COMMUNITY DETECTION
(GRAPH CLUSTERING)



EOMMUNITY DE | ECHCHS

- Community detection Is equivalent to “clustering” in
unstructured data

* Clustering: unsupervised machine learning
» FIind groups of elements that are similar to each other

- People based on DNA, apartments based on characteristics, etc.

» Hundreds of methods published since 1950 (k-means)
» Problem: what does “'similar to each other’ means !



MUNITY DE T ECHCHS

MiniBatchKMeansAffinityPropagation = MeanShift SpectralClustering

Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




EOMMUNITY DE | ECHCHS

¢ S

» Community detection: »

» Find groups of nodes that are:
- Strongly connected to each other
- Weakly connected to the rest of the network
- |deal form: each community is |)A clique, 2) A separate connected component

» No formal definrtion
» Hundreds of methods published since 2003



WHY COMMUNITY
e T EC OIS

* One of the key properties of complex networks was

» High clustering coefficient
» (friends of my friends are my friends)

» Different from random networks. How to explain it ¢ Evenly

distributed ?

» Watts strogatz (spatial structure?)
» Forest fire, copy mechanism ¢

* => |n real networks, presence of dense groups: communities

» Small, dense (random) networks have high density.

» Large networks could be interpreted as aggregation of smaller, denser
networks, with much fewer edges between them



SOME HIS TORE

* I he graph partitioning problem was a classic problem in graph
theory

iR ocs ke this:
» How to split a network in K equal parts such that there Is a minimal number of
edges between parts.
» It was one problem among many others

» Variants were proposed:
- What if partitions are not exactly same size ?
- What if the number of parts is not exactly k ?




SOME HIS TORE

* Then in 2002, [Girvan & Newman 2002], introduction of the

problem of “community discovery'

» Observation that social networks are very often composed of groups
» The number and the size of these groups Is not known in advance
» Can we design an algorithm to discover automatically those groups !

Girvan, Michelle, and Mark EJ Newman. "Community structure in social and biological networks." Proceedings of the national academy of sciences 99.12 (2002): 7821-7826.



COMMUNITY STRUCTURE IN
REAL GRAPHS

* If you plot the graph of your facebook friends, it looks like this

cluster
® NYU
® EUI
© UPF
© MA

@ Caixa
® NYC
@ Others




COMMUNITY STRUCTURE IN
peAL GRAFTS

* Connections In the brain ?

A

O = Occipital

O = Central

O = Frontoparietal
@ = Default mode
[] = Rich club




COMMUNITY STRUCTURE IN
peAL GRAFTS

* Phone call communications in Belgium ?




FIRST METHOD BY GIRVAN &
NEVWMAN

» | )Compute the betweenness of all edges
» 2)Remove the edge of highest betweenness

» 3)Repeat untll all edges have been removed

» Connected components are communities

« => |t Is called a divisive method
» =>What you obtain Is a dendrogram

* How to cut this dendrogram at the best level ?



FIRST METHOD BY GIRVAN &

NEVWMAN

Cluster Dendrogram

10 -

yein
lleme
BIUBA|AS
oIyo
sesuey
eueIpu|
ewoye|

uo)buiys
mcomoho
- LINOSSIN

pue|s| @
1N2I1108U!
AasJar A

s)1esnya
aleme|d

Ayonjua
mmmcmwﬁ_
BulwoAp
eIUIBIIA

l”m__cwacc

EMO|

| ==Y
uISUODSI
B)J0Sauu
e)selqo
Buejuo|
oyep|

JUOWLIB A
ejoyeq |
eIuIBJIA
ejoyeq |

euljoie)
iddississ
euljoJen

99SSauL
e161099
BURISING
eweqe|y




FIRST METHOD BY GIRVAN &
NEVWMAN

* Introduction of the Modularity

* The modularity 1s computed for a partrition of a graph
» (each node belongs to one and only one community)

BliRcompares :
» The observed fraction of edges inside communities

» Jo the expected fraction of edges inside communities In a random network



MODULARITY

Original formulation



MODULARITY

d(cy, Cw)

Sum over all pairs of nodes



MODULARITY

Q — E Ay f. ) )
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rw

| It In same community



MODULARITY

(5(00, Cw)

S

| If there Is an edge between them



MODULARITY

Probability of an edge In
a random network



MODULARITY

)))))




MODULARITY

Q@R DoINt to note:

» Number of edges in a random network: what type of random network ?

