DYNAMIC NETWORKS

(Dynamic of networks)



DYNAMIC NETWORKS

» Most real world networks are dynamic

» Facebook friendship

- People joining/leaving

- Friend/Unfriend

Twirtter mention network

- Each mention has a timestamp

v

- Aggregated every day/month/year => still dynamic
VWorld Wide Web

Urban network

S £

v



DYNAMIC NETWORKS

* Most real world networks are dynamic

» Nodes can appear/disappear
» Edges can appear/disappear
» Nature of relations can change

* How to represent those changes!

* How to manipulate dynamic networks?



DYNAMIC NETWORKS

Semantic . |
Relations Interactions
level

Long term

-Friend
-Colleague
-Family relation

Short term?

-Collaborators in the same
project
-Same team In a game
-Attendees of the same meeting

Instantaneous
-e-mall
- Text message
-Co-authoring

With duration

-Phone call
-Discussion In real life
-Participate in a same meeting



DYNAMIC NETWORKS
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DYNAMIC NETWORKS

Snapsho Aggregat]

R | .
SPresentation Y |nterval oraphs | Graph series |
level
DN=(VETDV) DN={GI,G2...Gn} e
DV:VxTXT Gi=(V;E) DE'\,'\;S’E’TT)

E:VXVXTXT EVxV



DYNAMIC NETWORKS

Snapsho Aggregat]

File/in-memory . Sequence of W Temporal edge
. Interval list .
representation osraphs lIst

ooy e edges with
-1 file with

-List of intervals timestamps
all graphs

Representation
level




DYNAMIC NETWORKS

Reformulation

£\
Interval graphs | Graph series

Representation
level

Discretization

\%eformulation




DYNAMIC NETWORKS

* Exemple in practice: Sociopattern dataset

» Every 20s, list of individuals at distance = [,0m
» Dataset : sequence of graphs or temporal edge list
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Types of network evolution

According to
) Observation frequency
2) Network nature

Relations
The graph is more and more stable, until most observations
are completely similar to previous/later ones Higher Observation
] (frequency faster than change rate)
Static Fre»quency
Network The graph Is less and less stable, until each observation Exhaustive /

s a graph In itself, thus completely different from
previous/later ones
(frequency faster than observed events rate)

continuous time

Interactions



ANALYZING DYNAMIC
NE TWORKS
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UNSTABLE SNAPSHOTS



UNSTABLE SNAPSHOTS

* The evolution Is represented as a series of a few snapshots.

» Many changes between snapshots

» Cannot be visualized as a “movie”

2007-2008 2009-2010 2011-2012

e — e



UNSTABLE SNAPSHOTS

» Each snapshot can be studied as a static graph
* The evolution of the properties can be studied “manually”

* “"Node X had low centrality in snapshot t and high centrality In
snapshot t+n”



STABLE NETWORKS



STABLE NETWORK

* Edges change (relatively) slowly

* The network I1s well defined at any t

» Temporal network: nodes/edges described by (long lasting) intervals
» Enough snapshots to track nodes

» A static analysis at every (relevant) t gives a dynamic vision

* No formal distinction with previous case (higher observation
frequency)



STABLE NETWORK

* Visualization
» Problem of stability of node positions




STABLE NETWORK
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Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data
(TKDD) 1.1 (2007): 2.



STABLE NETWORK

« Centralities

—»— ul (consumer) —e— u2 (producer) u3d (consumer&producer)
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TIME SERIES ANALYSIS

» 1S analysis is a large field of research

e seres: evolution of a value over time

» Stock market, temperatures. ..

» “Killer app™:

» Detection of periodic patterns
» Detection of anomalies

» |dentification of global trends

» Evaluation of auto-correlation
» Prediction of future values

» e.0. ARIMA (Autoregressive integrated moving average)

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average



UNSTABLE TEMPORAL
NE TWORKS



UNSTABLE TEMPORAL
NETWORK

* The network at a given t Is not meaningful

» How to analyze such a network?



UNSTABLE TEMPORAL
NETWORK




UNSTABLE TEMPORAL
NETWORK

» Until recently, network was transformed using aggregation/
sliding windows

» Information loss

» How to chose a proper aggregation window size!

» lools developed to deal with such networks



UNSTABLE TEMPORAL
NETWORK

» [Holme 2012]: mostly about paths, walks, distances... (later
class, diffusion on networks.)

Holme, Petter, and Jari Saramaki. "Temporal networks." Physics reports 519.3 (2012): 97-125.

» [Latapy 2018]: Other things (centralities, ...)

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.

