NETWORK VISUALISATION
(SHORT DIGRESSION)



NETWORKVISUALIZATION

* How to interpret a network drawing?
* What does the position of nodes means!?

» Can we draw conclusion from the drawing alone?



NETWORKVISUALIZATION

Network Visualization  » Tow
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NETWORKVISUALIZATION

» Random layout

» Assign random positions to nodes, draw edges
- Useless for more than 5-6 nodes

» Geographical layout

» The position of nodes is fixed apriori, often based on geographical location
» Variant: position nodes on a circle based on a single, | D property (age...)
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NETWORKVISUALIZATION

* Most commonly used: Automatic layout

» Non deterministic

» Iries to arrange nodes so that the network is easy to read and understand
- Minimize edge crossings!
- Most commonly, tries to put connected nodes close and unconnected nodes far




NETWORKVISUALIZATION

http://kwonoh.net/dsl/
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http://kwonoh.net/dgl/

NETWORKVISUALIZATION

* Most common algorithms are variant of the force directed

layout

» Kamada-Kawal
» Fruchterman-Reingold

s

* Force directed layout: a simple physical model

» Repulsive forces between nodes

» Edges are attracting forces

» There are minimal (to avoid node overlap) and maximal (to avoid connected
component drifting out of the figure)



NETWORKVISUALIZATION

» Can we Interpret a force layout!
o s
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NETWORKVISUALIZATION

» Can we Interpret a force layout!
s
» And no.
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NETWORKVISUALIZATION

» Can we Interpret a force layout!

» Yes...
» And no.
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Scale-free networks

A network is called Scale-free when its degree distribution
follows (to some extent) a Power-law distribution

Power-law distribution: (PDF)

1
P(k) ~ Ck ™% = CE

a (sometimes y) called the exponent
of the distribution

Positive values

Here, defined as continuous (approximation)
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Scale-free distribution

Proper definition

A 1
Initial definition:  P(k) ~ Ck™* = C—

0 have a proper degree distribution, we need T —

Pk =1 = [cw = ch-a.

10_1 3

-3 | .
10 t O Females A§

We also know that in most cases, there Is a lower bound O fema |
from which the law holds. (k. ;) N I I

Total number of partners, ki,

Cumulative distribution, P(ktot)
=

From this, we define the normalisation constant:

1
[ k-adk

min

C

= (a — k%]

min
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Scale-free distribution

Proper definition

1
|, k-odk

min

— (a — k%!

min

P(k) ~ Ck™ ¢

P(k) = (0 — Dk* k=

min

a—1 kK \ "
P(k) =
() kmin (kmin>
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Scale-free networks

Power law plotted with a linear scale, for k<=10
(100 000 samples)

Distribution
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Scale-free networks

Power law plotted with a linear scale, for k<100000
(100 000 samples)

Distribution
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Scale-free networks

Power law plotted with a log-log scale, for k<100000
(100 000 samples)

- power-law y =2

——  power-law y =3

107 1

11111




Scale-free networks

Comparing a poisson distribution and a power law

g4
k!
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Scale-free networks

Comparing a poisson distribution and a power law
/lke—/l
k!

Distribution

107 -
- power-law y=2.5
poissen A =3
——  poisson A =2
- poisson A=1
- poisson A =0.5
107 4 - poisson A =0.1
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Scale-free networks

Comparing a poisson distribution and a power law

g4
k!

10° - Distribution
- power-law y=2.5
poissen A =3

——  poisson A =2
- poisson A=1
- poisson A =0.5
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Scale-free networks

Comparing an exponential distribution and a power law

le ™ k>0,
0 k <O.
Distribution
107 5 —— power-lawy=2.5
exponential A=3
- exponential A =2
- exponential A=1
- exponential A =05
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Scale-free networks - first observations

R. Albert, H. Jeong, A-L Barabasi, Nature (1999)

Diameter of the world wide web
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Albert-Laszlé Barabasi* and Réka Albert
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Scale-free networks - other examples

The Iinternet

- Nodes: routers
- Links: Physical wires

10000 e e
: "971108.0ut" ©
: exp(7.68585) * x ** ( -2.15632) — 1
1000 -5
100 :
10 :
1 " " " " PR | " " " " P