» Original (and still mostly used) null model for modularity:

» The Configuration model, or degree preserving random model
» The degrees of nodes Is conserved.
» Multi-edges and loops are allowed (for practical reasons)

* No trivial solution:

» Too many/too few communities; comparable to a random model

» Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN &
NEVWMAN

* Back to the method:

» Create a dendrogram by removing edges
» Cut the dendrogram at the best level using modularity

* =>|n the end, your objective Is... to optimize the Modularity,
right ¢

* Why not optimizing it directly !



MODULARITY OPTIMIZATION

* From 2004 to 2008: The golden age of Modularity

» Scores of methods proposed to optimize it

» Graph spectral approaches
» Meta-heuristics approches (simulated annealing, multi-agent. . .)
» Local/Gloabal approaches...

» => 2008: the Louvain algorithm



LOUVAIN ALGORITHM

* SImple, greedy approach
» Easy to implement
» Extremely fast

* Yields a hierarchical community structure

» Beats state of the art on all aspects (when proposed)
» Speed
» Max modularity obtained
» Do not fall in some traps (see later)



LOUVAIN ALGORITHM

» Fach node start In 1its own community

* Repeat until convergence

» FOR each node:

- FOR each neighbor:
it adding node to its community increase modularity, do 1t

* When converged, create an induced network

» Each community becomes a node
» Edge weight Is the sum of weights of edges between them

» Irick: Modularity 1s computed by community
» Global Modularity = sum of modularities of each community

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



RESOLUTION LIMIT

* Modularity == Definrtion of good communities ¢

» 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]
» Resolution limit of Modularity

» => Modularity has intrinsic flaws, it is only one measure of the
quality of communities

QECESESee A example

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.



RESOLUTION LIMIT

Let's consider a ring of cliques
P B Cligues are as dense as possible

Single edge between them:
& B2 =>As separated as possible

Any acceptable algorithm=>tach clique I1s a community



RESOLUTION LIMIT

But with modularity:
Small graphs=> OK

Large graphs==>
The max of modularity obtained
by merging cliques




RESOLUTION LIMIT

» Discovery that Modularrty has a “favorite scale’:

* For a graph of given density and size:

» Communities cannot be smaller than a fraction of nodes
» Communities cannot be larger than a fraction of nodes

» Modularity optimisation will never discover

» Small communities in large networks
» Large communities in small networks



RESOLUTION LIMIT

» Multi-resolution modularity

ieii—al.z * Ze — la?

A = Resolution parameter

More a patch than a solution...



O THER WEAKNESSES

» Modularity has other controversial/not-inturtive properties:

» Global measure => a difference in one side of the network can change
communities at the other end (imagine a growing clique ring...)

» Unable to find no community:

- Network without community structure: Max modularity for partitions driven by random
noise

» o this day, Louvain and modularity still most used methods

» Results are usually “good™/useful



ALTERNATIVES

» | 000+ Algorithms published, 2+ more every month (not an
exaggeration)

* What unfortunately many methods still do:

» They define their own criteria of good communities without being srounded
on existing Iiterature

» They show empirically on a few networks using a single validation method that
their method is better than Louvain (10y.o. algorithm)

» Common saying: 'no algorithm Is better than other, it depends
on the network” (I don't really agree)



ALTERNATIVES

* Most serious alternatives (in my opinion)

» Infomap (based on information theory —compression)
» Stochastic block models (bayesian inference)

* [hese methods have a clear definition of what are good
communities. [ heoretically gsrounded

* Most other methods are ad hoc=>They define a process,
without a clear definrtion



INFOMAP

» [Rosvall & Bergstrom 2009]

* Find the partition minimizing the description of any random
walk on the network

* We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.



