
DYNAMIC NETWORKS
(Dynamic of networks)



DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Facebook friendship 

- People joining/leaving
- Friend/Unfriend

‣ Twitter mention network
- Each mention has a timestamp
- Aggregated every day/month/year => still dynamic

‣ World Wide Web
‣ Urban network
‣ …



DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Nodes can appear/disappear
‣ Edges can appear/disappear
‣ Nature of relations can change

• How to represent those changes?

• How to manipulate dynamic networks?



DYNAMIC NETWORKS
Relations Interactions

Long term
-Friend

-Colleague
-Family relation

-…

Short term ?
-Collaborators in the same 

project
-Same team in a game

-Attendees of the same meeting
-…

Instantaneous
-e-mail

-Text message
-Co-authoring

…

With duration
-Phone call

-Discussion in real life
-Participate in a same meeting

Semantic
level



DYNAMIC NETWORKS
Relations Interactions

Graph series Link StreamsInterval graphs
DN=[G1,G2…Gn]

Gi=(V,E)
E : VxV

DN=(V,E,T,DV)
DV: VxTxT
E: VxVxTxT

DN=(V,E,T)
E: VxVxT

Semantic
level

Representation
level

(Or 3D tensor)



DYNAMIC NETWORKS
Relations Interactions

Graph series Link StreamsInterval graphs
DN={G1,G2…Gn}

Gi=(V,E)
E : VxV

DN=(V,E,T,DV)
DV: VxTxT
E: VxVxTxT

DN=(V,E,T)
E: VxVxT

Semantic
level

Representation
level

AggregationSnapshot



DYNAMIC NETWORKS
Relations InteractionsSemantic

level

Representation
level Graph series Link StreamsInterval graphs

File/in-memory 
representation

Sequence of 
graphs

Temporal edge 
listInterval list

-Modification lists
-List of intervals

-1file by graph
-1 file with 
all graphs

-List of edges with
timestamps

AggregationSnapshot



DYNAMIC NETWORKS

Representation
level Graph series Link StreamsInterval graphs

Aggregation/
Reformulation

Persistance

Discretization (snapshots)

Reformulation



DYNAMIC NETWORKS
• Exemple in practice: Sociopattern dataset

‣ Every 20s, list of individuals at distance ≈ 1,5m
‣ Dataset : sequence of graphs or temporal edge list

1353304100 1148 1644
1353304100 1613 1672
1353304100 656 682
1353304100 1632 1671

1353304120 1492 1613
1353304120 656 682
1353304120 1632 1671

1353304140 1148 1644

1353304160 656 682
1353304160 1108 1601
1353304160 1632 1671
1353304160 626 698



Types of network evolution
According to 

1) Observation frequency
2) Network nature

Higher Observation 
FrequencyStatic 

Network The graph is less and less stable, until each observation 
is a graph in itself, thus completely different from 

previous/later ones
(frequency faster than observed events rate)

Relations

Interactions

Exhaustive / 
continuous time 

The graph is more and more stable, until most observations 
are completely similar to previous/later ones

(frequency faster than change rate)



ANALYZING DYNAMIC 
NETWORKS



DISTINGUISHING:
-UNSTABLE SNAPSHOTS
-STABLE NETWORKS
-(UNSTABLE) TEMPORAL NETWORKS

(WITH OR WITHOUT DURATION)



UNSTABLE SNAPSHOTS



UNSTABLE SNAPSHOTS
• The evolution is represented as a series of a few snapshots.

• Many changes between snapshots
‣ Cannot be visualized as a “movie”



UNSTABLE SNAPSHOTS

• Each snapshot can be studied as a static graph

• The evolution of the properties can be studied “manually”

• “Node X had low centrality in snapshot t and high centrality in 
snapshot t+n”



STABLE NETWORKS



STABLE NETWORK

• Edges change (relatively) slowly

• The network is well defined at any t
‣ Temporal network: nodes/edges described by (long lasting) intervals
‣ Enough snapshots to track nodes 

• A static analysis at every (relevant) t gives a dynamic vision

• No formal distinction with previous case (higher observation 
frequency)



STABLE NETWORK
• Visualization

‣ Problem of stability of node positions



STABLE NETWORK

• Global graph properties

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data 
(TKDD) 1.1 (2007): 2.



