
NETWORK VISUALISATION 
(SHORT DIGRESSION)



NETWORK VISUALIZATION

• How to interpret a network drawing?

• What does the position of nodes means?

• Can we draw conclusion from the drawing alone?



NETWORK VISUALIZATION



NETWORK VISUALIZATION
• Random layout

‣ Assign random positions to nodes, draw edges 
- Useless for more than 5-6 nodes

• Geographical layout
‣ The position of nodes is fixed apriori, often based on geographical location
‣ Variant: position nodes on a circle based on a single, 1D property (age…)
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NETWORK VISUALIZATION
• Most commonly used: Automatic layout

‣ Non deterministic
‣ Tries to arrange nodes so that the network is easy to read and understand

- Minimize edge crossings?
- Most commonly, tries to put connected nodes close and unconnected nodes far



NETWORK VISUALIZATION
http://kwonoh.net/dgl/
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NETWORK VISUALIZATION

• Most common algorithms are variant of the force directed 
layout
‣ Kamada-Kawai
‣ Fruchterman-Reingold
‣ …

• Force directed layout: a simple physical model
‣ Repulsive forces between nodes
‣ Edges are attracting forces
‣ There are minimal (to avoid node overlap) and maximal (to avoid connected 

component drifting out of the figure)



NETWORK VISUALIZATION

• Can we interpret a force layout?
‣ Yes…



NETWORK VISUALIZATION
• Can we interpret a force layout?

‣ Yes…
‣ And no.
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Scale-free networks

A network is called Scale-free when its degree distribution 
follows (to some extent) a Power-law distribution

Power-law distribution: (PDF)

P(k) ∼ Ck−α = C
1
kα  (sometimes ) called the exponent 

of the distribution
α γ

Positive values

Here, defined as continuous (approximation)



Scale-free distribution

Proper definition 

To have a proper degree distribution, we need 
.

We also know that in most cases, there is a lower bound 
from which the law holds. ( )

From this, we define the normalisation constant:

∫ P(k) = 1 = ∫ Ck−α = C∫ k−α

kmin

Initial definition: 

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the
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The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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P(k) ∼ Ck−α = C
1
kα

C =
1

∫ ∞
kmin

k−αdk
= (α − 1)kα−1

min



Scale-free distribution

Proper definition 

P(k) =
α − 1
kmin ( k

kmin )
−α

C =
1

∫ ∞
kmin

k−αdk
= (α − 1)kα−1

minP(k) ∼ Ck−α

P(k) = (α − 1)kα−1
min k−α



Scale-free networks

Power law plotted with a linear scale, for k<=10
(100 000 samples)



Scale-free networks

Power law plotted with a linear scale, for k<100000
(100 000 samples)



Scale-free networks

Power law plotted with a log-log scale, for k<100000
(100 000 samples)



Scale-free networks

Comparing a poisson distribution and a power law
λke−λ

k!
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Scale-free networks

Comparing a poisson distribution and a power law

The “long tail”

λke−λ

k!



Scale-free networks
Comparing an exponential distribution and a power law

{λe−λk k ≥ 0,
0 k < 0.



Scale-free networks - first observations
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ki!1 outgoing (or incoming) links is less
than NPout(ki!1) (or NPin(ki!1)).

A particularly important quantity in a
search process is the shortest path between
two documents, d, defined as the smallest
number of URL links that must be followed
to navigate from one document to the
other. We find that the average of d over all
pairs of vertices is "d#$0.35!2.06log(N)
(Fig. 1c), indicating that the web forms a
small-world network5,7, which characterizes
social or biological systems. For N$8%108,
"dweb#$18.59; that is, two randomly chosen
documents on the web are on average 19
clicks away from each other.

For a given N, d follows a gaussian distri-
bution so "d# can be interpreted as the diam-
eter of the web, a measure of the shortest
distance between any two points in the sys-
tem. Despite its huge size, our results indi-
cate that the web is a highly connected graph
with an average diameter of only 19 links.
The logarithmic dependence of "d# on N is
important to the future potential of the web:
we find that the expected 1,000% increase in
the size of the web over the next few years
will change "d# very little, from 19 to only 21.

The relatively small value of "d# indicates
that an intelligent agent, who can interpret
the links and follow only the relevant one,
can find the desired information quickly by
navigating the web. But this is not the case
for a robot that locates the information
based on matching strings. We find that
such a robot, aiming to identify a docu-
ment at distance "d#, needs to search
M("d#)&0.53×N 0.92 documents, which,
with N$8%108, leads to M$8%107, or
10% of the whole web. This indicates that
robots cannot benefit from the highly con-
nected nature of the web, their only success-
ful strategy being to index as much of the
web as possible.

The scale-free nature of the link distrib-
utions indicates that collective phenomena
play a previously unsuspected role in the
development of the web8, forcing us to look
beyond the traditional random graph mod-
els3–5,7. A better understanding of the web’s
topology, aided by modelling efforts, is cru-
cial in developing search algorithms or
designing strategies for making information
widely accessible on the World-Wide Web.
Fortunately, the surprisingly small diameter
of the web means that all that information
is just a few clicks away.
Réka Albert, Hawoong Jeong, 
Albert-László Barabási
Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556, USA
e-mail:alb@nd.edu
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incoming links, the probability of finding
very popular addresses, to which a large
number of other documents point, is non-
negligible, an indication of the flocking
nature of the web. Furthermore, while the
owner of each web page has complete free-
dom in choosing the number of links on a
document and the addresses to which they
point, the overall system obeys scaling laws
characteristic only of highly interactive self-
organized systems and critical phenomena6.

To investigate the connectivity and the
large-scale topological properties of the
web, we constructed a directed random
graph consisting of N vertices, assigning to
each vertex k outgoing (or incoming) links,
such that k is drawn from the power-law
distribution of Fig. 1a,b. To achieve this, we
randomly selected a vertex i and increased
its outgoing (or incoming) connectivity to
ki!1 if the total number of vertices with

Internet

Diameter of the 
World-Wide Web
Despite its increasing role in communica-
tion, the World-Wide Web remains uncon-
trolled: any individual or institution can
create a website with any number of docu-
ments and links. This unregulated growth
leads to a huge and complex web, which
becomes a large directed graph whose ver-
tices are documents and whose edges are
links (URLs) that point from one docu-
ment to another. The topology of this
graph determines the web’s connectivity
and consequently how effectively we can
locate information on it. But its enormous
size (estimated to be at least 8%108 docu-
ments1) and the continual changing of docu-
ments and links make it impossible to
catalogue all the vertices and edges.

The extent of the challenge in obtaining
a complete topological map of the web is
illustrated by the limitations of the com-
mercial search engines: Northern Light, the
search engine with the largest coverage, is
estimated to index only 38% of the web1.
Although much work has been done to
map and characterize the Internet’s infra-
structure2, little is known about what really
matters in the search for information —
the topology of the web. Here we take a step
towards filling this gap: we have used local
connectivity measurements to construct a
topological model of the World-Wide Web,
which has enabled us to explore and char-
acterize its large-scale properties.

To determine the local connectivity of
the web, we constructed a robot that adds to
its database all URLs found on a document
and recursively follows these to retrieve the
related documents and URLs. We used the
data collected to determine the probabilities
Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively.
We find that both Pout(k) and Pin(k) follow a
power law over several orders of magnitude,
remarkably different not only from the
Poisson distribution predicted by the classi-
cal theory of random graphs3,4, but also
from the bounded distribution found in
models of random networks5.

The power-law tail indicates that the
probability of finding documents with a
large number of links is significant, as the
network connectivity is dominated by
highly connected web pages. Similarly, for
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Figure 1 Distribution of links on the World-Wide Web. a, Outgoing

links (URLs found on an HTML document); b, incoming links (URLs

pointing to a certain HTML document). Data were obtained from

the complete map of the nd.edu domain, which contains 325,729

documents and 1,469,680 links. Dotted lines represent analytical

fits used as input distributions in constructing the topological

model of the web; the tail of the distributions follows P(k)&k'(,

with (out$2.45 and (in$2.1. c, Average of the shortest path

between two documents as a function of system size, as predicted

by the model. To check the validity of our predictions, we deter-

mined d for documents in the domain nd.edu. The measured

"dnd.edu#$11.2 agrees well with the prediction "d3%105#$11.6

obtained from our model. To show that the power-law tail of P(k) is

a universal feature of the web, the inset shows Pout(k) obtained by

starting from whitehouse.gov (squares), yahoo.com (triangles) and

snu.ac.kr (inverted triangles). The slope of the dashed line is

(out$2.45, as obtained from nd.edu in a.
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Diameter of the world wide web



Scale-free networks - other examples
The internet

• Nodes: routers
• Links: Physical wires
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Scale-free networks - other examples
Airline route map network

• Nodes: airports
• Links: airplane connections

Guimera et.al. (2004)

where ! ! 0.9 " 0.1 is the power law exponent, g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ‘‘Are the most connected cities
also the most central?’’ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value, ! ! 1.5 " 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2 b and c). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and São Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. (a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. (a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We define a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we find there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). (b) The 25 most connected cities in the
world. (c) The 25 most central cities in the world.

7796 ! www.pnas.org"cgi"doi"10.1073"pnas.0407994102 Guimerà et al.

Note: the cumulative distribution of a 
power law is also a line on a log-log plot 



Scale-free networks - other examples
Scientific collaborations

• Nodes: scientists (here geo-localised)
• Links: common papers

Newman (2001)

how small it is. The hundreds strong megacollaborations of
CERN and Fermilab are sufficiently diluted by theoretical
and smaller experimental groups that the number is only 9,
and not 100.!
Distributions of numbers of authors per paper are shown

in Fig. 2, and appear to have power-law tails with widely
varying exponents of !6.2(3) "Medline!, !3.34(5) "Los
Alamos Archive!, !4.6(1) "NCSTRL!, and !2.18(7)
"SPIRES!. The SPIRES data, which are again shown in a
separate inset, also display a pronounced peak in the distri-
bution around 200–500 authors. This peak presumably cor-
responds to the large experimental collaborations that domi-
nate the upper end of this histogram.
The largest number of authors on a single paper was 1681

"in high-energy physics, of course!.