INFOMAP

0011 1001 0100 0111 10001 1110 0111 10001 0111 1110 0000
1110100010111 11100111 11101111101 1110 0000 10100 0000
1110100010111 010010110 11010 10111 1001 0100 1001 10111
10010100 1001 0100 0011 0100 0011 011011011 0110 0011 0100
100110111 0011 0100 0111 10001 1110 10001 0111 0100 10110
1

1110 00011

—w

| Description
Random Without

walk Communirties

With communities

Huffman coding: short codes for frequent ritems
Prefix free: no code is a prefix of another one (avoid fi x length/separators)



The Infomap method
Finding the optimal partition M:

- Shannon’s source coding theorem (Shannon’s entropy)
for a probability distribution P = {pi} such that = pi = 1, the L(p) — H(P) = _ Zpl. logpl.
I

lower limit of the per-step code-length is

- Minimise the expected description length of the random walk
Sum of Shannon entropies of multiple codebooks weighted by the rate of usage

probability of within modules movements

bability of bet dul
Probabiiity o bEWWeEh ModLIes of a RW, i.e. the rate of usage of the

faRW, ie.th f
movements of a ,l.e. the rate o module codebook

usage of the index codebook \ - / |
LM) = g~H(2) + 2, pLH(P)

/ e X

Exoected decrvotion Entropy of movement between o ,
P Typ modules, i.e. the frequency weighted Entropy of mgvement inside modules, i.e. the
length of partition M frequency weighted average length of

_ average length of codewords codewords in the module codebook
Algorithm

1. Compute the fraction of time each node is visited by the random walker (Power-
method on adjacency matrix)

2. Explore the space of possible partitions (deterministic greedy search algorithm - similar to
Louvain but here we join nodes if they decrease the description length)

3. Refine the results with simulated annealing (heat-bath algorithm)



INFOMAP

o sUm Up:
» Infomap defines a quality function for a partition different than modularity
» Any algorithm can be used to optimize it (like Modularity)

» Advantage:

» Infomap can recognize random networks (no communities)
» It Is nearly as fast as Louvain

* Drawback:

» [t seems to suffer from a sort of resolution limit
- Variants: hierarchical, overlapping, etc.



BOCHAS 11C BLOCK MOBSEs

» Stochastic Block Models (SBM) are based on statistical models
of networks

* [hey are In fact more general than usual communities.

* The model is:

» Each node belongs to | and only | community
» To each pair of communirties, there Is an associated density (probability of each
edge to exist)



Stochastic block models

Parameters:

k : scalar denoting the number of blocks/groups/communities in the network
z . a nx1 vector where z(/) describes the block index for node /

M : a kxk stochastic block matrix, where M;; gives the probability that nodes of
type i are connected to nodes of type j (where i and j are indexes of modules)

Generating networks
1. Take N disconnected nodes

2. Connect each u,v € V' nodes with probability M-, -n)

Properties:
» Every vertices in a same module are statistically equivalent
 Vertices in a module are connected by a random graph

- Emergent degree distribution is a combination of Poisson distributions



BOCHAS 11C BLOCK MOBSEs

B EIMRcAn represent different things:

Q
~

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

Adjacency Matrix

Blockmodel

Edge-existence probability

Edge-existence probability Edge-existence probability
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BOCHAS 11C BLOCK MOBSEs

B EINRE R fepresent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

* This is very powerful and potentially relevant

R ebiemiOiten hard to Interpret in real situations.
» SBM can be “constrained’: we impose that intra d.>inter d.