STABLE NETWORK

• Centralities



TIME SERIES ANALYSIS
• TS analysis is a large field of research

• Time series: evolution of a value over time
‣ Stock market, temperatures…

• “Killer app”:
‣ Detection of periodic patterns
‣ Detection of anomalies
‣ Identification of global trends
‣ Evaluation of auto-correlation
‣ Prediction of future values

• e.g. ARIMA (Autoregressive integrated moving average)
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average



UNSTABLE TEMPORAL 
NETWORKS



UNSTABLE TEMPORAL 
NETWORK

• The network at a given t is not meaningful

• How to analyze such a network?



UNSTABLE TEMPORAL 
NETWORK



UNSTABLE TEMPORAL 
NETWORK

• Until recently, network was transformed using aggregation/ 
sliding windows
‣ Information loss
‣ How to chose a proper aggregation window size?

• Tools developed to deal with such networks



UNSTABLE TEMPORAL 
NETWORK

• [Holme 2012]: mostly about paths, walks, distances… (later 
class, diffusion on networks.)

• [Latapy 2018]: Other things (centralities, …)

• Idea: Generalize all graphs definitions to temporal networks

• => If all nodes and all edges always present, same values as for 
a static graph 

Holme, Petter, and Jari Saramäki. "Temporal networks." Physics reports 519.3 (2012): 97-125.

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.



CENTRALITIES
&

NETWORK PROPERTIES
IN STREAM GRAPHS



STREAM GRAPHS

T: Possible Time
V: vertices

W: Vertices presence time
E: Edges presence time



INDICES IN STREAM GRAPHS

Number of nodes: 

Total presence of nodes
————————————

Total dataset duration

(not an integer value…) e.g.: 2 if 4 nodes 
half the time



INDICES IN STREAM GRAPHS

Number of edges: 

Total presence of edges
————————————

Total dataset duration

(not an integer value…) e.g.: 1 if 1 edge all the time



INDICES IN STREAM GRAPHS

Neighborhood of a node

Degree of a node



INDICES IN STREAM GRAPHS



INDICES IN STREAM GRAPHS

Average node degree



INDICES IN STREAM GRAPHS

Clustering coefficient of a node

Probability that if we take 2 random neighbors at a random 
time, they are linked



INDICES IN STREAM GRAPHS

Density (of a stream graph):  probability if we 
take a random pair of nodes

at a random time that there is an edge 
between them



INDICES IN STREAM GRAPHS

Total edge presence 

e.g.: 10 if 2 edges present over 5 periods



INDICES IN STREAM GRAPHS

Total overlapping time between each pair 
of nodes

=>An edge is possible



INDICES IN STREAM GRAPHS



INDICES IN STREAM GRAPHS

• Note that we can define particular cases of density:
‣ Density for a pair of nodes
‣ Density for a node



INDICES IN STREAM GRAPHS



PATHS AND DISTANCES IN 
STREAM GRAPHS



PATHS
• A path in a stream graphs

‣ Starts at a node and a date
‣ Ends at a node and a date
‣ Has a length (number of hops)
‣ Has a duration (duration from leaving node to reaching node)

Path(d,1)(c9)
Length:3

Duration: 3
? ?



SHORTEST PATHS

• Several types of shortest paths in Stream graphs:
‣ Shortest path: minimal length 
‣ Fastest path: minimal duration
‣ Foremost path: first to reach

‣ Fastest shortest paths
- Minimum duration among minimal length

‣ Shortest fastest paths
- Minimal length among minimal duration



SHORTEST PATHS

Blue: Foremost
Green: Fastest

Red: Shortest

a
b
c
d
e
f



SHORTEST PATHS

Shortest paths from (1, d) to (9, c) ?



SHORTEST PATHS

Shortest paths from (1, d) to (9, c) ?
=>e.g. (2.5,d,b)(3,b,a)(7,a,c)



SHORTEST PATHS

Fastest paths from (1, d) to (9, c) ?



SHORTEST PATHS

Fastest paths from (1, d) to (9, c) ?

(3,d,b),(3,b,a),(4.5,a,c) 



SHORTEST PATHS

Foremost paths from (0, a) to (9, c) ?