1 10 100

(a) Int-11-97

Faloutsos, Faloutsos and Faloutsos (1999)
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Scale-free networks - other examples

a E _“JDEH .
- P E : Guimera et.al. (2004)
Airline route map network ¢ | ;
g 107F 3
- Nodes: airports 2 | 5
- Links: airplane connections Z10%
; i :
£107F B
z i ] Note: the cumulative distribution of a
| TN SR S power law is also a line on a log-log plot
10" 10° 10’

Scaled degree, k/z
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Scale-free networks - other examples

Scientific collaborations

- Nodes: scientists (here geo-localised)

Links: common papers

Map of scientific collaborations from 2005 to 2009

Computed by Olivier H. Beauchesne @ Science-Metrix, Inc.

Data from Scopus, using books, trade journals and peer-reviewed journals

number of authors
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Scale-free networks - other examples

Lilieros et.al. (2001)

Sexual-interaction networks

- Nodes: individuals
- Links: sexual incursion

o
E
»
»
>
»

10_1 3

10_2 3

Bearman et.al. (2004) 108 - 1

Cumulative distribution, P(ktgt)

The Structure of Romantic and Sexual Relations at "JefTerson High School" ©) Females A
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Fach circle represents a student and lines connecting students represent romantic relations occuring within the 6 months
preceding the interview, Numbers under the figure count the number of times that pattern was observed (i.e. we found 63
pairs unconnected to anyone ¢lse)



Scale-free networks - other examples

Online social networks

- Nodes: individuals
- Links: online interactions

Social network of Steam
http://85.25.226.110/mapper
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Scale-free distribution

What does it mean?

Bell Curve

=

Number of nodes with % links

Most nodes have
the same number of links

No highly

connected nodes

Number of nodes with & links

Power Law Distribution

A
:
)
X Very many nodes
» with only a few links
"
.

A few hubs with
large number of links

AL. Barabasi, Linked (2002)

Degree fluctuations have no characteristic scale (scale invariant)



Scale-free networks

|dea of scale free

AL Barabasi, Network Science Book (2013)
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Scale-free distribution

Interesting properties of power law distributions

1
|, k-odk

min

— (a — k%!

min

P(k) ~ Ck™ ¢

P(k) = (0 — Dk* k=

min

P(k) = a—1 kK \ "
- kmin kmin K = kmin
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Scale-free distribution

Moments

Distribution: P(k) = (a — Dk k™

(central) Moments: (k™) = [ k" p(k)dk
Knin

Reminder:

(k'Y Average
(k*)  Variance

(k*)y  Skewness
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Scale-free distribution

Moments

Distribution: P(k) = (a — Dk k™

(central) Moments: (k™) = J k"p(k)dk

kmin

(k™) = (a — DEG

min\

Defined fora > m + 1, (k™) = k™
Otherwise diverge (+inf) min

1
Ix”dx =—x""+e,n#-1
n+1

http://tuvalu.santafe.edu/~aaronc/courses/7000/csci/7000-00 I _201 | _L2.pdf
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Scale-free distribution

Moments

S a—1 kK \
Distribution: Pl ==—\—

a—1 Defined fora > m + 1,
a—1—m Otherwise diverge (+inf)

(central) Moments: (k") = k&“m(

: — 1
=>Mean: (=2 i (But diverges for a < 2)
a —
. | —1
=> Variance: (k) = * k2 (But diverges for a < 3)

a—73 min
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Scale-free distribution

Moments

What does divergence means in practice ¢

VWe can always compute the mean and variance, given samples of a
distribution (e.g., an observe degree distribution)

=>The value computed depends on the size of the sample, it is not a
characteristic of the distribution.

