DYNAMIC NETWORKS

(Dynamic of networks)



DYNAMIC NETWORKS

» Most real world networks are dynamic

» Facebook friendship

- People joining/leaving

- Friend/Unfriend

Twirtter mention network

- Each mention has a timestamp

v

- Aggregated every day/month/year => still dynamic
VWorld Wide Web

Urban network

S £

v



DYNAMIC NETWORKS

* Most real world networks are dynamic

» Nodes can appear/disappear
» Edges can appear/disappear
» Nature of relations can change

* How to represent those changes!

* How to manipulate dynamic networks?



DYNAMIC NETWORKS

Semantic . |
Relations Interactions
level

Long term

-Friend
-Colleague
-Family relation

Short term?

-Collaborators in the same
project
-Same team In a game
-Attendees of the same meeting

Instantaneous
-e-mall
- Text message
-Co-authoring

With duration

-Phone call
-Discussion In real life
-Participate in a same meeting



DYNAMIC NETWORKS
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DYNAMIC NETWORKS

Snapsho Aggregat]

R | .
SPresentation Y |nterval oraphs | Graph series |
level
DN=(VETDV) DN={GI,G2...Gn} e
DV:VxTXT Gi=(V;E) DE'\,'\;S’E’TT)

E:VXVXTXT EVxV



DYNAMIC NETWORKS

Snapsho Aggregat]

File/in-memory . Sequence of W Temporal edge
. Interval list .
representation osraphs lIst

ooy e edges with
-1 file with

-List of intervals timestamps
all graphs

Representation
level




DYNAMIC NETWORKS

Reformulation

£\
Interval graphs | Graph series

Representation
level

Discretization

\%eformulation




DYNAMIC NETWORKS

* Exemple in practice: Sociopattern dataset

» Every 20s, list of individuals at distance = [,0m
» Dataset : sequence of graphs or temporal edge list

1353304100
1353304100
1353304100
1353304100

1353304120
1353304120
1353304120

1353304140

1353304160
1353304160
1353304160
1353304160

| 148 1644
1613 1672
656 682
1632 1671

1492 1613
656 682
1632 1671

| 148 1644

656 682
1108 1601
1632 1671
626 698
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Types of network evolution

According to
) Observation frequency
2) Network nature

Relations
The graph is more and more stable, until most observations
are completely similar to previous/later ones Higher Observation
] (frequency faster than change rate)
Static Fre»quency
Network The graph Is less and less stable, until each observation Exhaustive /

s a graph In itself, thus completely different from
previous/later ones
(frequency faster than observed events rate)

continuous time

Interactions



ANALYZING DYNAMIC
NE TWORKS
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UNSTABLE SNAPSHOTS



UNSTABLE SNAPSHOTS

* The evolution Is represented as a series of a few snapshots.

» Many changes between snapshots

» Cannot be visualized as a “movie”

2007-2008 2009-2010 2011-2012

e — e



UNSTABLE SNAPSHOTS

» Each snapshot can be studied as a static graph
* The evolution of the properties can be studied “manually”

* “"Node X had low centrality in snapshot t and high centrality In
snapshot t+n”



STABLE NETWORKS



STABLE NETWORK

* Edges change (relatively) slowly

* The network I1s well defined at any t

» Temporal network: nodes/edges described by (long lasting) intervals
» Enough snapshots to track nodes

» A static analysis at every (relevant) t gives a dynamic vision

* No formal distinction with previous case (higher observation
frequency)



STABLE NETWORK

* Visualization
» Problem of stability of node positions




STABLE NETWORK
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Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data
(TKDD) 1.1 (2007): 2.



STABLE NETWORK

« Centralities

—»— ul (consumer) —e— u2 (producer) u3d (consumer&producer)
\ | |
s
g t/A—li/\t/’\
O
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TIME SERIES ANALYSIS

» 1S analysis is a large field of research

e seres: evolution of a value over time

» Stock market, temperatures. ..