» |[dea: Generalize all graphs definitions to temporal networks

» => |f all nodes and all edges always present, same values as for
a static graph



CENTRALITIES
&
NETWORK PROPERTIES
IN S TREAM GRAPHS



STREAM GRAPHS

stream graph S = (T,V,W, F)

————-

T: Possible Time
V:vertices

W:Vertices presence time

£ IE@lges [plissEnes hae



INDICES IN STREAM GRAPHS

Number of nodes:

Jotal presence of nodes veV

| ———

0= m =

Jotal dataset duration

. e.0. 7 I nesss
leran Integer value.. . ) sivS



INDICES IN STREAM GRAPHS

Number of edges:

E
Total presence of edges _ _ 1=
P g m E Muy = 17

Jotal dataset duration

(not an integer value...) e.g: | if | edge all the time



INDICES IN STREAM GRAPHS

Neighborhood of a node
N(v) = {(t,u), (t,uv) € E}

L e————— ——————

Dieyiee @) el lnodie

T,
d(v) =
\Tl =2 ITI

-




INDICES IN STREAM GRAPHS

a ........ L N

b - g ————

Cl. ................. T

T i comizsescemonneermanzsesems: S— - -
0 p) 4 6 S  time 0 p) 4 $  time

Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1,3] U [7,8]) x {b} U[4.5,7.5] x {c} is in blue, leading to d(a) = 2 + 2 = 0.6.
Right: N(c) = [2,5] x {a} U1,8] x {b} U[6,9] x {d} is in blue, leading to d(c) = 12 = 1.3.




INDICES IN STREAM GRAPHS

Average node degree

d(V):%-va-d(v)=Z%-d(v)

e —




INDICES IN STREAM GRAPHS

Clustering coefficient of a node

Zuw€V®V |Tvu A va A Tuw|
ZuwéV@V |Tvu A va‘

Probability that it we take 2 random neighbors at a random
time, they are linked



INDICES IN STREAM GRAPHS

; V|Tuv| L|Et|dt
6 S _ UVEV QR _ te
O =T AT T T mevia
uwweVV te’T’

L ree———

Density (of a stream graph): probability It we
take a random pair of nodes
at a random time that there Is an edge
between them



INDICES IN STREAM GRAPHS

uwweVV te’T’

L ree———

llEafecceipresence

CRERRIBRIScdocs present over Siperiods



INDICES IN STREAM GRAPHS

lotal overlapping time between each pair
of nodes
=>An edge Is possible



INDICES IN STREAM GRAPHS

a.“.. a.

be =

C

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with different
densities: Left: 0 = 0.75. Right: 0 = 1.




INDICES IN STREAM GRAPHS

* Note that we can define particular cases of density:

» Density for a pair of nodes
» Density for a node

. Zuév,u;év ‘Tuv‘
ZuEV,u;év |Tu a Tvl




INDICES IN STREAM GRAPHS

A clique of graph G is a cluster C' of G of density 1. In other words, all pairs of nodes
involved in C' are linked together in G. A cliqgue C is mazximal if there is no other clique
C" such that C C C".




PATHS AND DISTANCES IN
ST REAM GRAPHS



Fallmis

* A path In a stream graphs

Starts at a node and a date

» Ends at a node and a date

» Has a length (number of hops)

» Has a duration (duration from leaving node to reaching node)

v

Path(d,|)(c9)
Length:3 ! !
Duration: 3



SHORTEST PATHS

» Several types of shortest paths in Stream graphs:

Shortest path: minimal length
Fastest path: minimal duration
Foremost path: first to reach

v

v

1'%

v

Fastest shortest paths

- Minimum duration among minimal length
Shortest fastest paths

- Minimal length among minimal duration

v



SHORTEST PATHS

e

e |
f e

Blue: Foremost
Green: Fastest
Red: Shortest




SHORTEST PATHS

Blileftestvathsirom (15 ¢ ften(ie &



SHORTEST PATHS

Blileftestvathsirom (15 ¢ ften(ie &
=>e.g. (2.5,db)(3,ba)(/,a,c)



SHORTEST PATHS

b e . T_ .........
I —
d o

0 2 4 6 § time

Fastest paths from (I, d) to (9, ¢c) ?



SHORTEST PATHS

b e . T_ .........
I —
d o

0 2 4 6 § time

Fastest paths from (I, d) to (9, ¢c) ?

(3,d,0),(3b:2),(4.5,2,0)



SHORTEST PATHS

0 2 4 6 § time

Foremost paths from (0, a) to (9, ¢) ?




SHORTEST PATHS

T ................
C p— ) te e l ............ '
d ..
0 2 4 6 § time

Foremost paths from (0, a) to (9, ¢) ?