Moments are dominated by elements in the long tall. Some events are
rare, but they have so large values, that It observed, they are strong
enough to modify substantially the corresponding moment. And they
appear frequently enough so that the mean will continue to shift when
increasing the sample size
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Scale-free distribution

Moments

0 <2 2<a<3 a>3
Mean diverse Mean well defined, Mean and variance
5 Variance diverge defined
10° e ——— 10° — \ \ 10° e \
108l © Sample mean | °°" ,_{ 7 | 10%1- - -Population mean a=2_05§, 1081~ - -Population variance| ;-3 01
10’} ° Sample variance 101 , 10’1 ,
100 0, o 107 ° oeo 107)
104 >o 104 0 % °°°o o° 104
106 o | 10| © e ° 10 |
102» oooO °© o0 o o° °°oo°°°°° 102 o % of °o o %00 102
10 »ooo ° °°o ooo o %o 000 10 fo ° o ° o O
' oo 0000 T 20500 = 5 = = 555, 35005600860956005 | 6® 00000,0°6000%00600900
B o B X IR 00 ssodooc o000
10 1 2 3 4 5 6 10 1 2 3 4 5 6 10 1 2 3 4 5 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Size of sample, n Size of sample, n Size of sample, n

=> Even when well defined, moments converge very slowly
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Scale-free networks

Computing the exponent of an observed network

Method 1:{ind the slope of the line of the log-log plot

Problem: most of data is on first value, so we overfit based on a
Few values in the long tall

Analysis of fitting methods for vibrating sandpiles dataset

1o°5\ : ——
wh e
More advanced method: )
Maximum Likelihood Estimation (MLE) B e
§10'3
10
™

[Frtting to the Power-Law Distribution, Goldstein et al.]
https://arxiv.org/vc/cond-mat/papers/0402/0402322v | .pdf
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Scale-free networks

Exponent
Network Size (k) K Your Yin L real ‘rand ¢ pow Reference
WWW 325729 4.51 900 2.45 2.1 11.2 832 4.77 Albert, Jeong, and Barabasi 1999
WWW 4 %107 7 2.38 2.1 Kumar et al., 1999
WWW 2% 108 7.5 4000 2.72 2.1 16 885 7.61 Broder et al., 2000
WWW, site 260 000 1.94 Huberman and Adamic, 2000
Internet, domain® 3015-4389 3.42-3.76 30-40 2.1-22 2.1-22 4 6.3 52 Faloutsos, 1999
Internet, router™ 3888 2.57 30 2.48 248 1215 875 7.67 Faloutsos, 1999
Internet, router™ 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000
Movie actors® 212250 28.78 900 2.3 2.3 454 3.65 4.01 Barabasi and Albert, 1999
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 212 1.95 Newman, 2001b
Co-authors, neuro.* 209293 11.54 400 2.1 2.1 6 5.01 3.86 Barabasi et al., 2001
Co-authors, math.™ 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabasi et al., 2001
Sexual contacts™ 2810 3.4 34 Liljeros et al., 2001
Metabolic, E. coli 778 7.4 110 2.2 2.2 32 332 289 Jeong et al., 2000
Protein, S. cerev.™ 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001
Ythan estuary™ 134 8.7 35 1.05 1.05 243 226 1.71 Montoya and Sol€, 2000
Silwood Park* 154 4.75 27 1.13 1.13 34 323 2 Montoya and Sol€, 2000
Citation 783 339 8.57 3 Redner, 1998
Phone call 53x10° 3.16 2.1 2.1 Atello et al., 2000
Words, co-occurrence® 460902 70.13 2.7 2.7 Ferrer i Cancho and Solée, 2001
Words, synonyms™ 22311 13.48 2.8 2.8 Yook et al., 2001b

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are usually between 2 and 3
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Scale-free networks

Exponent
Network Size (k) K Your Yin _ _
- Average values are not reliable since
WWW 325729 451 500 the convergence is very slow
WWW 4 %10 7 2.38 2.1
www 2x10° 7.5 4000 272 21 - Furthermore, average values are
WWW, site 260000 L meaningless since the fluctuations are
Internet, domain* 3015-4389 3.42-3.76 30-40 2.1-2.2 2.1-2.2 . pe . . .
Internet, router* 3888 257 30 248 248 infinitely large (diverging variance)
Internet, router™ 150 000 2.66 60 2.4 2.4
Movie actors® 212250 28.78 900 2.3 2.3
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1
Co-authors, math.™ 70975 3.9 120 2.5 2.5
Sexual contacts™ 2810 3.4 34
Metabolic, E. coli 778 7.4 110 2.2 2.2
Protein, S. cerev.™ 1870 2.39 2.4 2.4
Ythan estuary™ 134 8.7 35 1.05 1.05
Silwood Park*™ 154 4.75 27 1.13 1.13
Citation 783 339 8.57 3
Phone call 53%x10° 3.16 2.1 2.1
Words, co-occurrence™ 460902 70.13 2.7 2.7
Words, synonyms™ 22311 13.48 2.8 2.8