BOCHAS 11C BLOCK MOBSEs

» General idea of SBM community detection:

» Specify the desired number of cluster

» Find parameters to optimize the maximum likelihood
- Principle: parameters such as the probability to generate the observed network is maximal.

» Underlying idea: Communities are “random sub-networks”

» Again, guestion Is: what type of random networks ?

BREECESIReEnYI Vs Degree corrected !
- DG gives better results on real networks

» Micro-canonical/canonical ensemble
- Micro-canonical: all networks than can be generated are generated with the same probability
- Canonical: Probabllity to generate different networks can be different



BOCHAS 11C BLOCK MOBSEs

* Main weakness of SBM:

» Number of clusters must be specified (avoid trivial solution)

» Usual approach to solve 1t

» Similar to k-means in clustering: try different k and measure improvement
(elbow-method)

» Not satisfying

[ZO | 6 Peixoto]

Non-parametric SBM
» Bayesian inference
» Minimum Description Length (MDL) (Occam’s razor)




BOCHAS 11C BLOCK MOBSEs

Bayesian Formulation

Priors
PA,k,e,b) = P(A|k,e,b)P(k|e,b)P(e|b)P(b)
P(A|D) e
P(b|A) = Posterior distribution
P(A)

A: adjacency matrix
SGlEaieciseqluence

e: Matrix of edges between blocks
b: partitions




BOCHAS 11C BLOCK MOBSEs

Information Theoretic Formulation
P(A ke, b) =2"% >=S+1L

G— lOgZP(A ‘ k, e, b) # bits necessary to encode the

graph knowing the model

= — lOgZP(k, €, b) # bits necessary to encode the model

Objective = maximize the graph compression.

-Too many communities: over-complexifying the model

-Too few communities: Harder to encode the graph, since the model provides few useful
iInformation

Occam’s razor

Peixoto, Tiago P. "Bayesian stochastic blockmodeling." arXiv preprint arXiv:1705.10225 (2017).



BOCHAS 11C BLOCK MOBSEs

@RSl Lp:

SBM have a convincing definition of communities
In practice, slower than louvain/infomap

But more powerful

Can also say If there i1s no community

And also suffer from a form of resolution limrt

v

v

v

v

v

» Less often used, but regain popularity since works by Peixoto.



EVALUATION OF
COMMUNITY STRUCTURE



EVALUATION

* [wo main approaches:

» Intrinsic evaluation
- Partition quality function
- Individual Community quality function
» Comparison of observed communities and expected communities
- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION



INTRINSIC EVALUATION

* Partition quality function
» Already defined: Modularity, gsraph compression, etc.

» Community quality function
» Contraction: Average in-degree |E, |/|c]
» Expansion: Average out-degree |E_.|/|c|

[
t
. Conductance: e
|E0ut|+|Em| |Ein|9|E0ut|:
- Fraction of external edges # of links to nodes inside

(respectively, outside) the
community



COMPARISON WITH
GROUND TRUTH



SYNTHETIC NETWORKS

* Planted Partition models:

» Another name for SBM with manually chosen parameters
- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

» Problem: how to choose parameters!

- Either oversimplifying (all nodes same degrees, all communities same #nodes, all intern
densities equals...)

- Or ad-hoc process (sample values from distributions)



SYNTHETIC NETWORKS




SYNTHETIC NETWORKS

* LFR Benchmark [Lancichinetti 2008]

» High level parameters:
- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of external edges of each node
» Varying the mixing parameter makes community more or less well defined

» Currently the most popular



SYNTHETIC NETWORKS

LFR Benchmark Networks with 200 Nodes

1=0.1 1=0.3 p=05
#Edges=2206 #Edges=2628 #Edges= 2462
15— —




SYNTHETIC NETWORKS

* Pros of synthetic generators:

» VWe know for sure the communities we should find
» We can control finely the parameters to check robustness of methods

- For instance, resolution limit...

