
DYNAMIC NETWORKS
(Dynamic of networks)



DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Facebook friendship 

- People joining/leaving
- Friend/Unfriend

‣ Twitter mention network
- Each mention has a timestamp
- Aggregated every day/month/year => still dynamic

‣ World Wide Web
‣ Urban network
‣ …



DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Nodes can appear/disappear
‣ Edges can appear/disappear
‣ Nature of relations can change

• How to represent those changes?

• How to manipulate dynamic networks?



DYNAMIC NETWORKS
Relations Interactions

Long term
-Friend

-Colleague
-Family relation

-…

Short term ?
-Collaborators in the same 

project
-Same team in a game

-Attendees of the same meeting
-…

Instantaneous
-e-mail

-Text message
-Co-authoring

…

With duration
-Phone call

-Discussion in real life
-Participate in a same meeting

Semantic
level



DYNAMIC NETWORKS
Relations Interactions

Graph series Link StreamsInterval graphs
DN=[G1,G2…Gn]

Gi=(V,E)
E : VxV

DN=(V,E,T,DV)
DV: VxTxT
E: VxVxTxT

DN=(V,E,T)
E: VxVxT

Semantic
level

Representation
level

(Or 3D tensor)



DYNAMIC NETWORKS
Relations Interactions

Graph series Link StreamsInterval graphs
DN={G1,G2…Gn}

Gi=(V,E)
E : VxV

DN=(V,E,T,DV)
DV: VxTxT
E: VxVxTxT

DN=(V,E,T)
E: VxVxT

Semantic
level

Representation
level

AggregationSnapshot



DYNAMIC NETWORKS
Relations InteractionsSemantic

level

Representation
level Graph series Link StreamsInterval graphs

File/in-memory 
representation

Sequence of 
graphs

Temporal edge 
listInterval list

-Modification lists
-List of intervals

-1file by graph
-1 file with 
all graphs

-List of edges with
timestamps

AggregationSnapshot



DYNAMIC NETWORKS

Representation
level Graph series Link StreamsInterval graphs

Aggregation/
Reformulation

Persistance

Discretization (snapshots)

Reformulation



DYNAMIC NETWORKS
• Exemple in practice: Sociopattern dataset

‣ Every 20s, list of individuals at distance ≈ 1,5m
‣ Dataset : sequence of graphs or temporal edge list

1353304100 1148 1644
1353304100 1613 1672
1353304100 656 682
1353304100 1632 1671

1353304120 1492 1613
1353304120 656 682
1353304120 1632 1671

1353304140 1148 1644

1353304160 656 682
1353304160 1108 1601
1353304160 1632 1671
1353304160 626 698



Types of network evolution
According to 

1) Observation frequency
2) Network nature

Higher Observation 
FrequencyStatic 

Network The graph is less and less stable, until each observation 
is a graph in itself, thus completely different from 

previous/later ones
(frequency faster than observed events rate)

Relations

Interactions

Exhaustive / 
continuous time 

The graph is more and more stable, until most observations 
are completely similar to previous/later ones

(frequency faster than change rate)



ANALYZING DYNAMIC 
NETWORKS



DISTINGUISHING:
-UNSTABLE SNAPSHOTS
-STABLE NETWORKS
-(UNSTABLE) TEMPORAL NETWORKS

(WITH OR WITHOUT DURATION)



UNSTABLE SNAPSHOTS



UNSTABLE SNAPSHOTS
• The evolution is represented as a series of a few snapshots.

• Many changes between snapshots
‣ Cannot be visualized as a “movie”



UNSTABLE SNAPSHOTS

• Each snapshot can be studied as a static graph

• The evolution of the properties can be studied “manually”

• “Node X had low centrality in snapshot t and high centrality in 
snapshot t+n”



STABLE NETWORKS



STABLE NETWORK

• Edges change (relatively) slowly

• The network is well defined at any t
‣ Temporal network: nodes/edges described by (long lasting) intervals
‣ Enough snapshots to track nodes 

• A static analysis at every (relevant) t gives a dynamic vision

• No formal distinction with previous case (higher observation 
frequency)



STABLE NETWORK
• Visualization

‣ Problem of stability of node positions



STABLE NETWORK

• Global graph properties

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data 
(TKDD) 1.1 (2007): 2.