D. Numbers of collaborators per author

The differences between the various disciplines repre-
sented in the databases are emphasized still more by the
numbers of collaborators that a scientist has, the total num-
ber of people with whom a scientist wrote papers during the
five year period. The average number of collaborators is
markedly lower in the purely theoretical disciplines (3.87 in
high-energy theory, 3.59 in computer science! than in the
wholly or partly experimental ones (18.1 in biomedicine,
15.1 in astrophysics!. But the SPIRES high-energy physics
database takes the prize once again, with scientists having an
impressive 173 collaborators, on average, over a five year
period. This clearly begs the question whether the high-
energy coauthorship network can be considered an accurate
representation of the high-energy physics community at all;
it seems unlikely that many authors would know 173 col-
leagues well.
The distributions of numbers of collaborators are shown

in Fig. 3. In all cases they appear to have long tails, but only
the SPIRES data "inset! fit a power-law distribution well,
with a low measured exponent of !1.20. Note also the small

peak in the SPIRES data around 700—presumably again a
result of the presence of large collaborations.
For the other three databases, the distributions show some

curvature. This may, as we have previously suggested #50$,
be the signature of an exponential cutoff, produced once
again by the finite time window of the study. Redner #57$ has
suggested an alternative origin for the cutoff using growth
models of networks—see Ref. #10$. Another possibility has
been put forward by Barabási #58$, based on models of the
collaboration process. In one such model #51$, the distribu-
tion of the number of collaborators of an author follows a
power law with slope !2 initially, changing to slope !3 in
the tail, the position of the crossover depending on the length
of time for which the collaboration network has been evolv-
ing. We show slopes !2 and !3 as dotted lines on the
figure, and the agreement with the curvature seen in the data
is moderately good, particularly for the Medline data. "For
the Los Alamos and NCSTRL databases, the slope in the tail
seems to be somewhat steeper than !3.!

E. Size of the giant component

In the theory of random graphs #24,59–61$ it is known
that there is a continuous phase transition with increasing
density of edges in a graph at which a ‘‘giant component’’
forms, i.e., a connected subset of vertices whose size scales
extensively. Well above this transition, in the region where
the giant component exists, the giant component fills a large
portion of the graph, and all other components "i.e., con-
nected subsets of vertices! are small, with average size inde-
pendent of the number n of vertices in the graph. We see a
situation reminiscent of this in all of the graphs studied here:
a single large component of connected vertices that fills the
majority of the volume of the graph, and a number of much
smaller components filling the rest. In Table I we show the
size of the giant component for each of our databases, both
as total number of vertices and as a fraction of system size.

FIG. 2. Histograms of the number of authors on papers in Med-
line, the Los Alamos Archive, and NCSTRL. The dotted lines are
the best fit power-law forms. Inset: the equivalent histogram for the
SPIRES database, showing a clear peak in the 200 to 500 author
range.

FIG. 3. Histograms of the number of collaborators of authors in
Medline, the Los Alamos Archive, and NCSTRL. The dotted lines
show how power-law distributions with exponents !2 and !3
would look on the same axes. Inset: the equivalent histogram for the
SPIRES database, which is well fitted by a single power law "dotted
line!.

SCIENTIFIC COLLABORATION NETWORKS . . . . I. . . . PHYSICAL REVIEW E 64 016131

016131-5



Scale-free networks - other examples
Sexual-interaction networks

• Nodes: individuals
• Links: sexual incursion

Liljeros et.al. (2001)

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the
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The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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Scale-free networks - other examples
Online social networks

• Nodes: individuals
• Links: online interactions

Social network of Steam
http://85.25.226.110/mapper

http://85.25.226.110/mapper


Scale-free distribution

AL. Barabási, Linked (2002)

What does it mean?

Degree fluctuations have no characteristic scale (scale invariant)

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks



Scale-free networks

THE SCALE-FREE PROPERTY INTRODUCTION4

A visualization of the web sample that led to 
the discovery of the scale-free property. The 
sequence of images shows an increasingly 
magnified local region of the network. The 
first panel displays all 325,725 nodes, offer-
ing a global view of the full dataset. Nodes 
with more than 50 links are shown in red and 
nodes with more than 500 links in purple. The 
increasingly magnified closeups reveal the 
presence of a few highly connected nodes, 
called hubs, that accompany scale-free net-
works (Image by M. Martino).

Figure 4.1
The topology of the WWW

In contrast in Fig. 4.1 numerous small-degree nodes coexist with a few 
hubs, nodes with an exceptionally large number of links. The purpose of 
this chapter is to show that these hubs are not unique to the Web, but we 
encounter them in many real networks. They represent a signature of a 
deeper organizing principle that we call the scale-free property.

AL Barabási, Network Science Book (2013)

Idea of scale free



Scale-free distribution

Interesting properties of power law distributions

P(k) =
α − 1
kmin ( k

kmin )
−α

C =
1

∫ ∞
kmin

k−αdk
= (α − 1)kα−1

minP(k) ∼ Ck−α

P(k) = (α − 1)kα−1
min k−α

k ≥ kmin



Scale-free distribution

Moments 

Distribution: 

(central) Moments: 

Reminder: 

⟨km⟩ = ∫
∞

kmin

kmp(k)dk

⟨k1⟩ Average
⟨k2⟩ Variance
⟨k3⟩ Skewness
…

P(k) = (α − 1)kα−1
min k−α



Scale-free distribution

Moments 

Distribution: 

(central) Moments: ⟨km⟩ = ∫
∞

kmin

kmp(k)dk

⟨km⟩ = (α − 1)kα−1
min ∫

∞

kmin

k−α+mdk

⟨km⟩ = km
min ( α − 1

α − 1 − m )Defined for ,
Otherwise diverge (+inf)

α > m + 1

P(k) = (α − 1)kα−1
min k−α

http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001_2011_L2.pdf

Common Derivatives and Integrals 

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins 

Integrals 
Basic Properties/Formulas/Rules 
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Common Integrals 
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Scale-free distribution

Moments 

Distribution: 

(central) Moments: ⟨km⟩ = km
min ( α − 1

α − 1 − m ) Defined for ,
Otherwise diverge (+inf)

α > m + 1

=> Mean: ⟨k⟩ =
α − 1
α − 2

kmin (But diverges for )α ≤ 2

=> Variance: ⟨k⟩ =
α − 1
α − 3

k2
min (But diverges for )α ≤ 3

P(k) =
α − 1
kmin ( k

kmin )
−α



Scale-free distribution

Moments 

What does divergence means in practice ?

We can always compute the mean and variance, given samples of a 
distribution (e.g., an observe degree distribution)

=>The value computed depends on the size of the sample, it is not a 
characteristic of the distribution.

Moments are dominated by elements in the long tail. Some events are 
rare, but they have so large values, that if observed, they are strong 
enough to modify substantially the corresponding moment. And they 
appear frequently enough so that the mean will continue to shift when 
increasing the sample size



Scale-free distribution

Moments 
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Figure 2: The sample mean and variance for power-law distributions with α = {1.7, 2.05, 3.01}, for
a wide range of sample sizes n. For each value of n, the mean and variance estimates are for the
same set of synthetic observations. See Section 2 for Matlab code for these figures.

1.3 Scale invariance

Another interesting property of power-law distributions is “scale invariance.” If we compare the
densities at p(x) and at some p(c x), where c is some constant, they’re always proportional. That is,
p(c x) ∝ p(x). This behavior shows that the relative likelihood between small and large events is the
same, no matter what choice of “small” we make. That is, the density “scales.” Mathematically:

p(c x) = (α− 1)xα−1
min (c x)

−α

= c−α
[

(α− 1)xα−1
min x

−α
]

∝ p(x) .

Further, it can be shown6 that a power law form is the only function that has this property.

Here’s another way of seeing this behavior. If we take the logarithm of both sides of Eq. (1), we
get an expression for ln p(x) that’s linear in lnx. That is,

ln p(x) = ln
[

(α− 1)xα−1
min (x)

−α
]

= lnC − α lnx .

That is, rescaling x → c x simply shifts the power law up or down on a logarithmic scale. This
shows another of the more well-known properties of a power-law distribution: it’s a straight line on a
log-log plot. This is in contrast to the strongly curved behavior of, say, an exponential distribution,
as in Fig. 1.

6An exercise left to the reader.

4

Mean diverge
α < 2 Mean well defined, 

Variance diverge

2 < α < 3
Mean and variance 

defined

α > 3

=> Even when well defined, moments converge very slowly



Scale-free networks
Computing the exponent of an observed network

[Fitting to the Power-Law Distribution, Goldstein et al.] 
https://arxiv.org/vc/cond-mat/papers/0402/0402322v1.pdf

Method 1: fi nd the slope of the line of the log-log plot 

Problem: most of data is on first value, so we overfit based on a
Few values in the long tail

More advanced method:
Maximum Likelihood Estimation (MLE)



Scale-free networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are usually between 2 and 31). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size !k" # $out $ in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4!107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2!108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53!106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).

51R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Exponent



Albert, R. et.al. Rev. Mod. Phy. (2002)

• Average values are not reliable since 
the convergence is very slow

• Furthermore, average values are 
meaningless since the fluctuations are 
infinitely large (diverging variance)

1). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each
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Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.
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power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.
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Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
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Scale-free networks
Why do most of the real networks have 
degree exponent between 2 and 3?