Albert, R. et.al. Rev. Mod. Phy. (2002)
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Scale-free networks

Why do most of the real networks have
degree exponent between 2 and 37

- If the exponent is smaller than 2, the distribution is so skewed that we expect to
find nodes with a degree larger than the size of the network => not possible in finite
networks
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Scale-free networks

Why do most of the real networks have
degree exponent between 2 and 37

 To detect a scale-free network its degree distribution needs to span through several
(at least 2-3) orders of magnitude = Kya~103

- If the exponent is large (>3), large degrees become so rare that the size of the

sample (i.e., size of observed network) must be enormous to indeed observe such
an edge

- Example: let’s choose y=5, Knin=1 and Ka~103

1
K. =K_ N
i We need to observe 102 nodes to observe a

N (K )” o node of degree 1000 for exponent=5

=> Forget about (single planet) social networks...
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Scale-free networks - distances

const. y = ) Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
of it, thus the average path length will be independent of the system size.
The average path length increases slower than logarithmically. In a random network all
Ultra InlnN nodes have comparable degree, thus most paths will have comparable length. In a
Small 2< Y < 3 scale-free network the vast majority of the path go through the few high degree hubs,
Weorld 111()/ -1) reducing the distances between nodes.
< l >~ S
InN Some key models produce y=3, so the result is of particular importance for them. This
—_— Y = 3 was first derived by Bollobas and collaborators for the network diameter in the context of
InIn N a dynamical model, but it holds for the average path length as well.
Small The second moment of the distribution is finite, thus in many ways the network behaves
InN >3 -
World L Y as a random network. Hence the average path length follows the result that we derived

for the random network model earlier.

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas,
1985; Newman, 2001

4 Human Internet
PF’I (20_11]

Society Www
30 :

_~TaN
i (v > 3 and random)

InN ( B 3)
InlnN !

10 |
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Scale-free networks - summary

ANOMALOUS SCALE-FREE RANDOM
REGIME REGIME REGIME
No large network Indistinguishable
can exist here from a random network
Q
QS N S & Q§\\0
RN S0 & S L
SR S NN & S S\
: : s |
1 2 3 Y
(k)  DIVERGES (k) FNTE (k) FINTE
<k2> DIVERGES =2 <k2> DIVERGES 73 2
ky— . (k> i In N <k > FINITE
max InlnN
CRITICAL
POINT InN
(d)~InInN (d)~
ln<k>
kmax GROWS FASTER THAN N ULTRA-SMALL SMALL
WORLD WORLD
kmax~N%—1

Slide from CCNR Complex Networks Course
A. L. Barabasi 2014
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Scale-free networks

- Are real networks really Scale Free ?

 In most real networks, the scale free stands only for a range of degrees, i.e.,
between a minimum degree and maximum degree different than those observed
(cut-offs)

- Some other distributions, in particular log-normal distributions, might “look like”
power-law

Al
[

Albert=[3szI3 Barab4si Aar

Emergence of scaling in random networks (1999)

Auset

Scale-free networks are rare (2018)
Love is All You Need - Clauset's fruitless search for scale-free networks (2018)

Rare and everywhere: Perspectives on scale-free networks (2019)




J

Scale-free networks

Comparing a log-normal distribution and a power law
1 _(lnk—ﬂ)z] k&
exp|————

ko 2x 202

10° 1

Distribution
- power-lawy=2.5
—— lognormal u=0.01,0=1
— lognormal u=0.01,0=3
— lognormal u=0.01,0=6
10-? - — lognormal u=0.1,0=1
— lognormal u=0.1,0=3
—— lognormal u=0.1,0=6
- lognormal u=1,0=1
lognormal u=1,0=3
10-2 — lognormalu=1,0=6
4
10-3 -
10-‘ -
10-5 -
10° 10* 10? 10° 10¢ 10°

Log-normal distribution = Probability distribution of a random variable whose logarithm is normally distributed

'u Mean, std of the log of the variable



Scale-free networks

a" Albert-Laszl6 Barabasi

@barabasi

@aaronclauset Every 5 years someone is shocked to re-
discover that a pure power law does not fit many
networks. True: Real networks have predictable
deviations. Hence forcing a pure power law on these is

like...fitting a sphere to the cow. Sooner or later the hoof
will stick out.

