random graphs with specified degrees

Problem

e The ER Random Graph model has a Poisson degree distribution
 Most real-world networks have heavy-tailed degree distributions

e We need to generate networks which have pre-determined degrees or degree
distribution, but they are maximally random otherwise

 The observed properties (clustering coefficient, etc.) might be due only to the
difference in degree distribution



Random graphs with specified degrees

Configuration model How much of some observed pattern is driven by the degrees alone?
Based on an observed network

e Defined as G(n, k) where & = { k) is a degree sequence on n nodes, with k;
being the degree of node i

Ad hoc degree distribution

* The degree sequence % = {k;} can be sampled from a probability distribution

e Delta/Dirac function = Random regular graph
e Poisson => Similar to ER for proper parameters
e Scale-free = Power-law random graph

» Only global condition to satisfy is: ) k; mod 2 =0

(even dégree sum) i.e. each edge has to have ending nodes



Random graphs with specified degrees

Configuration model How much of some observed pattern is driven by the degrees alone?

Exact or approximate degree distribution

* The model can preserve the expected degree sequence, or the exact degree sequence
e Chung-lu (appoximate)

 Molloy-reed (Exact)



Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree
distribution

e Probabilistic model which produce a network with degrees approximating (on
average) the original degree

e ltis a “coin-flipping” process as ER model but the probability that two nodes i
and j are connected depends on the degree k; and k; of the ending nodes

* From the point of node i with degree k;, the probability that one of its edges will
connect to j with k;:

ki/2m

e This can happen via k; links, thus the probability that they are connected:

kk. assuming that: [max(k,)]*> < 2m
i
Pij = o (/\ inconsistent probability, it is rather expected

number of edges)
e Chung-Lu model takes each pairs of nodes and connects them with this probability

1 with probability p;;
0 otherwise

Visj Ay = A5 = {



Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree
distribution o
e e el 1 with probablhty Dij where D= Y
Vis; e { 0 otherwise ' 2m

e Each pairs of nodes are considered once, thus it produces a simple graph
(without self-loops and multi edges)

 Degree of a node equals only in “expectation” to the originally assigned degree

e |t is easy to generalise for directed graphs

* Inconsistency for large degrees in small networks ~ [max(k,)]* < 2m

Complexity:

e (O(n?). We need n(n-1) flips to test all node pairs

EXPENSIVE!



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation
Original idea:

1. Given a degree sequence k = 50 50 6 0l ]
2. Assign each node i€V with k; number of stubs

3. Select random pairs of unmatched stubs and connect them

4. Repeat 3 while there are unmatched stubs

AXKLF s > 90y

e This process will produce a configuration model with exact degree sequence

e Possible to select multiple times stubs of the same pair of nodes =9  Multilinks

e Possible to select the stubs of the same node to connect =5 Self-links

The obtained graph is not simple...but the density of multi and self-links =» 0 as N =» o



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation

Non-unique problem
e Matching of stubs appears with equal probability
e BUT networks with the same {k;} do not appear with equal probability

* More than one matching can correspond to the same network (topologically)

ay\b b a af\b b)<a
C e C e d e d e

Different matchings i = e g
yield same graphs o, . Y .

C f C f d f d f

CIRRNE e CRENC cC e

ay=b b a ay=b
Some graphs produced by less A A A
C f C e d f

combinations =>less likely to appear &0 60 00



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation

An effective algorithm:

1. Take an array 7" with length 2m and fill it with exactly &; indices of each
node i€V

2. Make a random permutation of the array 7
3. Read the content of the array in an order and in pairs

4. Pairs of consecutive node indices will assign links in the configuration

network
11111222233334445567 14122325123734351146
Complexity: '
e O(m): Random permutation of an array CHEAP!

e O(m log m): assigning uniformly random variables to indices and quick-sort them



Configuration model - mathematical properties

Expected clustering coefficient

It is the average probability that two neighbours of a vertex are neighbours

e Start at some vertex v (with degree k > 2)
e Choose a random pair of its neighbours i and j