• If the exponent is smaller than 2, the distribution is so skewed that we expect to 
find nodes with a degree larger than the size of the network => not possible in finite 
networks



Scale-free networks
Why do most of the real networks have 
degree exponent between 2 and 3?

• To detect a scale-free network its degree distribution needs to span through several 
(at least 2-3) orders of magnitude ⇒ Kmax~103 

• If the exponent is large (>3), large degrees become so rare that the size of the 
sample (i.e., size of observed network) must be enormous to indeed observe such 
an edge

• Example: let’s choose γ=5,  Kmin=1  and  Kmax~103

€ 

Kmax = KminN
1
γ −1

In order to document a scale-free networks, we need 2-3 orders of magnitude scaling. 
That is, Kmax~ 103 
 

However, that constrains on the system size we require to document it.  
For example, to measure an exponent γ=5,we need to maximum degree a system size of 
the order of 

€ 

N =
Kmax

Kmin

" 

# 
$ 

% 

& 
' 

γ −1

≈1012

Onella et al. PNAS 2007 

N=4.6x106 

γ=8.4 

 

Mobile Call 
Network 

Why don’t we see networks with exponents in the range of γ=4,5,6,  etc?  

Network Science: Scale-Free Property 2012 

We need to observe  nodes to observe a 
node of degree 1000 for exponent=5
=> Forget about (single planet) social networks…

1012



Scale-free networks - distancesDistances in scale-free networks 

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.  
 
The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes.  
 
 
Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well. 
 
 
The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier. 
  
 

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001 
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World 

DISTANCES IN SCALE-FREE NETWORKS 

€ 

Kmax = KminN
1
γ −1

THE SCALE FREE PROPERTY 24 ULTRA-SMALL PROPERTY

(a) The scaling of the average path length 
in the four scaling regimes characterizing a 
scale-free network: lnN (scale-free networks 
with�ਠ�> 3 and random networks), lnN/lnlnN 
߶ਠ = 3) and lnlnN (2 < ਠ< 3). The dotted lines 
mark the approximate size of several real net-
works of practical interest. For example, given 
their modest size, in biological networks the 
differences in the node to node distances are 
relatively small in the four regimes. The dif-
ferences become quite relevant for networks 
of the size of the social network or the WWW. 
For these the small-world formula consider-
ably underestimates the real value of ࢭdࢮ.

(b)(c)(d) Distance distribution for networks 
of size N = 102, 104, 106, illustrating that while 
for small N ( = 102) the distance distributions 
is not too sensitive to ਠ, for large N ( = 106) pd 
and ࢭdࢮ�changes visibly with ਠ. As (d) shows, 
the smaller ਠ, the shorter are the distances be-
tween the nodes. The networks were generat-
ed using the static model [29] with ࢭk3 = ࢮ.

Figure 4.12
Distances in scale-free networks
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Scale-free networks - summary

Slide from CCNR Complex Networks Course
A. L. Barabási 2014

SUMMARY OF THE BEHAVIOR OF SCALE-FREE NETWORKS!

THE SCALE-FREE PROPERTY THE ROLE OF THE DEGREE EXPONENT25
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Scale-free networks
• Are real networks really Scale Free ? 
• In most real networks, the scale free stands only for a range of degrees, i.e., 

between a minimum degree and maximum degree different than those observed 
(cut-offs)

• Some other distributions, in particular log-normal distributions, might “look like” 
power-law

Aaron ClausetAlbert-László Barabási
Emergence of scaling in random networks (1999)

Scale-free networks are rare (2018)
Love is All You Need -  Clauset's fruitless search for scale-free networks (2018)

Rare and everywhere: Perspectives on scale-free networks (2019)

Petter Holme



Scale-free networks

Comparing a log-normal distribution and a power law
1

kσ 2π
exp − (ln k − μ)2

2σ2 k−α

Log-normal distribution = Probability distribution of a random variable whose logarithm is normally distributed
μ
σMean, std of the log of the variable

Small σ

large σ



Scale-free networks



Scale-free networks

Aaron Clauset Albert-László Barabási

-Power law is a good, simple model of 
degree distributions of a class of networks 

-20 years of fruitful research based on this 
model

-Rigorous statistical tests show 
that observed degree distributions are 

not compatible with a power law 
distribution (high p-values)

-Networks are real objects, not 
mathematical abstraction, 

therefore they are sensible to 
noise (real life limits…)

-Compared with different 
distributions, in particular log-normal, 
most degree distributions are more 
likely to be generated by something 

else than power laws



Scale-free networks
Robustness against 
failures and attacks



Scale-free networks - role of hubs
Network robustness and attack tolerance

• How network topology is resistant against failure and targeted attacks 

letters to nature
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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(a) Poisson random graph
(b) Scale-free network
Both networks have the same 
parameters:

• N=130
• <k>=3.3

Numerical experiment:
1. Take a connected network
2. Remove nodes one at a time
3. Observe the size of the LCC 

Node removal strategies:
Remove nodes randomly (“failures”)

Albert, et.al., Nature (2000)

Example: Random failure of 
routers on the internet



Removal of nodes from networks
Inverse percolation problem
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(Inverse Percolation phase transition) 

f= fraction of removed nodes 
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Damage is modeled as an inverse percolation process 
 



Malloy-Reed criteria for giant components
A giant cluster exists if each node is connected to at least two other nodes. 
The average degree of a node i linked to the GC, must be 2.
Can be shown to correspond to the following relation:

κ ≡
⟨k2⟩
⟨k⟩

= 2 κ>2: Giant component exist
κ<2: Many disconnected cluster

Malloy, Reed, Random Structures and Algorithms (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 



Breakdown threshold for ER networks

Random node removal changes
• The degree of individual nodes [k -> k’ ≤ k] decrease by losing links via node removal
• A node with degree k becomes a node with degree k’ with probability: 

( k
k′ ) f k−k′ (1 − f )k′ where k′ ≤ k

Remove k-k’ 
links, each with 
probability f 

• the degree distribution [P(k) -> P’(k’)] after random removal of f fraction of nodes

Leave k’ links 
untouched, each 
with probability 1-f 

Problem: What are the consequences of removing a fraction f of all nodes? 
  At what threshold fc will the network fall apart (no giant component)? 

Random node removal changes  
 the degree of individual nodes [k ! k’ ≤k]  
 the degree distribution [P(k) ! P’(k’)]  

A node with degree k will loose some links and become a node with degree k’ with probability: 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 
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' f k−k' (1− f )k' k '≤ k

The prob. that we had a k 
degree node was P(k), so 
the probability that we will 
have a new node with 
degree k’ :  

Remove k-k’ 
links, each  with 
probability f 

Leave k’ links 
untouched, each  
with probability 1-f 

Let us asume that we know <k> and <k2> for the original degree distribution P(k)  
! calculate <k’> , <k’2> for the new degree distribution P’(k’). 

Network Science: Robustness Cascades March 23, 2011 

BREAKDOWN THRESHOLD FOR ARBITRARY P(k) 

Malloy, Reed, Random Structures and Algorithms (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 



⟨k′ ⟩f = (1 − f )⟨k⟩

⟨k′ 
2⟩f = (1 − f )2⟨k2⟩ + f(1 − f )⟨k⟩

κ ≡
⟨k2⟩
⟨k⟩

= 2

κ>2: Giant component exist

κ<2: Many disconnected cluster

We know: Breakdown threshold:

Robustness: we remove a fraction f of the nodes. 
At what threshold fc will the network fall apart (no giant component)? 
Random node removal changes  

 the degree of individuals nodes [k ! k’ ≤k)  
 the degree distribution [P(k) ! P’(k’)]  

€ 

fc =1− 1
k 2

k
−1

Breakdown threshold: 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 
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= 2
κ>2:  a giant cluster exists    
κ<2:  many disconnected clusters 

f<fc: the network is still connected (there is a giant cluster) 
f>fc: the network becomes disconnected (giant cluster vanishes) 
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BREAKDOWN THRESHOLD FOR ARBITRARY P(K) 

Robustness: we remove a fraction f of the nodes. 
At what threshold fc will the network fall apart (no giant component)? 
Random node removal changes  

 the degree of individuals nodes [k ! k’ ≤k)  
 the degree distribution [P(k) ! P’(k’)]  

€ 

fc =1− 1
k 2

k
−1

Breakdown threshold: 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 
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κ ≡
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< k'> f

= 2
κ>2:  a giant cluster exists    
κ<2:  many disconnected clusters 

f<fc: the network is still connected (there is a giant cluster) 
f>fc: the network becomes disconnected (giant cluster vanishes) 
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BREAKDOWN THRESHOLD FOR ARBITRARY P(K) 

Breakdown threshold for arbitrary  P(k) 

⟨k′ ⟩f = (1 − f )⟨k⟩

Problem: What are the consequences of removing a fraction f of all nodes? 
  At what threshold fc will the network fall apart (no giant component)? 

Random node removal changes  
 the degree of individual nodes [k ! k’ ≤k]  
 the degree distribution [P(k) ! P’(k’)]  

A node with degree k will loose some links and become a node with degree k’ with probability: 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 
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the probability that we will 
have a new node with 
degree k’ :  

Remove k-k’ 
links, each  with 
probability f 

Leave k’ links 
untouched, each  
with probability 1-f 

Let us asume that we know <k> and <k2> for the original degree distribution P(k)  
! calculate <k’> , <k’2> for the new degree distribution P’(k’). 
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BREAKDOWN THRESHOLD FOR ARBITRARY P(k) 

⟨k′ 
2⟩f = (1 − f )2⟨k2⟩ + f(1 − f )⟨k⟩

Malloy, Reed, Random Structures and Algorithms (1995); Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 
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γ>3:  κ is finite, so the network will break apart at a finite fc that depens on Kmin 

γ<3:  κ diverges in the N! ∞ limit, so fc ! 1 !!! 
 for an infinite system one needs to remove all the nodes to break the system. 