SHORTEST PATHS

Foremost paths from (0, a) to (9, c) ?

…(4.5,a,c)



SHORTEST PATHS

Fastest shortest path from (1, d) to (9, c) ?



SHORTEST PATHS

Fastest shortest path from (1, d) to (9, c) ?



SHORTEST PATHS

Fastest Shortest path from (1, d) to (9, c) ?

(3, d, b), (3, b, a), (4.5, a, c) 



SHORTEST PATHS

Shortest Fastest path from (1, d) to (9, c) ?



OTHER DEFINITIONS ON 
STREAM GRAPHS



CONNECTED COMPONENTS
• Weakly connected component: 

‣ There is at least a non-temporally respecting path



CLOSENESS - BETWEENNESS

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.

Shortest path in Static graphs is replaced by a cost function, any 
notion of distance (typically, time to reach)

Proportion of all the shortest fastest paths between all possible (time,node) pairs that go through (t,v)



RANDOM MODELS FOR 
DYNAMIC NETWORKS



RANDOM MODELS

• In many cases, in network analysis, useful to compare a 
network to a randomized version of it
‣ Clustering coefficient, assortativity, modularity, …

• In a static graph, 2 main choices:
‣ Keep only the number of edges (ER model)
‣ Keep the number of edges and the degree of nodes (Configuration model)

• In dynamic networks, it is more complex…



RANDOM MODELS
• [Gauvin 2018]

• Four families of shuffling:
‣ Snapshot shuffling

- =>Keep the order of snapshots, randomize network inside snapshot
‣ Sequence Shuffling

- =>Keep each snapshot identical, but switch randomly their order 
‣ Link Shuffling 

- =>  Randomize aggregated graph, keep activation times. 
- e.g., pick two node pairs activation time (u1,v1: t0, t1,…), (u2,v2: w0, w1, …) ad switch their 

activation time.
‣ Timeline shuffling 

- => Randomize nodes/edges activation time, conserve the aggregated graph. 
- e.g. pick two edge observations (u1,v1,t1), (u2,v2,t2), switch t1 and t2

• Shufflings can be combined…

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).



RANDOM MODELS

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).



ADM network
with

Social mechanisms



Activity driven model of time varying networks
Agent based model of temporal 
interactions 

• It is only a general framework where 
additional mechanisms can be added 

• It allows for understanding microscopic 
correlations shaping the emerging static 
structure 

• It can be integrated in time to generate a 
static network structure 

• It is capable of simulating dynamical 
processes co-evolving with the contact 
dynamics 

• It takes a single assumption a priori: 
agents have different activity potentials

epidemic compartmental model1,2,44,45. In this model, infected
individuals can propagate the disease to healthy neighbors with
probability l, while infected individuals recover with rate m and
become susceptible again. In an homogenous population the
behavior of the epidemics is controlled by the reproductive
number R0 5 b/m, where b 5 lÆkæ is the per capita spreading rate
that takes into account the rate of contacts of each individual. The
reproductive number identifies the average number of secondary
cases generated by a primary case in an entirely susceptible
population and defines the epidemic threshold such that only if R0

. 1 can epidemics reach an endemic state and spread into a closed
population. In the past few years the inclusion of complex
connectivity networks and mobility schemes into the substrate of
spreading processes contagion, diffusion, transfer, etc. has
highlighted new and interesting results46–50. Several results states
that the epidemic threshold depends on the topological properties
of the networks. In particular, for networks characterized by a fix,
quenched topology the threshold is given by the principal eigenvalue
of the adjacency matrix48,49. Instead, for annealed network, cha-
racterized by a topology defined just on average because the
connectivity patterns has a dynamic extremely fast with respect to
the dynamical process, heterogeneous mean-field approaches2,6

predict an epidemic threshold that is inversely proportional to the
second moment of the network’s degree distribution: b/m . Ækæ2/Æk2æ.
However, these results do not apply to the case in which the time
variation of the connectivity pattern is occurring on the same time
scale of the dynamical process. Our model presents simple evidence
of this problem, as a disease with a small value of m21 (the infectious
period characteristic time) will have time to explore the fully-
integrated network, but will not spread on the dynamic

instantaneous networks whose union defines the integrated
one30,31,43,51. In Fig. 4-B we plot the results of numerical simulations
of the SIS model on a network generated according to our model and
on two time-aggregated network instances. We observe that the two
aggregated networks lead to misleading results in both the threshold
and the epidemic magnitude as a function of b/m. Even if the
epidemic threshold discounts the different average degree of the
networks in the factor b 5 lÆkæ, the two aggregated instances
consider all edges as always available to carry the contagion
process, disregarding the fact that the edges may be active or not
according to a specific time sequence defined by the agents’ activity.