+rward proces
rocess
1000

weli-known f' ,d Network Science, Chapter 4, pg 159

aa L

s @

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
Replying to @barabasi

Chapter 6 in Network Science networksciencebook.com/chapter/6
discusses what you should be fitting to the degree distribution of *real*
scale-free networks. You are right: Pure power laws are predictably rare.
Scale-free networks are not.

O 1 21 Q 45 g
Aaron Clauset @aaronclauset - Jan 15, 2018 v
Replying to @barabasi

Yes, science is hard and real data often messy. But it is worrying how
criticisms of harsh statistical evaluations can be interpreted as a belief
that "disagreement with data" (as Feynman would put it) should not be
held against a favored theory or model.

Q 3 s QO 18 N

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
We are on the same page. The question is, what you test and what you
conclude. There are multiple processes that contribute to the degree
distribution that modify the power law. Hence testing for power laws only
you are ignoring them all, leading to misleading takeway message.

Q 2 0 4 Q 10 &

Aaron Clauset @aaronclauset - Jan 15, 2018 v
Perhaps. | feel good about the accuracy of our conclusions: we used
rigorous statistical methods, tested 5 distributions, considered 5 levels of
evidence, across nearly 1000 network datasets. The goal was to be
thorough and to treat the SF hypothesis as falsifiable.

O 1 1 3 ¥ 14 &

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
The effort is amazing. The conclusions are less so. The feather falls
slower than the rock, yet gravitation is not wrong. We add friction. You
need to fit for each system the Pk that is right for it. That is hard, | know.
Otherwise you ignore 20 year of work by hundreds.

Q 2 1 4 O 6 o

Aaron Clauset @aaronclauset - Jan 15, 2018 v
It seems easy to get confused here: an empirical power-law degree
distribution is evidence for SF structure, but no deviation from the power
law can be evidence against SF structure? It is reasonable to believe a
fundamental phenomena would require less customized detective work.



Scale-free networks

.K

Aaren Clatset AlbertZl 3571 Barabdsi

-Rigorous statistical tests show -Networks are real objects, not
that observed degree distributions are mathematical abstraction,
not compatible with a power law therefore they are sensible to
distribution (high p-values) noise (real life limits...)
-Compared with different -Power law is a good, simple model of
distributions, in particular log-normal, degree distributions of a class of networks

most degree distributions are more
ikely to be generated by something

else than power laws -20 years of fruitful research based on this
mode]



Scale-free networks

fallures and attacks
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Scale-free networks - role of hubs

Network robustness and attack tolerance

- How network topology is resistant against failure and targeted attacks

" b Albert, et.al., Nature (2000)
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Exponential Scale-free

Numerical experiment:

1. Take a connected network

2. Remove nodes one at a time
3. Observe the size of the LCC

(a) Poisson random graph
(b) Scale-free network

Both networks have the same
parameters:

- N=130
- <k>=3.3

Node removal strategies:

Remove nodes randomly (“failures”)

Example: Random failure of
routers on the internet



Removal of nodes from networks

Inverse percolation problem

f= fraction of removed nodes

Component
structure

Graph

(Inverse Percolation phase transition)



Malloy-Reed criteria for giant components

A giant cluster exists if each node is connected to at least two other nodes.
The average degree of a node i linked to the GC, must be 2.