» “Killer app™:

» Detection of periodic patterns
» Detection of anomalies

» |dentification of global trends

» Evaluation of auto-correlation
» Prediction of future values

» e.0. ARIMA (Autoregressive integrated moving average)

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average



UNSTABLE TEMPORAL
NE TWORKS



UNSTABLE TEMPORAL
NETWORK

* The network at a given t Is not meaningful

» How to analyze such a network?



UNSTABLE TEMPORAL
NETWORK




UNSTABLE TEMPORAL
NETWORK

» Until recently, network was transformed using aggregation/
sliding windows

» Information loss

» How to chose a proper aggregation window size!

» lools developed to deal with such networks



UNSTABLE TEMPORAL
NETWORK

» [Holme 2012]: mostly about paths, walks, distances... (later
class, diffusion on networks.)

Holme, Petter, and Jari Saramaki. "Temporal networks." Physics reports 519.3 (2012): 97-125.

» [Latapy 2018]: Other things (centralities, ...)

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.

» |[dea: Generalize all graphs definitions to temporal networks

» => |f all nodes and all edges always present, same values as for
a static graph



CENTRALITIES
&
NETWORK PROPERTIES
IN S TREAM GRAPHS



STREAM GRAPHS

stream graph S = (T,V,W, F)

————-

T: Possible Time
V:vertices

W:Vertices presence time

£ IE@lges [plissEnes hae



INDICES IN STREAM GRAPHS

Number of nodes:

Jotal presence of nodes veV

| ———

0= m =

Jotal dataset duration

. e.0. 7 I nesss
leran Integer value.. . ) sivS



INDICES IN STREAM GRAPHS

Number of edges:

E
Total presence of edges _ _ 1=
P g m E Muy = 17

Jotal dataset duration

(not an integer value...) e.g: | if | edge all the time



INDICES IN STREAM GRAPHS

Neighborhood of a node
N(v) = {(t,u), (t,uv) € E}

L e————— ——————

Dieyiee @) el lnodie

T,
d(v) =
\Tl =2 ITI

-




INDICES IN STREAM GRAPHS

a ........ L N

b - g ————

Cl. ................. T

T i comizsescemonneermanzsesems: S— - -
0 p) 4 6 S  time 0 p) 4 $  time

Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1,3] U [7,8]) x {b} U[4.5,7.5] x {c} is in blue, leading to d(a) = 2 + 2 = 0.6.
Right: N(c) = [2,5] x {a} U1,8] x {b} U[6,9] x {d} is in blue, leading to d(c) = 12 = 1.3.




INDICES IN STREAM GRAPHS

Average node degree

d(V):%-va-d(v)=Z%-d(v)

e —




INDICES IN STREAM GRAPHS

Clustering coefficient of a node

Zuw€V®V |Tvu A va A Tuw|
ZuwéV@V |Tvu A va‘

Probability that it we take 2 random neighbors at a random
time, they are linked



INDICES IN STREAM GRAPHS

; V|Tuv| L|Et|dt
6 S _ UVEV QR _ te
O =T AT T T mevia
uwweVV te’T’

L ree———

Density (of a stream graph): probability It we
take a random pair of nodes
at a random time that there Is an edge
between them



INDICES IN STREAM GRAPHS

uwweVV te’T’

L ree———

llEafecceipresence

CRERRIBRIScdocs present over Siperiods



INDICES IN STREAM GRAPHS

lotal overlapping time between each pair
of nodes
=>An edge Is possible



INDICES IN STREAM GRAPHS

a.“.. a.

be =

C

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with different
densities: Left: 0 = 0.75. Right: 0 = 1.