The above finding can be more precisely quantified by calculating
analytically the epidemic threshold in activity driven networks with-
out relying on any time aggregated view of the network connectivity.
By working with activity rates we can derive epidemic evolution
equation in which the spreading process and the network dynamics
are coupled together. Let us assume a distribution of activity poten-
tial x of nodes given by a general distribution F(x) as before. At a
mean-field level, the epidemic process will be characterized by the
number of infected individuals in the class of activity rate a, at time t,
namely It

a. The number of infected individuals of class a at time t 1
Dt given by:
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where Na is the total number of individuals with activity a. In Eq. (3),
the third term on the right side takes into account the probability that
a susceptible of class a is active and acquires the infection getting a

Figure 2 | Cumulative distribution of the activity potential, FC(x), empirically measured by using four different time windows and a schematic
representation of the proposed network model. In particular, in panel (A) we show the cumulative distributions of the observables x for Twitter, in panel
(B) for IMDb, and in panel (C) for PRL. In panel (D) we show a schematic representation of the model. Considering just 13 nodes and m 5 3, we plot a
visualization of the resulting networks for 3 different time steps. The red nodes represent the firing/active nodes. The final visualization represents the
network after integration over all time steps.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 469 | DOI: 10.1038/srep00469 4

Perra (2012)

N. Perra, et.al., Sci. Rep. 2, 469 (2012)



Activity driven model of time varying networks
Definition 

• N disconnected nodes, with pre-assigned activity rates: 
ai=ηxi 

    where  

• xi is the activity potential of node i - sampled from an 
arbitrary distribution F(x)    and    xi ∈ [ε, 1]

• η is a rescaling factor

• Each Δt time step start with N disconnected nodes:

1. With probability aiΔt node i is activated and connect 
to m other nodes randomly 

2. With probability 1-aiΔt node i remains inactive (still 
can receive connections from other active nodes)

• In the end of each time step we delete each link and 
start the loop over again

Although activity driven models in their simplest formu-
lation do not account for many features such as link
persistence, homophily, and underlying social structures
[8–23], they allow the analytical formulation of the
concurrent network and contagion process dynamics in
the form of appropriate mean-field equations, thus allowing
the analytical study of the dynamical process of interest
[25,28–32].
In the following, we study contagion processes using

the basic SIS model [33]. Each node at each time t can be in
the susceptible St or infectious It state. The basic SIS rules
thus define a reaction scheme of the type Sþ I → 2I with
probability per unit time β and I → S with probability per
unit time μ, which represent the contagion and recovery
processes, respectively. We consider the case in which these
two probabilities are the same for all the nodes, and defer
the analysis of scenarios characterized by heterogenous
probability distributions to future works. A central concept
of contagion phenomena is the epidemic threshold.
It defines the conditions necessary for the spreading of
the disease. In networks, the threshold depends on the

moments of the degree distribution PðkÞ that specify the
probability that any node is connected to k distinct
nodes. In uncorrelated annealed networks, the threshold
condition reads β=μ ≥ hki2=hk2i, where hki and hk2i are
the first and second moment of the degree distribution,
respectively [11]. In this expression, β ¼ λhki takes into
account the average contacts per node hki and the per
contact probability of transmission λ. While the expression
might be different in the case of static networks [35–37],
the topological properties of the underlying graph have
critical effects on the threshold.
In time-varying networks, the analytical study of con-

tagion processes is hindered by the difficulties in dealing
with the concurrent time scales of the contagion and
network evolution processes [38–43]. The contagion time
scale τP is defined by the average recovery time, i.e., μ−1.
The network time scale τG is instead dependent on the
convolution of the activity time scale, a−1, of each node.
Considering these observations, it is possible to derive
the mean-field level dynamical equations describing the
contagion process. Let us define the activity block variables
Ita and Sta as the number of infected and susceptible
individuals, respectively, in the class of activity a at
time t. This allows us to write the mean-field evolution
of the number of infected individuals in each group of
nodes with activity a as