Can be shown to correspond to the following relation:

= <k2> =2

< k> kK<2: Many disconnected cluster

k>2: Giant component exist

K

Malloy, Reed, Random Structures and Algorithms (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).
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Breakdown threshold for ER networks

Random node removal changes
- The degree of individual nodes [k -> k’ < k] decrease by losing links via node removal

- A node with degree k becomes a node with degree &’ with probability:

k : :
(k’) FR = where k'<k

Remove k-k’ Leave Kk’ links
links, each with untouched, each
probability f with probability 1-f

- the degree distribution [P(k) -> P’(k’)] after random removal of f fraction of nodes

) o '
P'(k") = ) P(k) k,)fk‘k (1-f)*

Malloy, Reed, Random Structures and Algorithms (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).



Breakdown threshold for arbltrary P(k)

) Malloy, Reed, Random Structures and Algorithms (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

P'(k") = EP(k) £a- -

(Kp= A=)k [ (k%)= (1=K + (1 = f)k)

We know: Breakdown threshold:
1
(k)= (1 = f){k) fe=1- <k2> 3
<k/2>f = (1 = )*(K*) + f(1 = f){k) (k) -1 \
2 v f
K= <k—> =7
(k) S,

k>2: Giant component exist

k<2: Many disconnected cluster



Robustness of scale-free networks

Scale-free random graph with 1 pe
. < o
P(k) = Ak with  k=m,..K o8 | = %R,
. &
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Cohen et al., Phys. Rev. Lett. 85, 4626 (2000)

Internet:
Router level map, N=228,263; y=2.140.1; K=28 -> [,=0.962

AS level map, N=11,164; y=2.140.1; k=264 -> f=0.996




Robustness of scale-free networks

Scale-free networks do not appear to break apart under random failures.

Reason: the likelihood of removing a hub is small.

1

.
-
o o' "‘.
b
.
..‘.. .'....-t
L Tt ¥ e
L ) ¥
Vg it LA
*ee -
] & /o |
L ‘.o [ ]
* e . . .
® & o.s"‘ L
.o.‘.;. . .
« 0 o e 2
.‘. * .
"
b ST >, B 2 P
0 L LS
AN hod | S
V7
o) .
o.‘ .
..'o . '(oo
L/ . )
The el
R Sl o
e .,." 'o. 60..
o o t+*F 2
gy L Y
:oro. sl
L ‘.’ A o ..‘..
prid
...‘~.’.... .
..‘.¢ L '.?o
. ey ‘on
.
. ‘P:
L S)

Albert, Jeong, Barabasi, Nature 406 378 (2000)




Achilles’ Heel of scale-free networks
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Attacks

Cne\ YL /0 The robustness of scale free
o 0N\ s tery . .
meplee i networks is due to the hubs, which
N NS are difficult to hit by chance.
F -“'.... " ':."?. .. .
s/ TSR ¢ Node removal strategies:
IS p? . .
AR Remove nodes in descending order
A N W S e . . .
AT EREANYAS) of their degrees, i.e. hubs first
Tk A (attacks’
:.:.. T 0.. o .‘/':*0‘.

Examples: Terrorist attacks,
efficient vaccination in epidemics

Failures

y=<3:f=1




Attack threshold for scale-free networks

Attack problem: we remove a fraction f of the hubs.
At what threshold f. will the network fall apart (no giant component)?

=24+ —XK

Critical threshold for 2o 2—y 3y
scale-free networks: Je 3, min <f c 1>

0.08

. f.depends on y; it reaches its max for y<3

0.06 -

- f.depends on K . (m in the figure)

min

: . . > 0.04 |
. Most important: £ is tiny. lts maximum reaches ™
only 6%, i.e. the removal of 6% of nodes can
destroy the network in an attack mode. 0.02
- Internet: y=2.1, so 4.7% is the threshold. 0.00 0 P
2.0 2.5 3.0 3.5 4.0

A

Pastor-Satorras, Vespignani, Evolution and Structure of the Internet (Cambridge University Press, 2004)



Scale-free networks - role of hubs

Network robustness and attack tolerance

<s>and S

—h

3%

Albert, et.al., Nature (2000)
I T I

E & 5%

f "-\\
S <s> .

o = Failure
o e Attack

gg/fc
02 04

Fraction of nodes removed

Poisson random graph

Both removal methods
give the same result

The network falls apart
after a finite fraction of

nodes are removed (S—0)

o
0.0

0
00 04 08

L j /

9 |
0.2 0.4
Fraction of nodes removed

Scale-free network

* Robust against random
removal (blue)

* Vulnerable against
targeted attacks

- S: relative size of the
LCC

-+ <s>: average size of
components other than
LCC

Consequences:

* Internet is still working
even several servers are
out of service

« Random vaccination is not
effective in case of
epidemic spreading



The Barabasi-Albert
model

of scale-free
hetworks




Emergence of hubs

What did we miss with the earlier network models?