 
For a finite system, there is a finite but large fc that scales with the system size as:  
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Internet: Router level map, N=228,263; γ=2.1±0.1;    κ=28  !   fc=0.962 
  
       AS  level map, N=  11,164; γ=2.1±0.1;    κ=264  !   fc=0.996 
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ROBUSTNESS OF SCALE-FREE NETWORKS 



Infinite scale-free networks with           do not break down under  
random node failures. 

Scale-free random graph with 
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NUMERICAL EVIDENCE 

Scale-free random graph with 
P(k) = Ak−γ      with    k=m,...K 

Robustness of scale-free networks

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000) 

Internet:
Router level map, N=228,263; γ=2.1±0.1; κ=28 -> fc=0.962 

AS level map, N= 11,164; γ=2.1±0.1; κ=264 -> fc=0.996 
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γ<3:  κ diverges in the N! ∞ limit, so fc ! 1 !!! 
 for an infinite system one needs to remove all the nodes to break the system. 

 
For a finite system, there is a finite but large fc that scales with the system size as:  
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Network Science: Robustness Cascades March 23, 2011 

ROBUSTNESS OF SCALE-FREE NETWORKS 



Robustness of scale-free networks

Scale-free networks do not appear to break apart under random failures.
Reason: the likelihood of removing a hub is small. 

1 

S 

0 1 f 
Albert, Jeong, Barabási, Nature 406 378 (2000) 

Scale-free networks do not appear to 
break apart under random failures.  
Reason: the hubs.  
The likelihood of removing a hub is small.  

Network Science: Robustness Cascades March 23, 2011 

ROBUSTNESS OF SCALE-FREE NETWORKS 

Albert, Jeong, Barabási, Nature 406 378 (2000) 



Achilles’ Heel of scale-free networks 

Node removal strategies:
Remove nodes in descending order 
of their degrees, i.e. hubs first 
(“attacks”) 

1 

S 

0 1 f 
fc 

Attacks 

γ ≤ 3 : fc=1 

(R. Cohen et al PRL, 2000) 

Failures 

Robust'SF*

Albert, Jeong, Barabási, Nature 406 378 (2000) 

Achilles’ Heel of scale-free networks 

Network Science: Robustness Cascades March 23, 2011 

The robustness of scale free 
networks is due to the hubs, which 
are difficult to hit by chance.

Examples: Terrorist attacks, 
efficient vaccination in epidemics



Attack threshold for scale-free networks
Attack problem: we remove a fraction f of the hubs.
At what threshold fc will the network fall apart (no giant component)?

Critical threshold for 
scale-free networks:

Pastor-Satorras, Vespignani, Evolution and Structure of the Internet (Cambridge University Press, 2004)

138 Internet robustness

g
c

m
m
m

4.0

0.08

Fig. 6.12 Threshold for the targeted removal of vertices in scale-free graphs
with different minimum connectivity m, as a function of the degree exponent
γ , computed using the continuous k approximation (Cohen et al., 2001a). The
inset shows the values corresponding to the discrete formalism (Dorogovtsev and
Mendes, 2001a) for m = 1.

great damage has been inflicted to the network’s connectivity. It is important to
note that the results obtained are defined in a statistical sense. As stressed in the
previous sections, targeted attack cannot be averaged on a single graph, since for
each graph only a single attack sequence exists. Therefore, the analytically ob-
tained threshold is recovered only by averaging over many network realizations or
in the strict infinite size limit. Nevertheless, in large enough networks the single
realization threshold will be extremely close to the predicted value.

Finally, the observation that the removal threshold depends considerably on the
density of “dangling ends” (vertices with degree one) present in the graph de-
serves a detailed discussion (Dorogovtsev and Mendes, 2001a). This implies that
a more correct description of targeted attacks should take into account the correct
form of the degree distribution for small values of k, and in particular its eventual
discreteness. For this purpose, Dorogovtsev and Mendes (2001a) consider a dis-
crete scale-free degree distribution with minimum connectivity m = 1, P0(k) =
k−γ /ζ(γ ), where ζ(x) =

∑∞
k=1 k−x is the Riemann Zeta function (Abramowitz

and Stegun, 1972). Within this discrete formulation, the condition (6.39) can be
rewritten as

kc(gc)∑

k=1

k(k − 1)k−γ = ζ(γ − 1). (6.41)

f c

• fc depends on γ; it reaches its max for γ<3

• fc depends on Kmin (m in the figure)

• Most important: fc is tiny. Its maximum reaches 
only 6%, i.e. the removal of 6% of nodes can 
destroy the network in an attack mode.

• Internet: γ=2.1, so 4.7% is the threshold. 

f
2 − γ
1 − γ
c = 2 +

2 − γ
3 − γ

Kmin (f
3 − γ
1 − γ
c − 1)



Scale-free networks - role of hubs
Network robustness and attack tolerance

• S: relative size of the 
LCC

• <s>: average size of 
components other than 
LCC

Poisson random graph
• Both removal methods 

give the same result
• The network falls apart 

after a finite fraction of 
nodes are removed (S→0)

letters to nature
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and
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Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters 〈s〉 (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in 〈s〉 (〈smax〉 ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and 〈s〉 curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. 〈s〉 in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have 〈s〉 ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
〈smax〉 ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, 〈k〉 and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and 〈s〉, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and
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Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters 〈s〉 (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in 〈s〉 (〈smax〉 ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and 〈s〉 curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. 〈s〉 in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have 〈s〉 ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
〈smax〉 ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, 〈k〉 and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and 〈s〉, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and
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Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters 〈s〉 (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in 〈s〉 (〈smax〉 ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and 〈s〉 curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. 〈s〉 in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have 〈s〉 ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
〈smax〉 ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, 〈k〉 and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and 〈s〉, but not the nature of the response of these networks to perturbations.

Exponential
network

Scale-free
network
(WWW,
Internet)

Attack

Failure

Failure

Atta
ck

f ≈ 0.05  f ≈ 0.18 f ≈ 0.45

100 101 102 103 0 2 4

100

10–2

100

10–2

100

10–1

10–4

100
10–6

10–4

102 104

100 101 102 103

10–4

100

10–2

10–4

100

10–2

100 102 104 100 102 104

100

10–2

10–4

10–6

a b c

d e f

fc

Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).

© 2000 Macmillan Magazines Ltd

Fraction of nodes removed

Scale-free network
• Robust against random 

removal (blue)
• Vulnerable against 

targeted attacks

Consequences:
• Internet is still working 

even several servers are 
out of service

• Random vaccination is not 
effective in case of 
epidemic spreading

Albert, et.al., Nature (2000)



The Barabási-Albert 
model 

of scale-free 
networks



Emergence of hubs
What did we miss with the earlier network models?

1. Networks are evolving
• Networks are not static but growing in time as new 

nodes are entering the system
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NODES PREFER TO LINK TO THE MORE CONNECTED NODES

The random network model assumes that we randomly choose the in-
teraction partners of a node. In most real networks, however, new nodes 
prefer to link to the more connected nodes, a process called preferential 
attachment. Consider a few examples:

• We are familiar with only a tiny fraction of the trillion or more doc-
uments available on the WWW. The nodes we know are not entirely 
random, but we all heard about Google and Facebook, but we rarely 
encounter the billions of less-prominent nodes that populate the Web. 
As our knowledge is biased towards the more connected nodes, we are 
more likely to link to a high-degree node than to a node with only few 
links.

• With more than a million scientific papers published each year, no 
scientist can attempt to read them all. The more cited is a paper, the 
more likely that we will notice it. Therefore, our citations are biased 
towards the more cited publications, representing the high-degree 
nodes of the citation network.

• The more movies an actor has played in, the more familiar is a casting 
director with her skills. Hence, the higher the degree of an actor in the 
actor network, the higher are the chances that she will be considered 
for a new role.

In summary, the random network model differs from real networks in 
two important characteristics:

GROWTH

While the random network model assumes that the number of nodes, 
N, is fixed (time invariant), real networks are the result of a growth pro-
cess that continuously increases N.

PREFERENTIAL ATTACHMENT

While nodes in random networks randomly choose their interaction 
partner, in real networks new nodes prefer to link to the more connect-
ed nodes.

There are many other differences between real and random networks, 
some of which will be discussed in the coming chapters. Yet, as we show 
next, growth and preferential attachment have a particularly important 
role shaping a network’s degree distribution.

(a) The evolution of the number of WWW 
hosts, documenting the Web’s rapid growth. 
After http://www.isc.org/solutions/survey/
history.

(b) The number of scientific papers published 
in Physical Review journals since the journal’s 
funding in 1893. The observed growth drives 
the growth of both the science collaboration 
network as well as the citation network. Over 
the century the Physical Review portfolio has 
split several times, responding to the expo-
nential growth of the number of research 
papers and to specialization. Today the cor-
pus features Physical Review Letters, Physical 
Review A, B, C, D, E, X and Reviews of Modern 
Physics.

(c) Number of movies listed in IMDB.com, re-
flecting the growth of the Hollywood movie 
enterprise, and with that the growth of the 
actor network.

Figure 5.2
The growth of networks

GROWTH AND PREFERENTIAL ATTACHMENT
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AL Barabási, Network Science Book (2013)

• Pólya urn model (1923)
• Yule process (1925)
• Zipf’s law (1941)
• Cumulative advantage (1968)
• Preferential attachement (1999)
• Pareto’s law - 80/20 rule
• The rich get richer phenomena
• etc.