INDICES IN STREAM GRAPHS

* Note that we can define particular cases of density:

» Density for a pair of nodes
» Density for a node

. Zuév,u;év ‘Tuv‘
ZuEV,u;év |Tu a Tvl




INDICES IN STREAM GRAPHS

A clique of graph G is a cluster C' of G of density 1. In other words, all pairs of nodes
involved in C' are linked together in G. A cliqgue C is mazximal if there is no other clique
C" such that C C C".




PATHS AND DISTANCES IN
ST REAM GRAPHS



Fallmis

* A path In a stream graphs

Starts at a node and a date

» Ends at a node and a date

» Has a length (number of hops)

» Has a duration (duration from leaving node to reaching node)

v

Path(d,|)(c9)
Length:3 ! !
Duration: 3



SHORTEST PATHS

» Several types of shortest paths in Stream graphs:

Shortest path: minimal length
Fastest path: minimal duration
Foremost path: first to reach

v

v

1'%

v

Fastest shortest paths

- Minimum duration among minimal length
Shortest fastest paths

- Minimal length among minimal duration

v



SHORTEST PATHS

e

e |
f e

Blue: Foremost
Green: Fastest
Red: Shortest




SHORTEST PATHS

Blileftestvathsirom (15 ¢ ften(ie &



SHORTEST PATHS

Blileftestvathsirom (15 ¢ ften(ie &
=>e.g. (2.5,db)(3,ba)(/,a,c)



SHORTEST PATHS

b e . T_ .........
I —
d o

0 2 4 6 § time

Fastest paths from (I, d) to (9, ¢c) ?



SHORTEST PATHS

b e . T_ .........
I —
d o

0 2 4 6 § time

Fastest paths from (I, d) to (9, ¢c) ?

(3,d,0),(3b:2),(4.5,2,0)



SHORTEST PATHS

0 2 4 6 § time

Foremost paths from (0, a) to (9, ¢) ?




SHORTEST PATHS

T ................
C p— ) te e l ............ '
d ..
0 2 4 6 § time

Foremost paths from (0, a) to (9, ¢) ?

L ARDELC)



SHORTEST PATHS

FtesEshioricst path from (I aiton(E e



SHORTEST PATHS

FtesEshioricst path from (I aiton(E e



SHORTEST PATHS

Fisiestshoriest path from (I a) tol T e

(3,d,b), (3, b, a), (4.5, 2, c)



SHORTEST PATHS

Bilieftcst Fastest path from (I, @iFlenE e



OTHER DEFINITIONS ON
ST REAM GRAPHS



CONNECTED COMPONENTS

* Weakly connected component:

» There is at least a non-temporally respecting path




CLOSENESS - BETWEENNESS

1
Ci(v) = Z/ ds
ucV ¥ (s, u%iqgt V) (?} (S’ U))

Shortest path In Static graphs Is replaced by a cost function, any
notion of distance (typically, time to reach)

Z [ ). (o). (10)

ueV,weV €lu,g€Tw (7 )7(]7 ))

Proportion of all the shortest fastest paths between all possible (time,node) pairs that go through (t,v)

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61



EANDOM MODELS FOHS
DYNAMIC NETWORKS



EANDOM MODEES

* In many cases, In network analysis, useful to compare a

network to a randomized version of It
» Clustering coefficient, assortativity, modularity, ...

* In a static graph, 2 main choices:

» Keep only the number of edges (ER model)
» Keep the number of edges and the degree of nodes (Configuration model)

* In dynamic networks, it Is more complex...



EANDOM MODEES

» [Gauvin 201 8]

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

* Four families of shuffling:
» Snapshot shuffling

- =>Keep the order of snapshots, randomize network inside snapshot
» Sequence Shuffling

- =>Keep each snapshot identical, but switch randomly their order
» Link Shuffling

- => Randomize aggregated graph, keep activation times.

- e.g, pick two node palirs activation time (ul,vI:t0, tl,...), (uU2v2: wO, wl, ...) ad switch their
activation time.