: ol (@)
1. Networks are evolving g ool
* Networks are not static but growing in time as new 5
nodes are entering the system 5
. Years
2. Preferential attachement
- Nodes are not connected randomly but g ol )
tends to link to more attractive nodes |
é 150000:
2 100000:
oo (©)
S o
é 0000000
2 oooooo

0 .
00000000000000000000000000000000

AL Barabasi, Network Science Book (2013)



The Barabasi-Albert model

1. Start with my connected nodes Ve /

2. At each timestep we add a new node with
m (< my) links that connect the new node to
m nodes already in the network.

3. The probability z(k) that one of the links of
the new node connects to node i depends
on the degree k; of node i as

H(kZ) — Zkzk 107 ¢ S
g T
» The emerging network will be scale-free with e werees s
degree exponent y=3 independently from the |
choice of mp and m y=3"e,

108
10% 10l 102 103

AL Barabasi, Network Science Book (2013)



The BA model - emergence of hubs

solution by A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)

() ———n———+————+—————— -+ The degree of each node increases as a
Single network. g power-law with exponent f=1/2
100 e i
T |« Earlier a node was added larger its
o | ' I degree due to its earlier arrival and not
107 | because it grows feaster
10t
100 L M| L PR | L P | L P | L P | P
100 10t 102 103 104 10° 10°
t
(b) N ) 102 N 2 104 N = 10°
Rich-get-richer mechanism
102 - ‘:"0' - 1072 - \‘s. - 102 - i -
_ ] i % _ i
ﬁ 10-3:- b 10-3:- ‘t: 3 10-3:-
k

AL Barabasi, Network Science Book (2013)



The BA model - degree distribution

solution by A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)

« The degree exponent is independent of m

- The degree exponent is stationary in time and
the degree distribution is time independent

* The exponent is compatible to the exponents
of real networks y

P(k)




The BA model - path length

const. y = P Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
of it, thus the average path length will be independent of the system size.
The average path length increases slower than logarithmically. In a random network all
Ultra Inln N nodes have comparable degree, thus most paths will have comparable length. In a
Small 1 2< Y < 3 scale-free network the vast majority of the path go through the few high degree hubs,
World H(Y -1) reducing the distances between nodes.
<[>~
lnN Some key models produce y=3, so the result is of particular importance for them. This
S Y = 3 was first derived by Bollobas and collaborators for the network diameter in the context of
InIn N a dynamical model, but it holds for the average path length as well.
Small InN 3 The second moment of the distribution is finite, thus in many ways the network behaves
World L n Y > as a random network. Hence the average path length follows the result that we derived

for the random network model earlier.

10 — T
O BA model
lnN [ O random graph

\0) = Inln/NV

T T T T T T TrT]

Ultra Small World network

Bollobas, Riordan (2001)

10° 10°
N Albert, Barabasi (2002)



The BA model - clustering coefficient

- The clustering coefficient 107 Lo
decreases with the system :
SIZG asS 107° L

m (InN)* _
“TY N D100

- It is 5 times more than for 10 |
random graphs '

-5

10

II'IIII I 1 lIiIIII

Albert, Barabasi (2002)

O BA model
random graph

Degree correlations:

- The BA model is inducing non-trivial degree correlations due to its definition

nkZZk_zl_z



ER Random Network - catch up

Degree
distribution

Clustering

Network . .
coefficient

Path length

Real world
networks broad short large

Regular lattices constant long

ER random

Poissonian
networks

WS small-worild

exponential
networks P

BA scale-free

networks Rather small



(some)
Other random
models




Other scale-free models

The vertex-copying model 1. copy a vertex
» Motivation: . :. ///jt
- Citations network or WWW where links \ ,',’
are often copied @,
» Local explanation to preferential 2. rewire edges with p
attachement N