L ARDELC)



SHORTEST PATHS

FtesEshioricst path from (I aiton(E e



SHORTEST PATHS

FtesEshioricst path from (I aiton(E e



SHORTEST PATHS

Fisiestshoriest path from (I a) tol T e

(3,d,b), (3, b, a), (4.5, 2, c)



SHORTEST PATHS

Bilieftcst Fastest path from (I, @iFlenE e



OTHER DEFINITIONS ON
ST REAM GRAPHS



CONNECTED COMPONENTS

* Weakly connected component:

» There is at least a non-temporally respecting path




CLOSENESS - BETWEENNESS

1
Ci(v) = Z/ ds
ucV ¥ (s, u%iqgt V) (?} (S’ U))

Shortest path In Static graphs Is replaced by a cost function, any
notion of distance (typically, time to reach)

Z [ ). (o). (10)

ueV,weV €lu,g€Tw (7 )7(]7 ))

Proportion of all the shortest fastest paths between all possible (time,node) pairs that go through (t,v)

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61



EANDOM MODELS FOHS
DYNAMIC NETWORKS



EANDOM MODEES

* In many cases, In network analysis, useful to compare a

network to a randomized version of It
» Clustering coefficient, assortativity, modularity, ...

* In a static graph, 2 main choices:

» Keep only the number of edges (ER model)
» Keep the number of edges and the degree of nodes (Configuration model)

* In dynamic networks, it Is more complex...



EANDOM MODEES

» [Gauvin 201 8]

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

* Four families of shuffling:
» Snapshot shuffling

- =>Keep the order of snapshots, randomize network inside snapshot
» Sequence Shuffling

- =>Keep each snapshot identical, but switch randomly their order
» Link Shuffling

- => Randomize aggregated graph, keep activation times.

- e.g, pick two node palirs activation time (ul,vI:t0, tl,...), (uU2v2: wO, wl, ...) ad switch their
activation time.

» Timeline shuffling

- => Randomize nodes/edges activation time, conserve the aggregated graph.
- e.g. pick two edge observations (ul,vItl), (U2 v2,t2), switch t| and t2

« Shufflings can be combined...



RANDOM MODELS

Time aggregated Link timelines

Node timelines o " Structure aggregated

T — e EEEE———

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).



ADM network

Social mechanisms




Activity driven model of time varying networks

Agent based model of temporal N. Perra, et.al., Sci. Rep. 2, 469 (2012)
iInteractions

e |t is only a general framework where
additional mechanisms can be added

e |t allows for understanding microscopic
correlations shaping the emerging static
structure

e [t can be integrated in time to generate a
static network structure

e |t is capable of simulating dynamical
processes co-evolving with the contact
dynamics

e |t takes a single assumption a priori:
agents have different activity potentials




Activity driven model of time varying networks

Definition
* N disconnected nodes, with pre-assigned activity rates:
ai=HnXi ﬂ &
where , :
- x; IS the activity potential of node i - sampled from an
arbitrary distribution F(x) and x;€ /e 1]
- 7 is a rescaling factor \ sl

- Each 4t time step start with N disconnected nodes: /

1. With probabillity a;4¢t node i is activated and connect
to m other nodes randomly

2. With probability 7-ai4t node i remains inactive (still
can receive connections from other active nodes)

- In the end of each time step we delete each link and ',' 2 .'"
start the loop over again AN



Activity driven model of time varying networks

Features
* The structure of the actual network at each A¢ will be a random network

* The emerging degree distribution of the integrated network will follow the
same scaling form as the pre-assigned activity distribution

- Real node activity is different...



Egocentric network dynamics

Nn=0



Egocentric network dynamics




Egocentric network dynamics

n=>2~



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=4



J

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie



J

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie
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Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie




J

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie
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Social mechanisms

Activity driven network model Memory & social reinforcement

N. Perra, et.al., Sci. Rep. 2 469 (2012) M. Karsai, et.al., Sci. Rep. 4 4001 (2014)

e N disconnected nodes with pre-assigned
activity:

e \When a node is active it connects with

probability
A; = L3

where the activity potential is sampled from p(n) — C/(n ™ C)

.y to a random node it has never connected
F(I‘Z) ~ X, where T; € [67 1] before OR with probability

and 7) is a rescaling factor. 1 — p(n)

¢ |n each iteration nodes become active
with probability a; At and connect
T nodes randomly.

to one of the 1L node who it has
connected earlier

e After each iteration links are deleted but

— each node keeps remember to their
n=1 wv=28 e=10"7° | g el
previously connected egocentric network
m=1 At=1 c =1 * A node can build a connection by

Initiating or receliving it



Activity driven network with memory

memoryless process reinforced process



Activity driven network with memory
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