2. Preferential attachement
• Nodes are not connected randomly but 

tends to link to more attractive nodes



The Barabási-Albert model

1. Start with m0 connected nodes

2. At each timestep we add a new node with 
m (≤ m0) links that connect the new node to 
m  nodes already in the network.

3. The probability π(k) that one of the links of 
the new node connects to node i depends 
on the degree ki of node i as

THE BARABÁSI-ALBERT
MODEL

SECTION 5.2

The recognition that growth and preferential attachment coexist in 
real networks has lead to the introduction of a minimal model capable of 
generating networks with power-law degree distribution [1]. The model is 
defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, 
as long as each node has at least one link. The network develops following 
two steps Fig. 5.3:

(A) GROWTH

At each timestep we add a new node with m (≤ m0) links that connect 
the new node to m nodes already in the network.

(B)  PREFERENTIAL ATTACHMENT

The probability ʌ(k) that one of the links of the new node connects to 
node i depends on the degree ki of node i as

Preferential attachment is a probabilistic rule: a new node is free to 
connect to any node in the network, whether it is a hub or has a single 
link. Eq. 5.1 implies, however, that if a new node has a choice between a de-
gree-two and a degree-four node, it is twice as likely that it connects to 
the degree-four node. The model defined by steps (A) and (B) is called the 
Barabási-Albert model after the authors of the paper that introduced it in 
1999 [1]. One may also encounter it in the literature as the BA model or the 
scale-free model. After t timesteps the Barabási-Albert model generates a 
network with N = t + m0 nodes and m0 + mt links.  As Fig. 5.4 shows, the net-
work generated by the model has a power-law degree distribution, a with a 
degree exponent ਠ=3. 

As Fig. 5.3 indicates, while most nodes in the network have only a few 
links, a few gradually turn into hubs. The hubs are the result of a rich-gets-

THE BARABÁSI-ALBERT MODEL 8

Figure 5.3 
Time evolution of the Barabási-Albert model

The sequence of images shows the gradual 
emergence of a few highly connected nodes, 
or hubs, through growth and preferential at-
tachment. White circles mark the newly add-
ed node to the network, which decides where 
to connect its two links (m=2) through prefer-
ential attachment Eq. 5.1. After [9].

(5.1)
k k

k
( ) .i

i

j
j∑

Π =

⇧(ki) =
kiP
j kj

• The emerging network will be scale-free with 
degree exponent γ=3 independently from the 
choice of m0 and m

The degree distribution of a network gen-
erated by the Barabási-Albert model. The 
plot shows pk for a single network of size 
N=100,000 and m=3. It shows both the lin-
early-binned (red symbols) as well as the 
log-binned version (green symbols) of pk. The 
straight line is added to guide the eye and has 
slope ਠ=3, corresponding to the resulting net-
work’s degree distribution.

Figure 5.4
The degree distribution

richer phenomenon: due to preferential attachment new nodes are more 
likely to connect to the more connected nodes than to the smaller degree 
nodes. Hence, the more connected nodes will acquire links at the expense 
of the less connected nodes, eventually turning into hubs.

In summary, the Barabási-Albert model indicates that two simple 
mechanisms, growth and preferential attachment, are responsible for the 
emergence of networks with a power-law degree distribution. The origin 
of the power law and the associated hubs is a rich-gets-richer phenomena 
induced by the coexistence of these two ingredients. Yet, to understand the 
model’s behavior and to quantify the emergence of the scale-free proper-
ty, we need to describe the model’s mathematical properties, which is the 
subject of the next section.
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The BA model - emergence of hubs
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(a) Time dependence of the degrees of nodes 
added at time t =1, 10, 102, 103, 104, 105 (con-
tinuous lines from left to right). One can see 
that each node increases its degree following 
the same law Eq. 5.7. Also, at any moment the 
older nodes have higher degrees. The dotted 
line corresponds to the analytical prediction 
Eq. 5.7 with ȕ�= 1/2.

(b) Degree distribution of the network after 
the addition of N = 102, 104, and 106 nodes, i.e. 
at time t = 102, 104, and 106 (illustrated by ar-
rows in (a)). The larger the network, the more 
obvious is the power-law nature of the degree 
distribution. Note that pk is plotted using lin-
ear binning, to better show the gradual emer-
gence of the scale-free state.

Figure 5.6
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BOX 5.3 
THE MATHEMATICAL DEFINITION OF THE BARABÁSI-ALBERT MODEL

As we compare the predictions of the various network models 
with real data, we often have to decide how to measure time in 
networks. Real networks have evolved over rather different time 
scales: the first webpage was created in 1991, giving the WWW a 
history of a few decades at most. Given its trillion documents, this 
means that on average the WWW added more than a thousand 
nodes each second. In contrast the human cell is the result of 4 
billion years of evolution; hence with roughly 20,000 genes, the 
cellular network added a node every 200,000 years. Given these 
enormous time-scale differences it seems impossible to use real 
time to compare the dynamics of these networks. Therefore, in 
network theory we use event time, that is, we advance time each 
time there is a change in the network topology. For example, in 
the Barabási-Albert model the addition of each new node cor-
responds to a new time step. Consequently in the model t=N. In 
more complicated models a distinct time step is assigned to each 
event—like the addition of a new node, the arrival of a new link, 
or the deletion of a node, any attempt to change the network to-
pology. Obviously, if needed, we can establish a direct mapping 
between event time and the physical time.

• The degree of each node increases as a 
power-law with exponent β=1/2 

• Earlier a node was added larger its 
degree due to its earlier arrival and not 
because it grows feaster

AL Barabási, Network Science Book (2013)

Rich-get-richer mechanism

solution by A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)



The BA model - degree distribution

• The degree exponent is independent of m 

• The degree exponent is stationary in time and 
the degree distribution is time independent

• The exponent is compatible to the exponents 
of real networks 

COMPLEX NETWORKS

Algorithm 1 BarabásiAlbertModel(m0, m, t)
1: Starting from a fully connected graph with m0 vertices
2: for all timestep t do

3: add a new node with m( m0) edges
4: for all m number of edges proceed from the new node do

5: choose a node i to which the new node connects with a probability rational to its degree
such that: ⇧(ki) = kiP

j kj
.

6: end for

7: end for

This model was defined on undirected graphs and gave a degree exponent � = 3 (Figure
3.6), which is a good approach for the exponents of real world networks. It can be solved in
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Figure 3.6: Degree distribution of Barabási-Albert network for various m with system size N = 300000.
The slope of the skew line is � = 3 and gives the power-law degree exponent. In the inset we demon-
strate, that the degree distributions are independent of m after rescaling as k

�� ⇠ P (k)/m
2. The fitted

line gives the expected exponent � = 3.

the large size limit with an approximate solution given by Barabási and Albert [15, 125], and
it can be proved exactly with two another equivalent methods: the master equation approach
published by Dorogovtsev et.al. [126,127] and rate-equation approach introduced by Krapivsky
et.al. [128]. For these solutions see Appendix B.

Types of correlation

There are two types of correlation in evolving Barabási-Albert networks found by analytical
studies [129]. The first nontrivial correlation is between the age and the degree of a node.
The vertices, which were added earlier to the network had better chance to acquire edges, so
these nodes have higher degrees. For the case m = 1, when the evolving graph is a tree, the
probability distribution of the degree of vertex i, with age a (the elapsed time since i was given
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solution by A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)



The BA model - path lengthDistances in scale-free networks 

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.  
 
The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes.  
 
 
Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well. 
 
 
The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier. 
  
 

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001 
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Kmax = KminN
1
γ −1

degree distribution becomes a Gaussian around its mean
value. Indeed, Fig. 22(b) shows that the shape of P(k)
changes from the initial power law to a Gaussian.

Motivated by correlations between stocks in financial
markets and airline route maps, a prior model incorpo-
rating preferential attachment while keeping N constant
was independently proposed and studied by Amaral
et al. (1999).

The failure of models A and B to lead to a scale-free
distribution indicates that growth and preferential at-
tachment are needed simultaneously to reproduce the
stationary power-law distribution observed in real net-
works.

D. Properties of the Barabási-Albert model

While the Barabási-Albert model captures the power-
law tail of the degree distribution, it has other properties
that may or may not agree with empirical results on real
networks. As we discussed in Sec. I, a characteristic fea-
ture of real networks is the coexistence of clustering and
short path lengths. Thus we need to investigate whether
the network generated by the model has a small-world
character.

1. Average path length

Figure 23 shows the average path length of a
Barabási-Albert network with average degree !k"!4 as
a function of the network size N , compared with the
average path length of a random graph with the same
size and average degree. The figure indicates that the
average path length is smaller in the Barabási-Albert
network than in a random graph for any N , indicating
that the heterogeneous scale-free topology is more effi-
cient in bringing the nodes close than is the homoge-
neous topology of random graphs. We find that the av-
erage path length of the Barabási-Albert network

increases approximately logarithmically with N , the best
fit following a generalized logarithmic form

l !A ln#N"B $#C . (94)

Recent analytical results indicate that there is a double
logarithmic correction to the logarithmic N dependence,
i.e., l %ln(N)/lnln(N) (Bollobás and Riordan, 2001).

In Fig. 23 we also show the prediction of Eq. (60) for
these networks, using the numerically determined num-
ber of nearest and next-nearest neighbors. While the fit
is good for the random graph, Eq. (60) systematically
underestimates the average path length of the Barabási-

FIG. 22. Degree distribution
for two models: (a) Degree dis-
tribution for model A: !, m0
!m!1; ", m0!m!3; !, m0
!m!5; #, m0!m!7. The size
of the network is N!800 000.
Inset: time evolution for the de-
gree of two vertices added to
the system at t1!7 and t2!97.
Here m0!m!3. The dashed
line follows ki(t)!mln(m0#t
"1); (b) the degree distribution
for model B for N!10 000: !,
t!N ; ", t!5N ; and !, t
!40N . Inset: time dependence
of the degrees of two vertices.
The system size is N!10 000.
After Barabási, Albert, and
Jeong (1999).