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4.  With probability p, move each edge of the - Asymptotically scale-free with
copy to point to a random vertex exponent y>3

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices



Other scale-free models

The HOlme'K|m mOdel 1.prefere\ntia|\attachment

* Motivation: more realistic
clustering coefficient

probability p ! \ probability 1-p
1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to 2A. connect to 2B. preferential
their degree £ (just like BA) neighbour attachment

(implicit preferential
attachment)

4.  With probability p, connect the next edge to
a random neighbour of the vertex of step 3., 1
otherwise do 3. again C (k/’) X =

K

for large N, ie clustering more
realistic! This type of clustering is found
iIn many real-world networks.

9. Repeat 2.-4. until the network
has grown to desired size
of N vertices



Other scale-free models

The forest fire model

- Models generating power laws are usually based on the
idea of a growing network.

* It has been shown that real growing networks have two
properties: growing average degree, shrinking average
shortest path

[Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, leskovec et al. 2012 ]



Other scale-free models

The forest fire model

Consider a node
v joining the network at time ¢ > 1, and let G, be the
graph constructed thus far. (G1 will consist of just a single
node.) Node v forms out-links to nodes in G; according to
the following process.

(i) v first chooses an ambassador node w uniformly at ran-
dom, and forms a link to w.

(ii) We generate a random number x that is binomially
distributed with mean (1 — p)~'. Node v selects x
links incident to w, choosing from among both out-
links and in-links, but selecting in-links with proba-
bility r times less than out-links. Let wi,w2,..., wy
denote the other ends of these selected links.

(iii) v forms out-links to w1, w2, ..., w,, and then applies
step (ii) recursively to each of wi,wa,...,wz. As the
process continues, nodes cannot be visited a second
time, preventing the construction from cycling.

[Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, leskovec et al. 2012 ]



Other scale-free models

The forest fire model

e Heavy-tailed in-degrees. Our model has a “rich get
richer” flavor: highly linked nodes can easily be reached by
a newcomer, no matter which ambassador it starts from.

e Communities. The model also has a “copying” fla-
vor: a newcomer copies several of the neighbors of his/her
ambassador (and then continues this recursively).

e Heavy-tailed out-degrees. The recursive nature of link
formation provides a reasonable chance for a new node to
burn many edges, and thus produce a large out-degree.

e Densification Power Law. A newcomer will have a
lot of links near the community of his/her ambassador; a
few links beyond this, and significantly fewer farther away.
Intuitively, this is analogous to the Community Guided At-
tachment, although without an explicit set of communities.

o Shrinking diameter. It is not a priori clear why the
Forest Fire Model should exhibit a shrinking diameter as it
grows. Graph densification is helpful in reducing the diame-
ter, but it is important to note that densification is certainly
not enough on its own to imply shrinking diameter. For
example, the Community Guided Attachment model obeys
the Densification Power Law, but it can be shown to have a
diameter that slowly increases.

Rigorous analysis of the Forest Fire Model appears to be
quite difficult. |
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Figure 6: Degree distribution of a sparse graph with
decreasing diameter (forward burning probability:
0.37, backward probability: 0.32).

[Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, leskovec et al. 2012 ]



Other scale-free models

Generalized random models
- Exponential Random Graphs

- Random graphs with latent variables

- Graphons

. Nodes have some known properties 6 (degrees, attributes...).

- We would like to study another property x

- We can compare the observed x to the distribution of x among graphs in
the space of all possible graphs respecting 0.

- How to efficiently analyse this graph space ?



ER Random Network - catch up

Degree
distribution

Real world broad
networks

Network

Regular lattices constant

ER random
networks

WS small-world
networks

BA scale-free
networks

Poissonian

exponential

Other models

Path length

short large

long

Complex models can have a

But what Is the point 1
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End notes

* “All models are wrong, but some are useful”

- ER models and Configuration models are used as
reference models in a very large number of applications

- WS, BA models are more “making a point” type models:
simple processes can explain some non-trivial properties
of networks, unfound in random networks.

 Correlation is not causation. Are these simple processes
the “cause” ? Maybe, maybe not, sometimes...