» Timeline shuffling

- => Randomize nodes/edges activation time, conserve the aggregated graph.
- e.g. pick two edge observations (ul,vItl), (U2 v2,t2), switch t| and t2

« Shufflings can be combined...



RANDOM MODELS

Time aggregated Link timelines

Node timelines o " Structure aggregated

T — e EEEE———

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).



ADM network

Social mechanisms




Activity driven model of time varying networks

N. Perra, et.al., Sci. Rep. 2, 469 (2012)

Agent based model of temporal
interactions

e |t is only a general framework where
additional mechanisms can be added

e |t is capable of simulating dynamical
processes co-evolving with the contact
dynamics

e |t takes a single assumption a priori:
agents have different activity potentials




Activity driven model of time varying networks

Definition
* N disconnected nodes, with pre-assigned activity rates:
a=nx; ‘- .
where /.
- x; IS the activity potential of node i - sampled from an
arbitrary distribution F(x) and x;€ /e 1]
- 7 is a rescaling factor \ sl

- Each time step ¢ start with N disconnected nodes: /

1. With probability a; node i Is activated and connect to
m other nodes randomly

2. With probability 7-a; node i remains inactive (still can
receive connections from other active nodes)

- In the end of each time step we delete each link and s
start the loop over again AN



Activity driven model of time varying networks

Features
* The structure of the actual network at each ¢ will be a random network

* The emerging degree distribution of the integrated network will follow the
same scaling form as the pre-assigned activity distribution

- Real node activity is different...



Egocentric network dynamics

Nn=0



Egocentric network dynamics




Egocentric network dynamics

n=>2~



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=3



Egocentric network dynamics

Nn=4



J

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie



J

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie
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I

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie

C an offset constant for each class



J

Egocentric network dynamics with memory

p(n) : probability that the next communication event of an agent with n
social ties will occur via the establishment of a new (n + 1) social tie
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Social mechanisms

Activity driven network model
N. Perra, et.al., Sci. Rep. 2 469 (2012)

e N disconnected nodes with pre-assigned
activity:
A; = X47)

where the activity potential is sampled from
— VUV

F(x;) ~ 2" where T € €, 1]

and 7) is a rescaling factor.

¢ |n each iteration nodes become active
with probability  a;.
T nodes randomly.

and connect

J

Memory & social reinforcement
M. Karsai, et.al., Sci. Rep. 4 4001 (2014)

e \When a node is active it connects with
probability

p(n) =c/(n+c)

to a random node it has never connected
before OR with probability

1 —p(n)

to one of the 1L node who it has
connected earlier

e After each iteration links are deleted but
each node keeps remember to their

previously connected egocentric network
e A node can build a connection by

Initiating or receliving it



Activity driven network with memory




BTNAMIC COMMUNES
DETECTION

Rossetti, Giulio, and Cazabet, Rémy. "Community discovery in dynamic networks: a survey." ACM Computing Surveys (CSUR) 51.2 (2018): 35.



EOMMUNITY DE | ECHCHS

Static networks Dynamic Networks

Sets of nodes

Sets of periods of nodes

11 1) Kl

[Viard 201 6]



EOMMUNITY DE | ECHCHS

Static networks Dynamic Networks

Sets of nodes

¢ &
,

R —— S

Sets of periods of nodes




BENAMIC CD SPECIFICH S

* Dynamic community detection is not a mere Iterated static

community detection problem

» Dynamic community detection ¢

» |) Apply Louvain algorithm at every step
» 2)Match somehow

» 3)Problem solved.




EOMMUNITY DE I EC FICHS
[

S
Community events % % o5
(or operations) TR S

eeeeeeeeee



EOMMUNITY DE | ECHCHS

H—————H
t+1

Sl

t —> t+1

Splitting

Community events
(or operations)

Which one persists ¢
-Oldest !
-Most similar ¢
-Larger !