@GRS

» Generated networks are not realistic: simpler than real networks
- LFR: High CC, scale free, but all nodes have the same mixing coefficient, no overlap, ...

- SBM: depend a lot on parameters, random generation might lead to unexpected ground
truth (it Is possible to have a node with no connections to other nodes of its own
community...)



REAL NETWORKS WITH GT

* In some networks, ground truth communities are known:

» Social networks, people belong to groups (Facebook, Friendsters, Orkut,
students In classes...)

» Products, belonging to categories (Amazon, music...)

» Other resources with defined groups (Wikipedia articles, Political groups for
vote data...)

* Some websites have collected such datasets, e.g.
» http://snap.stanford.edu/data/index.ntml



http://snap.stanford.edu/data/index.html

REAL NETWORKS WITH GT

* Pros of G communities:

» Retain the full complexity of networks and communities

@S

» No guarantee that communities are topological communities.

» In fact, they are not: some G T communities are not even a single connected
EONIPORENL. . .

» Currently, controversial topic

» Some authors say It Is non-sense to use them for validation
» Some others consider It necessary



REAL NETWORKS WITH GT

* Example: the most famous of all networks: Zackary Karate
Club

©) ()
(L
SN )
oZAloN\wdo
§ 7/ \\'G It your algorithm find the right
Q"ng@," ® 0" communities,

“}‘ 2D D Then 1t Is wrong...
e X ®
— N




MEASURING PARTITION
DI ARITIES

| ineeor G, we get:

» Reference communities
» Communities found by algorithms

* How to measure their similarity ¢

» NMI
B NM]
» Fl-score



MEASURING PARTITION
SIMILARITIES

H(Y

 NNMI: Normalized Mutual Information

» Classic notion of Information Theory: Mutual Information

» How much knowing one variable reduces uncertainty about the other
» Or how much in common between the two variables

S

VoY 2o X z) p(y)

L e————

* Normalized version: NM|
» O:independent, |:identical

MI(U,V)—-E{MI(U,V)}

® Adjusted fOI” chance: aNMI A O max {H(U), H(V)) — E{MI(U, V)}




MEASURING PARTITION
DI ARITIES

I(X;Y) = S:Xp(w,y)log< p(z,9) )

VoY reX p(z) p(y)

L re—————

/

For all pairs of clusters (yx)

Probability for a node picked at random to belong to both\x and y

Probably for a node picked at random to belong to x



MEASURING PARTITION
DI ARITIES

* Fl-score: Borrowed from machine learning
» Harmonic mean of Precision & Recall

2 precision - recall
Fy = =2 —
1L 1 precision + recall
recall ~ precision ko b
v A Precision = ——— Recall = ——
Precision/Recall for Communities: < [

Bl e niodes In the same clusters — | —
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Normalized Mutual Information
0 O O O

ALGORITHMS COMPARATIVE
ANALYSIS
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Lancichinetti, Andrea, and Santo Fortunato. "Community detection algorithms: a comparative analysis." Physical review E 80.5 (2009): 056117.



ALGORITHMS COMPARATIVE
ANALYSIS

Rank | Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gee 32

All methods Overlapping only

Coscia, Michele. "Discovering Communities of Community Discovery." arXiv preprint arXiv:1907.02277 (2019).



ALGORITHMS COMPARATIVE
ANALYSIS

ID Col n  Over Spr Q NSim
1 Red 21 0.9048 0.1429 0.0952 0.0952
2 Blue 28 03214 0.5357 0.1429 0.0357
3 Green 10 0.1000 0.0000 1.0000 0.0000
4 Purple | 11 0.0909 0.0000 0.0000 0.7273
5 Orange | 8 0.3750 0.2500 0.3750 0.0000

Table 1: Features of the communities of ASN. n: # of nodes.
Over: % overlapping algorithms. Spr: % algorithms based ei-
ther on centrality measures (including edge betweenness
and random walks) or some sort of spreading process (e.g. la-
bel percolation). Q: % algorithms based on modularity max-
imization. NSim: % algorithms based on neighborhood simi-
larity. Algorithms can be part of multiple/no classes, so the
rows do not sum to one.