FIG. 23. Characteristic path length l versus network size N in
a Barabási-Albert (BA) network with !k"!4 (!), compared
with a random graph of the same size and average degree gen-
erated with the algorithm described in Sec. III.A ("). The
dashed line follows Eq. (94), and the solid lines represent Eq.
(60) with z1!!k" and z2 the numerically obtained number of
next-nearest neighbors in the respective networks.
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hli =
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UItra Small World network
Bollobás, Riordan (2001)
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The BA model - clustering coefficient
• The clustering coefficient 

decreases with the system 
size as

• It is 5 times more than for 
random graphs

Albert network, as it does the average path length of
real networks (see Table II, last three columns).

The failure of Eq. (60) underlies the fact that the to-
pology of the network generated by the Barabási-Albert
model is different from the topology of a random net-
work with power-law degree distribution (Sec. V). The
dynamical process that generates the network intro-
duces nontrivial correlations that affect all topological
properties.

2. Node degree correlations

In random-graph models with arbitrary degree distri-
bution (see Aiello et al., 2000 and Newman, Strogatz,
and Watts, 2001), the node degrees are uncorrelated.
Krapivsky and Redner (2001) have shown that in the
Barabási-Albert model correlations develop spontane-
ously between the degrees of connected nodes.

Let us consider all node pairs with degree k and l
connected by an edge. Without loss of generality we as-
sume that the node with degree k was added later to the
system, implying that k!l since, according to Eq. (81),
older nodes have higher degree than younger ones, and
for simplicity we use m"1. Denoting by Nkl(t) the
number of connected pairs of nodes with degree k and l ,
we have

dNkl

dt
"

!k#1 "Nk#1,l#kNkl

#
k

kN!k "

$
! l#1 "Nk ,l#1#lNkl

#
k

kN!k "

$! l#1 "Nl#1$k1 . (95)

The first term on the right-hand side accounts for the
change in Nkl due to the addition of an edge to a node
of degree k#1 or k that is connected to a node of de-
gree l . Since the addition of a new edge increases the
node’s degree by 1, the first term in the numerator cor-
responds to a gain in Nkl , while the second corresponds
to a loss. The second term on the right-hand side incor-
porates the same effects as the first applied to the other
node. The last term takes into account the possibility
that k"1; thus the edge that is added to the node with
degree l#1 is the same edge that connects the two
nodes.

This equation can be transformed into a time-
independent recursion relation using the hypotheses
#kkN(k)→2t and Nkl(t)→tnkl . Solving for nkl we ob-
tain

nkl"
4! l#1 "

k!k$1 "!k$l "!k$l$1 "!k$l$2 "

$
12! l#1 "

k!k$l#1 "!k$l "!k$l$1 "!k$l$2 "
. (96)

For a network with an arbitrary degree distribution, if
the edges are placed randomly, nkl"nknl . The most im-
portant feature of the result (96) is that the joint distri-
bution does not factorize, i.e., nkl%nknl . This indicates
the spontaneous appearance of correlations between the

degrees of the connected nodes. The only case in which
nkl can be simplified to a factorized expression is when
1%k%l , and nkl becomes

nkl!k#2l#2, (97)

but even then it is different from nkl"k#3l#3, as ex-
pected if correlations are absent from the network. This
result offers the first explicit proof that the dynamical
process that creates a scale-free network builds up non-
trivial correlations between the nodes that are not
present in the uncorrelated models discussed in Sec. V.

3. Clustering coefficient

While the clustering coefficient has been much inves-
tigated for the Watts-Strogatz model (Sec. VI.B.2), there
is no analytical prediction for the Barabási-Albert
model. Figure 24 shows the clustering coefficient of a
Barabási-Albert network with average degree &k'"4
and different sizes, compared with the clustering coeffi-
cient Crand"&k'/N of a random graph. We find that the
clustering coefficient of the scale-free network is about
five times higher than that of the random graph, and this
factor slowly increases with the number of nodes. How-
ever, the clustering coefficient of the Barabási-Albert
model decreases with the network size, following ap-
proximately a power law C(N#0.75, which, while a
slower decay than the C"&k'N#1 decay observed for
random graphs, is still different from the behavior of the
small-world models, where C is independent of N .

4. Spectral properties

The spectral density of the Barabási-Albert model is
continuous, but it has a markedly different shape from
the semicircular spectral density of random graphs (Far-
kas et al., 2001; Goh, Kahng, and Kim, 2001). Numerical
simulations indicate that the bulk of )(*) has a triangle-
like shape with the top lying well above the semicircle
and edges decaying as a power law (Fig. 25). This power-

FIG. 24. Clustering coefficient versus size of the Barabási-
Albert (BA) model with &k'"4, compared with the clustering
coefficient of a random graph, Crand!&k'/N .
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Degree correlations:
• The BA model is inducing non-trivial degree correlations due to its definition

Albert network, as it does the average path length of
real networks (see Table II, last three columns).

The failure of Eq. (60) underlies the fact that the to-
pology of the network generated by the Barabási-Albert
model is different from the topology of a random net-
work with power-law degree distribution (Sec. V). The
dynamical process that generates the network intro-
duces nontrivial correlations that affect all topological
properties.

2. Node degree correlations

In random-graph models with arbitrary degree distri-
bution (see Aiello et al., 2000 and Newman, Strogatz,
and Watts, 2001), the node degrees are uncorrelated.
Krapivsky and Redner (2001) have shown that in the
Barabási-Albert model correlations develop spontane-
ously between the degrees of connected nodes.

Let us consider all node pairs with degree k and l
connected by an edge. Without loss of generality we as-
sume that the node with degree k was added later to the
system, implying that k!l since, according to Eq. (81),
older nodes have higher degree than younger ones, and
for simplicity we use m"1. Denoting by Nkl(t) the
number of connected pairs of nodes with degree k and l ,
we have

dNkl

dt
"

!k#1 "Nk#1,l#kNkl

#
k

kN!k "

$
! l#1 "Nk ,l#1#lNkl

#
k

kN!k "

$! l#1 "Nl#1$k1 . (95)

The first term on the right-hand side accounts for the
change in Nkl due to the addition of an edge to a node
of degree k#1 or k that is connected to a node of de-
gree l . Since the addition of a new edge increases the
node’s degree by 1, the first term in the numerator cor-
responds to a gain in Nkl , while the second corresponds
to a loss. The second term on the right-hand side incor-
porates the same effects as the first applied to the other
node. The last term takes into account the possibility
that k"1; thus the edge that is added to the node with
degree l#1 is the same edge that connects the two
nodes.

This equation can be transformed into a time-
independent recursion relation using the hypotheses
#kkN(k)→2t and Nkl(t)→tnkl . Solving for nkl we ob-
tain

nkl"
4! l#1 "

k!k$1 "!k$l "!k$l$1 "!k$l$2 "

$
12! l#1 "

k!k$l#1 "!k$l "!k$l$1 "!k$l$2 "
. (96)

For a network with an arbitrary degree distribution, if
the edges are placed randomly, nkl"nknl . The most im-
portant feature of the result (96) is that the joint distri-
bution does not factorize, i.e., nkl%nknl . This indicates
the spontaneous appearance of correlations between the

degrees of the connected nodes. The only case in which
nkl can be simplified to a factorized expression is when
1%k%l , and nkl becomes

nkl!k#2l#2, (97)

but even then it is different from nkl"k#3l#3, as ex-
pected if correlations are absent from the network. This
result offers the first explicit proof that the dynamical
process that creates a scale-free network builds up non-
trivial correlations between the nodes that are not
present in the uncorrelated models discussed in Sec. V.

3. Clustering coefficient

While the clustering coefficient has been much inves-
tigated for the Watts-Strogatz model (Sec. VI.B.2), there
is no analytical prediction for the Barabási-Albert
model. Figure 24 shows the clustering coefficient of a
Barabási-Albert network with average degree &k'"4
and different sizes, compared with the clustering coeffi-
cient Crand"&k'/N of a random graph. We find that the
clustering coefficient of the scale-free network is about
five times higher than that of the random graph, and this
factor slowly increases with the number of nodes. How-
ever, the clustering coefficient of the Barabási-Albert
model decreases with the network size, following ap-
proximately a power law C(N#0.75, which, while a
slower decay than the C"&k'N#1 decay observed for
random graphs, is still different from the behavior of the
small-world models, where C is independent of N .

4. Spectral properties

The spectral density of the Barabási-Albert model is
continuous, but it has a markedly different shape from
the semicircular spectral density of random graphs (Far-
kas et al., 2001; Goh, Kahng, and Kim, 2001). Numerical
simulations indicate that the bulk of )(*) has a triangle-
like shape with the top lying well above the semicircle
and edges decaying as a power law (Fig. 25). This power-

FIG. 24. Clustering coefficient versus size of the Barabási-
Albert (BA) model with &k'"4, compared with the clustering
coefficient of a random graph, Crand!&k'/N .
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ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

WS small-world 
networks exponential short large

BA scale-free 
networks power-law short Rather small
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Other scale-free models
The vertex-copying model

• Motivation:
• Citations network or WWW where links 

are often copied

• Local explanation to preferential 
attachement

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p

other scale-free network models: 
vertex copying

Tuesday, November 6, 12

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p

other scale-free network models: 
vertex copying

Tuesday, November 6, 12

• Asymptotically scale-free with 
exponent γ≥3



Other scale-free models
The Holme-Kim model

• Motivation: more realistic 
clustering coefficient

other scale-free network models: 
Holme-Kim

• the Holme-Kim Model
– motivation: to get realistic

clustering

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

probability p probability 1-p

1. preferential attachment

2A. connect to
neighbour
(implicit preferential 
attachment)

2B. preferential
attachment

for large N, ie clustering more 
realistic! This type of clustering is found
in many real-world networks.