Itþ1
a ¼ Ita − μIta þ λmðNa − Ita − Rt

aÞa
Z

da0
Ita0
N

þ λmðNa − Ita − Rt
aÞ
Z

da0
Ita0a

0

N
; (1)

where Na is the total number of individuals with activity
rate a (constant over time) and Rt

a are the nodes in the class
a at the time t that have been immunized or removed from
the network. In Eq. (1), the first term considers the number
of infected individuals in class a at time t. The second term
describes the number of nodes that recover going back in
the class Sa. The third term represents the number of
infected individuals generated when nodes in the class
Sta ¼ Na − Ita − Rt

a are active and connect with infected
nodes in the other activity classes. Finally, the last term
considers the number of infected individuals generated
when nodes in the class Sta are linked by active infected
nodes in other activity classes. In the absence of any
controlling strategy Rt

a ¼ 0. In this case, considering the
convolution on all activity time scales and ignoring the
second order terms in I=N, we can write Itþ1 ¼ It−
tμIt þ λmhaiIt þ λmθt, where θt ¼

R
da0Ita0a

0. By multi-
plying both sides of Eq. (1) by a and integrating, we obtain
θtþ1 ¼ θt − μθt þ λmha2iIt þ λmhaiθt. The system equa-
tions for Itþ1 and θtþ1 provide an epidemic outbreak only if
the dominant eigenvalue of the corresponding matrix is
larger than 1. Thus, the epidemic threshold reads as
ðβ=μÞ ≥ ξSIS ≡ 2hai=ðhaiþ

ffiffiffiffiffiffiffiffiffi
ha2i

p
Þ, where hai and ha2i

FIG. 1 (color online). Schematic representation of activity
driven model and control strategies. (a),(b) Temporal network
at two different time steps T1 and T2. (c) Integrated network over
a certain period of time. The size and color of each node describes
its activity, while the width and color of each link describes the
weight. (d)–(f) Random, targeted, and egocentric control strategy
respectively. Immunized nodes are plotted as red squares; probes
as yellow triangles.

PRL 112, 118702 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

118702-2



Activity driven model of time varying networks

Features
• The structure of the actual network at each Δt will be a random network
• The emerging degree distribution of the integrated network will follow the 

same scaling form as the pre-assigned activity distribution

• Real node activity is different…



Egocentric network dynamics

n=0



Egocentric network dynamics

n=1



Egocentric network dynamics

n=2



Egocentric network dynamics

n=3



Egocentric network dynamics

n=3



Egocentric network dynamics

n=3



Egocentric network dynamics

n=3



Egocentric network dynamics

n=4



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie

 =Nodes with final degree
Between  and 

kmin
kmin 2kmin



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie

p(n) = 1� n

n + c



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie

p(n) = 1� n

n + c
pk(n/c) =

1
n/c + c



Social mechanisms
Memory & social reinforcement

• When a node is active it connects with 
probability 

to a random node it has never connected 
before OR with probability

to one of the     node who it has 
connected earlier

n

• After each iteration links are deleted but 
each node keeps remember to their 
previously connected egocentric network

• N disconnected nodes with pre-assigned 
activity: 

ai = xi⌘
where the activity potential is sampled from

F (xi) ⇠ x�⌫
i xi 2 [✏, 1]where

and      is a rescaling factor.⌘

• In each iteration nodes become active 
with probability                and connect 

        nodes randomly.
ai�t

m

⌘ = 1 ✏ = 10�3⌫ = 2.8

m = 1 �t = 1 c = 1

N. Perra, et.al., Sci. Rep. 2 469 (2012) 

Activity driven network model
M. Karsai, et.al., Sci. Rep. 4 4001 (2014) 

• A node can build a connection by 
initiating or receiving it

p(n) = c/(n+ c)

1� p(n)



Activity driven network with memory

memoryless process reinforced process



Activity driven network with memory

real network

model network

Evolution of the largest 
connected component