ID Col IC| Avg Size d 0 ¢ Avg Ncut
1 Red 19.7979 9.0942 0.3220 0.2200 0.7423 0.7674
2 Blue 5.6520 16.4769 0.2627 0.1102 0.5542 0.7100
3 Green 4.8948 11.9844 0.2580 0.1118 0.6288 0.7407
4 Purple | 10.3702 11.0140 0.2917 0.0333 0.7555 0.8033
5 Orange 4.2852 17.0505 0.2329 0.0863 0.5963 0.7483

Table 2: The averages of various community descriptive statistics per algorithm group. |C|: Average number of communities.
Avg Size: Average number of nodes in the communities. d: Average community density. O: Average modularity — when the
algorithm is overlapping we use the overlapping modularity instead of the regular definition. ¢: Average conductance - from
[24]. Avg Ncut: Average normalized cut — from [24].



NODE/COMMUNITY
RELATION

kint
. Embeddedness ;e = .
» (fraction of internal edges)
max(k.
Bhlterdeminance: n(C) = (Kine)
7=

» |s the community star-like?



DT HER MESO-5CALE
ORGANIZATIONS



MESO-5SCALE

* MACRO properties of networks:

» degree distribution, density, average shortest path. ..

N@R RS roperties of hetworks:

» Centralities

« MESO-scale: what Is In-between

» Community structure

» Overlapping Community Structure
» Core-Periphery

» Spatial Organization (another class)



OVERLAPPING COMMUNITIES

* In real networks, communities are often overlapping

» Some of your High-School friends might be also University Friends
» A colleague might be a member of your family

DSy

» Overlapping community detection is considered much harder

» And Is not well defined

» Difference between “attributes’ and overlapping

communities ?
» Community of Women, Community of | /7-19yo, Community of fans of X...



OVERLAPPING COMMUNITIES

» Many algorithms

» Adaptations of modularity, random walks, label propagations. ..
» Original methods

» Many local methods (local criterium) compare with global optimisation for
partitions



OVERLAPPING COMMUNITIES

« Motif-based definitions:

» Cliques
- Of a given size

- Maximal cligues
» N-cliques
- Set of nodes such as there is at least a path of length <=N between them
- Generalization of cliques for N> |
- Computationally expensive



Link clustering - overlapping communities
Link graphs

* Links are replaced by nodes which are connected if the original
links share a node

N o

=

n, e o
B %

- Community detection on link graphs allows for overlapping
communities



K-CLIQUE PERCOLATION

* (Other name: CPM, C-finder)
» Parameter: size k of atomic cliques
B ERieralcligues of size K

» 2)merge Iteratively all cligues having k-1 nodes in common



K-CLIQUE PERCOLATION

9
10

2 5 7 Cliques for k=3:
1 {1,2,3},{1, 3,4}, {2, 5, 6},
{5,6,7},{5,6,8},{6, 7,8}

{5,7,8},{5, 7,9}

3 4 6 8
k-clique Communities: {2,5.6} {1.2,3}
{1, 2, 3, 4}
{2, 5,6,7,8, 9} {5,6,7}_ {5,6,8}

(57.9) (1.34)

(5,7,8} {6,7,8}




K-CLIQUE PERCOLATION

» Obvious weakness: communities can be very far from random
networks




OVERLAPPING COMMUNITIES

» Another general approach

» Each community is defined intrinsically.

Must verify a property

Try to add and remove randomly nodes
Until the property is maximized.
Natural overlap, low complexity
Problem: which property ?

v

v

v

v

v

Lancichinetti, Andrea, et al. "Finding statistically significant communities in networks." PloS one 6.4 (2011): e18961.



HIERARCHICAL
OMMUNITIES
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CORE-PERIPHERY
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