STABLE NETWORK

• Centralities



TIME SERIES ANALYSIS
• TS analysis is a large field of research

• Time series: evolution of a value over time
‣ Stock market, temperatures…

• “Killer app”:
‣ Detection of periodic patterns
‣ Detection of anomalies
‣ Identification of global trends
‣ Evaluation of auto-correlation
‣ Prediction of future values

• e.g. ARIMA (Autoregressive integrated moving average)
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average



UNSTABLE TEMPORAL 
NETWORKS



UNSTABLE TEMPORAL 
NETWORK

• The network at a given t is not meaningful

• How to analyze such a network?



UNSTABLE TEMPORAL 
NETWORK



UNSTABLE TEMPORAL 
NETWORK

• Until recently, network was transformed using aggregation/ 
sliding windows
‣ Information loss
‣ How to chose a proper aggregation window size?

• Tools developed to deal with such networks



UNSTABLE TEMPORAL 
NETWORK

• [Holme 2012]: mostly about paths, walks, distances… (later 
class, diffusion on networks.)

• [Latapy 2018]: Other things (centralities, …)

• Idea: Generalize all graphs definitions to temporal networks

• => If all nodes and all edges always present, same values as for 
a static graph 

Holme, Petter, and Jari Saramäki. "Temporal networks." Physics reports 519.3 (2012): 97-125.

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.



CENTRALITIES
&

NETWORK PROPERTIES
IN STREAM GRAPHS



STREAM GRAPHS

T: Possible Time
V: vertices

W: Vertices presence time
E: Edges presence time



INDICES IN STREAM GRAPHS

Number of nodes: 

Total presence of nodes
————————————

Total dataset duration

(not an integer value…) e.g.: 2 if 4 nodes 
half the time



INDICES IN STREAM GRAPHS

Number of edges: 

Total presence of edges
————————————

Total dataset duration

(not an integer value…) e.g.: 1 if 1 edge all the time



INDICES IN STREAM GRAPHS

Neighborhood of a node

Degree of a node



INDICES IN STREAM GRAPHS



INDICES IN STREAM GRAPHS

Average node degree



INDICES IN STREAM GRAPHS

Clustering coefficient of a node

Probability that if we take 2 random neighbors at a random 
time, they are linked



INDICES IN STREAM GRAPHS

Density (of a stream graph):  probability if we 
take a random pair of nodes

at a random time that there is an edge 
between them



INDICES IN STREAM GRAPHS

Total edge presence 

e.g.: 10 if 2 edges present over 5 periods



INDICES IN STREAM GRAPHS

Total overlapping time between each pair 
of nodes

=>An edge is possible



INDICES IN STREAM GRAPHS



INDICES IN STREAM GRAPHS

• Note that we can define particular cases of density:
‣ Density for a pair of nodes
‣ Density for a node



INDICES IN STREAM GRAPHS



PATHS AND DISTANCES IN 
STREAM GRAPHS



PATHS
• A path in a stream graphs

‣ Starts at a node and a date
‣ Ends at a node and a date
‣ Has a length (number of hops)
‣ Has a duration (duration from leaving node to reaching node)

Path(d,1)(c9)
Length:3

Duration: 3
? ?



SHORTEST PATHS

• Several types of shortest paths in Stream graphs:
‣ Shortest path: minimal length 
‣ Fastest path: minimal duration
‣ Foremost path: first to reach

‣ Fastest shortest paths
- Minimum duration among minimal length

‣ Shortest fastest paths
- Minimal length among minimal duration



SHORTEST PATHS

Blue: Foremost
Green: Fastest

Red: Shortest

a
b
c
d
e
f



SHORTEST PATHS

Shortest paths from (1, d) to (9, c) ?



SHORTEST PATHS

Shortest paths from (1, d) to (9, c) ?
=>e.g. (2.5,d,b)(3,b,a)(7,a,c)



SHORTEST PATHS

Fastest paths from (1, d) to (9, c) ?



SHORTEST PATHS

Fastest paths from (1, d) to (9, c) ?

(3,d,b),(3,b,a),(4.5,a,c) 



SHORTEST PATHS

Foremost paths from (0, a) to (9, c) ?



SHORTEST PATHS

Foremost paths from (0, a) to (9, c) ?

…(4.5,a,c)



SHORTEST PATHS

Fastest shortest path from (1, d) to (9, c) ?