Tuesday, November 6, 12

other scale-free network models: 
Holme-Kim

• the Holme-Kim Model
– motivation: to get realistic

clustering

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

probability p probability 1-p

1. preferential attachment

2A. connect to
neighbour
(implicit preferential 
attachment)

2B. preferential
attachment

for large N, ie clustering more 
realistic! This type of clustering is found
in many real-world networks.

Tuesday, November 6, 12



Other scale-free models
The forest fire model

• Models generating power laws are usually based on the 
idea of a growing network.

• It has been shown that real growing networks have two 
properties: growing average degree, shrinking average 
shortest path

[Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, leskovec et al. 2012 ]



Other scale-free models
The forest fire model

[Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, leskovec et al. 2012 ]

4.2.1 The Basic Forest Fire Model
Following this plan, we now define the most basic version

of the model. Essentially, nodes arrive one at a time and
form out-links to some subset of the earlier nodes; to form
out-links, a new node v attaches to a node w in the exist-
ing graph, and then begins “burning” links outward from
w, linking with a certain probability to any new node it
discovers. One can view such a process as intuitively corre-
sponding to a model by which an author of a paper identifies
references to include in the bibliography. He or she finds a
first paper to cite, chases a subset of the references in this
paper (modeled here as random), and continues recursively
with the papers discovered in this way. Depending on the
bibliographic aids being used in this process, it may also
be possible to chase back-links to papers that cite the paper
under consideration. Similar scenarios can be considered for
social networks: a new computer science graduate student
arrives at a university, meets some older CS students, who
introduce him/her to their friends (CS or non-CS), and the
introductions may continue recursively.

We formalize this process as follows, obtaining the Forest
Fire Model. To begin with, we will need two parameters, a
forward burning probability p, and a backward burning ratio
r, whose roles will be described below. Consider a node
v joining the network at time t > 1, and let Gt be the
graph constructed thus far. (G1 will consist of just a single
node.) Node v forms out-links to nodes in Gt according to
the following process.

(i) v first chooses an ambassador node w uniformly at ran-
dom, and forms a link to w.

(ii) We generate a random number x that is binomially
distributed with mean (1 − p)−1. Node v selects x
links incident to w, choosing from among both out-
links and in-links, but selecting in-links with proba-
bility r times less than out-links. Let w1, w2, . . . , wx

denote the other ends of these selected links.

(iii) v forms out-links to w1, w2, . . . , wx, and then applies
step (ii) recursively to each of w1, w2, . . . , wx. As the
process continues, nodes cannot be visited a second
time, preventing the construction from cycling.

Thus, the “burning” of links in Forest Fire model begins
at w, spreads to w1, . . . , wx, and proceeds recursively until it
dies out. In terms of the intuition from citations in papers,
the author of a new paper v initially consults w, follows a
subset of its references (potentially both forward and back-
ward) to the papers w1, . . . , wx, and then continues accu-
mulating references recursively by consulting these papers.
The key property of this model is that certain nodes pro-
duce large “conflagrations,” burning many edges and hence
forming many out-links before the process ends.

Despite the fact that there is no explicit hierarchy in the
Forest Fire Model, as there was in Community Guided At-
tachment, there are some subtle similarities between the
models. Where a node in Community Guided Attachment
was the child of a parent in the hierarchy, a node v in the
Forest Fire Model also has an “entry point” via its chosen
ambassador node w. Moreover, just as the probability of
linking to a node in Community Guided Attachment de-
creased exponentially in the tree distance, the probability
that a new node v burns k successive links so as to reach a

node u lying k steps away is exponentially small in k. (Of
course, in the Forest Fire Model, there may be many paths
that could be burned from v to u, adding some complexity
to this analogy.)

In fact, our Forest Fire Model combines the flavors of sev-
eral older models, and produces graphs qualitatively match-
ing their properties. We establish this by simulation, as we
describe below, but it is also useful to provide some intuition
for why these properties arise.

• Heavy-tailed in-degrees. Our model has a “rich get
richer” flavor: highly linked nodes can easily be reached by
a newcomer, no matter which ambassador it starts from.

• Communities. The model also has a “copying” fla-
vor: a newcomer copies several of the neighbors of his/her
ambassador (and then continues this recursively).

• Heavy-tailed out-degrees. The recursive nature of link
formation provides a reasonable chance for a new node to
burn many edges, and thus produce a large out-degree.

• Densification Power Law. A newcomer will have a
lot of links near the community of his/her ambassador; a
few links beyond this, and significantly fewer farther away.
Intuitively, this is analogous to the Community Guided At-
tachment, although without an explicit set of communities.

• Shrinking diameter. It is not a priori clear why the
Forest Fire Model should exhibit a shrinking diameter as it
grows. Graph densification is helpful in reducing the diame-
ter, but it is important to note that densification is certainly
not enough on its own to imply shrinking diameter. For
example, the Community Guided Attachment model obeys
the Densification Power Law, but it can be shown to have a
diameter that slowly increases.

Rigorous analysis of the Forest Fire Model appears to be
quite difficult. However, in simulations, we find that by
varying just the two parameters p and r, we can produce
graphs that densify (a > 1), exhibit heavy-tailed distribu-
tions for both in- and out-degrees (Fig. 6), and have diam-
eters that decrease. This is illustrated in Figure 5, which
shows plots for the effective diameter and the Densification
Power Law exponent as a function of time for some selec-
tions of p and r. We see from these plots that, depending on
the forward and backward burning parameters, the Forest
Fire Model is capable of generating sparse or dense graphs,
with effective diameters that either increase or decrease.

4.2.2 Extensions to the Forest Fire Model
Our basic version of the Forest Fire Model exhibits rich

structure with just two parameters. By extending the model
in natural ways, we can fit observed network data even more
closely. We propose two natural extensions: “orphans” and
multiple ambassadors.

“Orphans”: In both the patent and arXiv citation graphs,
there are many isolated nodes, that is, documents with no
citations into the corpus. For example, many papers in the
arXiv only cite non-arXiv papers. We refer to them as or-
phans. Our basic model does not produce orphans, since
each node always links at least to its chosen ambassador.
However, it is easy to incorporate orphans into the model
in two different ways. We can start our graphs with n0 > 1
nodes at time t = 1; or we can have some probability q > 0
that a newcomer will form no links (not even to its ambas-
sador).

We find that such variants of the model have a more pro-
nounced decrease in the effective diameter over time, with
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4.2.1 The Basic Forest Fire Model
Following this plan, we now define the most basic version

of the model. Essentially, nodes arrive one at a time and
form out-links to some subset of the earlier nodes; to form
out-links, a new node v attaches to a node w in the exist-
ing graph, and then begins “burning” links outward from
w, linking with a certain probability to any new node it
discovers. One can view such a process as intuitively corre-
sponding to a model by which an author of a paper identifies
references to include in the bibliography. He or she finds a
first paper to cite, chases a subset of the references in this
paper (modeled here as random), and continues recursively
with the papers discovered in this way. Depending on the
bibliographic aids being used in this process, it may also
be possible to chase back-links to papers that cite the paper
under consideration. Similar scenarios can be considered for
social networks: a new computer science graduate student
arrives at a university, meets some older CS students, who
introduce him/her to their friends (CS or non-CS), and the
introductions may continue recursively.

We formalize this process as follows, obtaining the Forest
Fire Model. To begin with, we will need two parameters, a
forward burning probability p, and a backward burning ratio
r, whose roles will be described below. Consider a node
v joining the network at time t > 1, and let Gt be the
graph constructed thus far. (G1 will consist of just a single
node.) Node v forms out-links to nodes in Gt according to
the following process.

(i) v first chooses an ambassador node w uniformly at ran-
dom, and forms a link to w.

(ii) We generate a random number x that is binomially
distributed with mean (1 − p)−1. Node v selects x
links incident to w, choosing from among both out-
links and in-links, but selecting in-links with proba-
bility r times less than out-links. Let w1, w2, . . . , wx

denote the other ends of these selected links.

(iii) v forms out-links to w1, w2, . . . , wx, and then applies
step (ii) recursively to each of w1, w2, . . . , wx. As the
process continues, nodes cannot be visited a second
time, preventing the construction from cycling.

Thus, the “burning” of links in Forest Fire model begins
at w, spreads to w1, . . . , wx, and proceeds recursively until it
dies out. In terms of the intuition from citations in papers,
the author of a new paper v initially consults w, follows a
subset of its references (potentially both forward and back-
ward) to the papers w1, . . . , wx, and then continues accu-
mulating references recursively by consulting these papers.
The key property of this model is that certain nodes pro-
duce large “conflagrations,” burning many edges and hence
forming many out-links before the process ends.

Despite the fact that there is no explicit hierarchy in the
Forest Fire Model, as there was in Community Guided At-
tachment, there are some subtle similarities between the
models. Where a node in Community Guided Attachment
was the child of a parent in the hierarchy, a node v in the
Forest Fire Model also has an “entry point” via its chosen
ambassador node w. Moreover, just as the probability of
linking to a node in Community Guided Attachment de-
creased exponentially in the tree distance, the probability
that a new node v burns k successive links so as to reach a

node u lying k steps away is exponentially small in k. (Of
course, in the Forest Fire Model, there may be many paths
that could be burned from v to u, adding some complexity
to this analogy.)

In fact, our Forest Fire Model combines the flavors of sev-
eral older models, and produces graphs qualitatively match-
ing their properties. We establish this by simulation, as we
describe below, but it is also useful to provide some intuition
for why these properties arise.