IDENTITY PRESERVATION
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IDENTITY PRESERVATION

A el eelplersireipelolEi

May 68 January 2018

SORAONNE
UNIVERSITY 5E \
C wee Pl UNIVERSIEY

Who gets Marie Curie Nobel Prizes points
in the Shanghai University Ranking ¢



BEIO0O | INESS / S TABILHES

» Community smoothness Is a fundamental problem

» Algorithms are stochastic / approximations

» The same algorithm ran twice on the same graph might yield different results
» Small, local perturbations might generate large, global community changes

- Shift between different local maximum



BEIO0O | INESS / S TABILHES

» Let's consider that we have a perfect, deterministic method

» e.g, always discovering the solution of maximal modularrty
» Each partrtion might nevertheless be quite different from previous/next one

» Imagine a borderline situation in which a single edge change makes the
community go from | to 2 communities, back and forth.

* What we are actually searching is a “simple” (parsimonious)

model.
» We want a trade-off between quality and simplicity (smoothness)



BEIO0O | INESS / S TABILHES

* No Smoothness: Partition at each € should be the same as
found by a static algorithm.

* Smoothness: Partition at € Is a trade-off between “good”

communities for the graph at € and similarity with partitions at
different times



EOMMUNITY DE I EC HCHS

Over 4

(A) Instant Optimal

(A1) Iterative,
Similarity Based

(A2) Iterative,
Core-Node Based

(A3) Multi-Step Matching

Clusters at t depends only on the current state
of the network

Clusters are non-temporally smoothed
(Communities labels, however, can be

smoothed)

(B) Temporal Trade-Off

(B1) Update by Global Optimization

(B2) Informed CD by

Multi-Objective Optimization

(B3) Update by Set of Rules

(B4) Informed CD by Network Smoothing

Clusters at t depends on current and past
states of the network
Clusters are incrementally temporally

smoothed

0 methods publishead

(C) Cross-Time

(C1) Fixed Memberships,
Fixed Properties

(C2) Fixed Memberships,
Evolving Properties

(C3) Evolving Memberships,
Fixed Properties

(C4) Evolving Memberships,
Evolving Properties

Clusters at t depends on both past and future
states of the network

Clusters are Completely temporally smoothed

15



A EGORIES

* Instant optimal:

» Work only with snapshots
» No partition smoothing

» Labels can be smoothed

» Easy to parallelize

v

=>Best surted for large networks with few steps of evolution (<100?)



A EGORIES

* lemporal trade-off

» Works with any type of temporality (in theory)
» Cannot be parallelized (iterative)
» => Best suited for real-time analysis / tasks

M@ ress- ['ime

» Works with any type of temporality (in theory)
» Requires to know the whole evolution in advance

» => Not surted for real-time analysis, potentially the best smoothed (a
posteriori interpretation)



COMMUNITY DETECTION

Some examples of applications

Urology
Nephrology / s — Nephrology
Sycholo

Psychology — = Psychology
. B
Neurology S 7 A— N 7fect0!
Psychiatry o A = :
\ —_d Jenl Psychiatry
e _-/Av—'\\ 3 L oncology

Rosvall et al. 2010




EOMMUNITY DE | ECHCHS
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EOMMUNITY DE | ECHCHS
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ERAMPLE OF METHOES



EXAMPLE OF ME RO

Same definition of static communities: modularity

- No-smoothing (Adapted from [Greene et al.])

* Implicit Global (Aynaud et al.)

* DYNAMO (Implicit local, Zhuang et al. 2017)

* DYNMOGA (Explicit Smoothing, Folino et al 2010)
* Transversal Network (Mucha et al.)

- Label Smoothing (Falkowski et al.)



EXAMPLE OF ME RO

* No-smoothing

» Communities are detected at every step using a static algorithm (e.g. Louvain
Algorithm)

» Similarities are computed between communities in consecutive steps (at t and t+ |

(e.g., Jaccard index)) et 1L
|A U B| |A|+ |B| —|ANB]

» Most similar communities are matched between t and t+ |

Greene, Derek, Donal Doyle, and Padraig Cunningham. "Tracking the evolution of communities in dynamic social networks." 2010 international conference on advances in
social networks analysis and mining. IEEE, 2010.