* The probability that i and j are themselves connected is kiki/2m

independent of network size

1{[{(k)2 — (k)12 |

Clustering coefficient

e |tis a vanishing quantity O(1/n) as long as the second moment is finite (not power law)

For detalls, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall201 3/csci5352_2013_L12.pdf



Configuration model - mathematical properties

Neighbors's degrees
[ J é

What is the degree distribution of neighbors of a randomly chosen vertex?

e Let p, be the fraction of vertices in the network with degree &

e There are np, vertices of degree k in the network.

k

The end point of every edge in the network has the same probability 2— of
m

connecting to a vertex of degree k
 Degree distribution of a randomly picked neighbor (of any node)

k kp;
: = —np, = —
pnezghb,k P Pk <k>



Configuration model - mathematical properties

e Degree distribution of a randomly picked neighbor (of any node)
k kpy
Preighbk = 2_npk (k)

* Average degree of a randomly picked neighbor

(k%)
(k)

e Larger than <k) as soon as degrees are heterogeneous = Friendship paradox

< elghb> = Z kpnezghbk

| node with degree |0, |10 nodes with degree |

O 1)
= & — o <k2> 10
(K2 — I e i (k) R 82

11



ER Random Network - catch up

Network Degree Path length Clustering

distribution coefficient

Real world broad
networks

Regular lattices constant

ER random
networks

Configuration

Poissonian

small

Model



Watts-Strogatz

small-world
hetworks



mall-world networ

On of the first paper of
Network Science...

D.J. Watts and S. Strogatz,

"Collective dynamics of 'small-world'
networks”, Nature 393, 440-442, 1998

Observation in real world networks:

KS

letters to nature

typically slower than ~1kms™) might differ significantly from
what is assumed by current modelling efforts”. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation®® through disruption and
deflection, or for resource exploitation®. Such predictions would
require detailed reconnaissance concerning the composition and

Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,

Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model
biological oscillators'™, Josephson junction arrays™, excitable
media’, neural networks®', spatial games', genetic control
networks'? and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small

internal structure of the targeted object. [0 characteristic path lengths, like random graphs. We call them
‘small-world> networks. bhv analagv with the small-world

Table 1 Empirical examples of small-world networks

Lac‘[ual Lrandom Cactual Crandom N
Film actors 3.65 2.99 0.79 0.00027 22500
Power grid 18.7 12.4 0.080 0.005 4941
C. elegans 2.65 2.25 0.28 0.05 282

Contradiction: Real-world networks have

Short
distances

High clustering

coefficient AND




Clustering vs. Interconnectedness

Random networks

: : . logN
- Logarithmically short distance among nodes d= e \/
log(k)
Tl : Y : 1
 Vanishing clustering coefficient for large size C; = —=(k)=p
N
Real-world networks
Network Size (k) / o C @ Reference
WWW, site level, undir. ESSRIY Sl Sl 3200 0.1078  0.00023 Adamic, 1999
Internet, domain level 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3 0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 4.79 0.43 1.8X10™* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x107°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 7S 4.0 a2 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 UL 0.496 3x10"* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 S 9.5 8.2 0.59 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209 293 L) 6 S0l W7o 2Bkl Barabasi et al., 2001
E. coli, substrate graph 267 {55 29 3.04 GL57 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Solé, 2000
Silwood Park food web 154 4.75 3.40 S 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 223N 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 NG 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 e 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Clustering vs. Interconnectedness

Random networks

e | ogarithmically short distance among nodes d= ook \/
log(k)
Lae : LE . 1
- Vanishing clustering coefficient for large size (; = N<k> =P \\(

Real-world networks

Network Size (k) / 7 v C Crand Reference
WWW, site level, undir. 53R Bl Sl 3208 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 4.79 0.43 1.8X10°* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x107°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 73 4.0 22\ 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 200 9.7 7.34 0.496 3X10"* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 S 9.5 8.2 0.59 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209 293 I EH) 6 S0l GRS G Barabasi et al., 2001
E. coli, substrate graph 282 7R3 29 3.04 0532 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Solé, 2000
Silwood Park food web 154 4.75 3.40 B0 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 22331 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2061 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 25 0.28 0.05 Watts and Strogatz, 1998