• Heavy-tailed in-degrees. Our model has a “rich get
richer” flavor: highly linked nodes can easily be reached by
a newcomer, no matter which ambassador it starts from.

• Communities. The model also has a “copying” fla-
vor: a newcomer copies several of the neighbors of his/her
ambassador (and then continues this recursively).

• Heavy-tailed out-degrees. The recursive nature of link
formation provides a reasonable chance for a new node to
burn many edges, and thus produce a large out-degree.

• Densification Power Law. A newcomer will have a
lot of links near the community of his/her ambassador; a
few links beyond this, and significantly fewer farther away.
Intuitively, this is analogous to the Community Guided At-
tachment, although without an explicit set of communities.

• Shrinking diameter. It is not a priori clear why the
Forest Fire Model should exhibit a shrinking diameter as it
grows. Graph densification is helpful in reducing the diame-
ter, but it is important to note that densification is certainly
not enough on its own to imply shrinking diameter. For
example, the Community Guided Attachment model obeys
the Densification Power Law, but it can be shown to have a
diameter that slowly increases.

Rigorous analysis of the Forest Fire Model appears to be
quite difficult. However, in simulations, we find that by
varying just the two parameters p and r, we can produce
graphs that densify (a > 1), exhibit heavy-tailed distribu-
tions for both in- and out-degrees (Fig. 6), and have diam-
eters that decrease. This is illustrated in Figure 5, which
shows plots for the effective diameter and the Densification
Power Law exponent as a function of time for some selec-
tions of p and r. We see from these plots that, depending on
the forward and backward burning parameters, the Forest
Fire Model is capable of generating sparse or dense graphs,
with effective diameters that either increase or decrease.

4.2.2 Extensions to the Forest Fire Model
Our basic version of the Forest Fire Model exhibits rich

structure with just two parameters. By extending the model
in natural ways, we can fit observed network data even more
closely. We propose two natural extensions: “orphans” and
multiple ambassadors.

“Orphans”: In both the patent and arXiv citation graphs,
there are many isolated nodes, that is, documents with no
citations into the corpus. For example, many papers in the
arXiv only cite non-arXiv papers. We refer to them as or-
phans. Our basic model does not produce orphans, since
each node always links at least to its chosen ambassador.
However, it is easy to incorporate orphans into the model
in two different ways. We can start our graphs with n0 > 1
nodes at time t = 1; or we can have some probability q > 0
that a newcomer will form no links (not even to its ambas-
sador).

We find that such variants of the model have a more pro-
nounced decrease in the effective diameter over time, with
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Figure 5: The DPL plot and diameter for Forest
Fire model. Top: sparse graph (a = 1.01 < 2), with
increasing diameter (forward burning probability:
p = 0.35, backward probability: pb = 0.20). Middle:
(most realistic case:) densifying graph (a = 1.21 < 2)
with decreasing diameter (p = 0.37, pb = 0.32). Bot-
tom: dense graph (a ≈ 2), with decreasing diameter
(p = 0.38, pb = 0.35).

large distances caused by groups of nodes linking to differ-
ent orphans gradually diminishing as further nodes arrive to
connect them together.

Multiple ambassadors: We experimented with allowing
newcomers to choose more than one ambassador with some
positive probability. That is, rather than burning links start-
ing from just one node, there is some probability that a
newly arriving node burns links starting from two or more.
This extension also accentuates the decrease in effective di-
ameter over time, as nodes linking to multiple ambassadors
serve to bring together formerly far-apart portions of the
graph.

4.2.3 Phase plot
In order to understand the densification and diameter

properties of graphs produced by the Forest Fire Model, we
have explored the full parameter space of the basic model in
terms of its two underlying quantities: the forward burning
probability p and the backward burning ratio r.

Figure 7 shows how the densification exponent and the ef-
fective diameter depend on the values of these parameters.
The densification exponent a is computed as in Section 3,
by fitting a relation of the form e(t) ∝ n(t)a. For the ef-
fective diameter, we fit a logarithmic function of the form
diameter = α log t + β (where t is the current time, and
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decreasing diameter (forward burning probability:
0.37, backward probability: 0.32).
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Figure 7: Contour plots: The Densification Power
Law exponent a (left) and diameter log-fit α factor
(right) over the parameter space (forward-burning
probability and ratio).

hence the current number of vertices) to the last half of
the effective diameter plot; we then report the coefficient α.
Thus, α < 0 corresponds to decreasing effective diameter
over time.

Figure 7(a) gives the contour plot of the densification ex-
ponent a. The white color is for a = 1 (the graph maintains
constant average degree), while the black color is for a = 2
(the graph is “dense”, that is, the number of edges grows
quadratically with the number of nodes, as, e.g., in the case
of a clique). The desirable grey region is in-between; we ob-
serve that it is very narrow: a increases dramatically along
a contour line, suggesting a sharp transition.

Figure 7(b) gives the contour plot for the factor α in the
effective diameter fit, as defined above. The boundary be-
tween decreasing and increasing effective diameter is shifted
somewhat from the contour line for densification, indicating
that even the basic Forest Fire Model is able to produce
sparse graphs (with densification exponent near 1) in which
the effective diameter decreases.

For lack of space, we omit the phase plots with orphans
and multiple ambassadors, which show similar behavior.

5. CONCLUSION
Despite the enormous recent interest in large-scale net-

work data, and the range of interesting patterns identified
for static snapshots of graphs (e.g. heavy-tailed distribu-
tions, small-world phenomena), there has been relatively
little work on the properties of the time evolution of real
graphs. This is exactly the focus of this work. The main
findings and contributions follow:

• The Densification Power Law: In contrast to the stan-
dard modeling assumption that the average out-degree re-
mains constant over time, we discover that real graphs have
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Figure 5: The DPL plot and diameter for Forest
Fire model. Top: sparse graph (a = 1.01 < 2), with
increasing diameter (forward burning probability:
p = 0.35, backward probability: pb = 0.20). Middle:
(most realistic case:) densifying graph (a = 1.21 < 2)
with decreasing diameter (p = 0.37, pb = 0.32). Bot-
tom: dense graph (a ≈ 2), with decreasing diameter
(p = 0.38, pb = 0.35).

large distances caused by groups of nodes linking to differ-
ent orphans gradually diminishing as further nodes arrive to
connect them together.

Multiple ambassadors: We experimented with allowing
newcomers to choose more than one ambassador with some
positive probability. That is, rather than burning links start-
ing from just one node, there is some probability that a
newly arriving node burns links starting from two or more.
This extension also accentuates the decrease in effective di-
ameter over time, as nodes linking to multiple ambassadors
serve to bring together formerly far-apart portions of the
graph.

4.2.3 Phase plot
In order to understand the densification and diameter

properties of graphs produced by the Forest Fire Model, we
have explored the full parameter space of the basic model in
terms of its two underlying quantities: the forward burning
probability p and the backward burning ratio r.

Figure 7 shows how the densification exponent and the ef-
fective diameter depend on the values of these parameters.
The densification exponent a is computed as in Section 3,
by fitting a relation of the form e(t) ∝ n(t)a. For the ef-
fective diameter, we fit a logarithmic function of the form
diameter = α log t + β (where t is the current time, and
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decreasing diameter (forward burning probability:
0.37, backward probability: 0.32).
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Figure 7: Contour plots: The Densification Power
Law exponent a (left) and diameter log-fit α factor
(right) over the parameter space (forward-burning
probability and ratio).

hence the current number of vertices) to the last half of
the effective diameter plot; we then report the coefficient α.
Thus, α < 0 corresponds to decreasing effective diameter
over time.

Figure 7(a) gives the contour plot of the densification ex-
ponent a. The white color is for a = 1 (the graph maintains
constant average degree), while the black color is for a = 2
(the graph is “dense”, that is, the number of edges grows
quadratically with the number of nodes, as, e.g., in the case
of a clique). The desirable grey region is in-between; we ob-
serve that it is very narrow: a increases dramatically along
a contour line, suggesting a sharp transition.

Figure 7(b) gives the contour plot for the factor α in the
effective diameter fit, as defined above. The boundary be-
tween decreasing and increasing effective diameter is shifted
somewhat from the contour line for densification, indicating
that even the basic Forest Fire Model is able to produce
sparse graphs (with densification exponent near 1) in which
the effective diameter decreases.

For lack of space, we omit the phase plots with orphans
and multiple ambassadors, which show similar behavior.

5. CONCLUSION
Despite the enormous recent interest in large-scale net-

work data, and the range of interesting patterns identified
for static snapshots of graphs (e.g. heavy-tailed distribu-
tions, small-world phenomena), there has been relatively
little work on the properties of the time evolution of real
graphs. This is exactly the focus of this work. The main
findings and contributions follow:

• The Densification Power Law: In contrast to the stan-
dard modeling assumption that the average out-degree re-
mains constant over time, we discover that real graphs have



Other scale-free models
Generalized random models

• Exponential Random Graphs

• Random graphs with latent variables

• Graphons

• …

• Nodes have some known properties  (degrees, attributes…). 

• We would like to study another property x

• We can compare the observed x to the distribution of x among graphs in 
the space of all possible graphs respecting .

• How to efficiently analyse this graph space ?

θ

θ



ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient
Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

WS small-world 
networks exponential short large

BA scale-free 
networks power-law short Rather small

Other models power-law short Large 

Complex models can have all three properties,
But what is the point if they are themselves quite 

complex?



End notes

• “All models are wrong, but some are useful”

• ER models and Configuration models are used as 
reference models in a very large number of applications

• WS, BA models are more “making a point” type models: 
simple processes can explain some non-trivial properties 
of networks, unfound in random networks.

• Correlation is not causation. Are these simple processes 
the “cause” ? Maybe, maybe not, sometimes…