EXAMPLE OF ME RO

- Label-smoothing

» Communities are detected at every step using a static algorithm (e.g. Louvain
Algorithm)

» Similarities are computed between all communities in all steps(e.g., Jaccard index))

» A community network Is generated, in which nodes are communities and edges
are weighted by similarity

» A community detection algorithm (e.g., Louvain) is applied on the community
network to find dynamic communities.

Falkowski, Tanja, Jorg Bartelheimer, and Myra Spiliopoulou. "Community dynamics mining." ECIS. 2006.



EXAMPLE OF ME RO

- Implicit Global
» Communities are detected In the first step using the Louvain algorithm

» At the next step, the Louvain algorithm is inrtialized with previous communities as
seeds (Instead of each node In 1ts own community)

» =>tend to stay around the same |local maximum

Aynaud, Thomas, and Jean-Loup Guillaume. "Static community detection algorithms for evolving networks." 8th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks. IEEE, 2010.



EXAMPLE OF ME RO

- DYNAMO (not working with snaphsots) (implicit local)
» Communities are detected in the first step using a static algorithm

» At each network modification, local rules are applied to preserve a high
modularrity, without re-running a global optimization

Zhuang, Di, J. Morris Chang, and Mingchen Li. "DynaMo: Dynamic Modularity-based Community Detection in Evolving Social Networks." arXiv preprint arXiv:1709.08350
(2017).



EXAMPLE OF ME RO

- DYNMOGA (explicit global)
» Communities are detected on the first snapshot using a static algorithm

» For snapshot t+ 1, a genetic algorithm is used to solve a multi-objective
optimization problem:

- Optimize a partition quality function (e.g., modularity) (5C, Snapshot Cost)

- Optimize the similarity to the previous partition (e.g., Normalized Mutual
Information) (TC, Temporal Cost)

- A parameter a allows to tune the importance of both aspects
cost =aSC+ (1 —a)TC

Folino, Francesco, and Clara Pizzuti. "A multiobjective and evolutionary clustering method for dynamic networks." 2010 International Conference on Advances in Social
Networks Analysis and Mining. IEEE, 2010.



EXAMPLE OF ME RO

- Transversal Network (cross-time)

» A transversal network is built: nodes are couples (nodes, time), edges link the
same node In adjacent snapshots

» A community detection algorithm is run on this transversal network

- (Note: modified Modularity to avoid overestimating expected edges between
nodes In different time steps, I.e., custom random graph)

Mucha, Peter J., et al. "Community structure in time-dependent, multiscale, and multiplex networks." science 328.5980 (2010): 876-878.



DCD EVALUATION



DCD EVALUATION

» lests on synthetic networks

» VWe know what we want to find
» We run algorithms and check the results

e [ests on real networks

» Start from a real dataset
» Transform into an appropriate dynamic network (if needed)
» Run algorithms and try to interpret results



SYNTHETIC NETWORK



DCD EVALUATION

* Benchmarks allow to generate networks with a controlled

community structure
» Based on LFR benchmark of Stochastic Block Models
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(b) The static graph at time t=0, version sharp (c) The static graph at time t=0, version
(x=0.9,u=0.05) blurred (a0 = 0.8, u = 0.25)



RESULIS WITH SHARP
COMMUNITIES
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RESULTS WITH BLURRED
COMMUNITIES
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10O SUM UP ON DYNAMIC
GRAPHS



O SUM U

» Currently, most practitioners still use the snapshot approaches
» Most researchers agree that it has many drawbacks

el rrent)y;

» No single framework
» No library
» Dataset not as ubiquitous as static graphs

- (often privates...)