Albert R. et.al. Rev. Mod. Phy. (2002)



Clustering vs. Interconnectedness

High clustering

e | ocally structured

e NoO connections
between nodes
apart

Random

e Globally
Interconnected

e | ow clustering




Clustering vs. Interconnectedness

Real networks have high clustering and short distances



Strength of weak ties

- Mark granovetter, (sociologist)
ERERSITErnotn of weak ties (19/3)

Very influential paper

- Weak ties (distant friendship, relatives) are very
important for information flow (marketing, politics,

job seeking, etc.)

Strong ties connect similar people, and lead to high redundancy
VWeak ties, connect distant people, allow to leave the “community”




The Watts-Strogatz model

A model to capture large clustering coefficient and short
distances observed in real networks

- It interpolates between an ordered finite lattice and a random graph
° F|Xed parameters Regular Small-world
* n - system size

K - initial coordination number

 Variable parameters:

* p - rewiring probability p=0 > p=1

Increasing randomness

D.J. Watts and S. Strogatz, Nature (1998)

» Algorithm:

1.Start with a ring lattice with » nodes in which every node is connected to its
first K neighbours (K/2 on either side).

2.Randomly rewire each edge of the lattice with probability p such that self-
connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered (p=0) to

a completely random (p=1) structure



The Watts-Strogatz model

- n and K are chosen n»K>In(n)» 1 thus the random graph remains connected (K>In(n))

Regular Small-world Random

Increasing randomness

High clustering, == 75 —2-r———m——
Long distances [’ - :
0.8 :_ ‘ 3 C(p)/ C(0) © _:
06 i -
0.4:- A U _
ool L)/ LO) . !
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The Watts-Strogatz model

Regular Small-world Random « Definition 1:

1.Start with a ring lattice with N nodes in
which every node is connected to its
first K neighbours (K/2 on either side).

2.Randomly rewire each edge of the
lattice with probability p such that self-
connections and duplicate edges are
p=0 > p=1 excluded.

Increasing randomness

Definition 2:

Regular Small-world

1.Start with a ring lattice with & nodes in
which every node is connected to its
first K neighbours (K/2 on either side).

2.For every edge in the network we add
an additional edge with independent

probability p, connected two nodes
selected uniformly at random

Increasing randomness



The Watts-Strogatz model

(Global) Clustering coefficient (Definition 2)

Regular Small-world Random

3(K —2 P

- p=0 - regular ring with constant clustering: C' = 4(K 1) /7 \XK

-0<C=<3/A4 = e ..

a Independent O.I: n Increasing randomness
- p>0 - we can count triangles and tuples
Global clustering coefficient

1 NK 1 e | 3 « Independent of n
( = 7 4 (5 i 2) & | T S(K i 2) > - if p—0 it recovers the ring value
§NK(K i 1) + NK P §NK 2 4(K £ 1) ™ 8Kp e 4Kp - if p—1 it well approximates 1




The Watts-Strogatz model

Average path length (Definition 2)

 No closed form solution

* From numerical simulations:

+ average path length

. In(nKp)

C/Cmax and lflmax

Regular Small-world Random

Increasing randomness

p shortcut probability



The Watts-Strogatz model

Degree distribution (Definition 2)

Regular Small-world Random

Q
» p=0 - each node has the same degree K (Dirac delta .9;1)
+ p>0 - each node has degree K + shortcut links |
1
- Number of shortcut edges: s=;NK Xp p=0 > p=1

2 Increasing randomness

- Each node will have on average Kp number of shortcuts

- The degree distribution is

—Kp (Kp)(k_K)
© =0

P(k) = e if k=K and P(k)=0 if k<K

« p>0 - approximates a Poisson distribution just like a random network



ER Random Network - catch up

Clustering

Network Degree distribution Path length . .
coefficient

Real world

networks broad short large

Regular lattices constant long

ER random

Poissonian
networks

Configuration
Model

Watts & Strogatz

(in SW regime) Poissonian