SHORTEST PATHS

Fastest shortest path from (1, d) to (9, c) ?



SHORTEST PATHS

Fastest Shortest path from (1, d) to (9, c) ?

(3, d, b), (3, b, a), (4.5, a, c) 



SHORTEST PATHS

Shortest Fastest path from (1, d) to (9, c) ?



OTHER DEFINITIONS ON 
STREAM GRAPHS



CONNECTED COMPONENTS
• Weakly connected component: 

‣ There is at least a non-temporally respecting path



CLOSENESS - BETWEENNESS

Latapy, M., Viard, T., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.

Shortest path in Static graphs is replaced by a cost function, any 
notion of distance (typically, time to reach)

Proportion of all the shortest fastest paths between all possible (time,node) pairs that go through (t,v)



RANDOM MODELS FOR 
DYNAMIC NETWORKS



RANDOM MODELS

• In many cases, in network analysis, useful to compare a 
network to a randomized version of it
‣ Clustering coefficient, assortativity, modularity, …

• In a static graph, 2 main choices:
‣ Keep only the number of edges (ER model)
‣ Keep the number of edges and the degree of nodes (Configuration model)

• In dynamic networks, it is more complex…



RANDOM MODELS
• [Gauvin 2018]

• Four families of shuffling:
‣ Snapshot shuffling

- =>Keep the order of snapshots, randomize network inside snapshot
‣ Sequence Shuffling

- =>Keep each snapshot identical, but switch randomly their order 
‣ Link Shuffling 

- =>  Randomize aggregated graph, keep activation times. 
- e.g., pick two node pairs activation time (u1,v1: t0, t1,…), (u2,v2: w0, w1, …) ad switch their 

activation time.
‣ Timeline shuffling 

- => Randomize nodes/edges activation time, conserve the aggregated graph. 
- e.g. pick two edge observations (u1,v1,t1), (u2,v2,t2), switch t1 and t2

• Shufflings can be combined…

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).



RANDOM MODELS

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).



ADM network
with

Social mechanisms



Activity driven model of time varying networks

Agent based model of temporal 
interactions 

• It is only a general framework where 
additional mechanisms can be added 

• It is capable of simulating dynamical 
processes co-evolving with the contact 
dynamics 

• It takes a single assumption a priori: 
agents have different activity potentials

epidemic compartmental model1,2,44,45. In this model, infected
individuals can propagate the disease to healthy neighbors with
probability l, while infected individuals recover with rate m and
become susceptible again. In an homogenous population the
behavior of the epidemics is controlled by the reproductive
number R0 5 b/m, where b 5 lÆkæ is the per capita spreading rate
that takes into account the rate of contacts of each individual. The
reproductive number identifies the average number of secondary
cases generated by a primary case in an entirely susceptible
population and defines the epidemic threshold such that only if R0

. 1 can epidemics reach an endemic state and spread into a closed
population. In the past few years the inclusion of complex
connectivity networks and mobility schemes into the substrate of
spreading processes contagion, diffusion, transfer, etc. has
highlighted new and interesting results46–50. Several results states
that the epidemic threshold depends on the topological properties
of the networks. In particular, for networks characterized by a fix,
quenched topology the threshold is given by the principal eigenvalue
of the adjacency matrix48,49. Instead, for annealed network, cha-
racterized by a topology defined just on average because the
connectivity patterns has a dynamic extremely fast with respect to
the dynamical process, heterogeneous mean-field approaches2,6

predict an epidemic threshold that is inversely proportional to the
second moment of the network’s degree distribution: b/m . Ækæ2/Æk2æ.
However, these results do not apply to the case in which the time
variation of the connectivity pattern is occurring on the same time
scale of the dynamical process. Our model presents simple evidence
of this problem, as a disease with a small value of m21 (the infectious
period characteristic time) will have time to explore the fully-
integrated network, but will not spread on the dynamic

instantaneous networks whose union defines the integrated
one30,31,43,51. In Fig. 4-B we plot the results of numerical simulations
of the SIS model on a network generated according to our model and
on two time-aggregated network instances. We observe that the two
aggregated networks lead to misleading results in both the threshold
and the epidemic magnitude as a function of b/m. Even if the
epidemic threshold discounts the different average degree of the
networks in the factor b 5 lÆkæ, the two aggregated instances
consider all edges as always available to carry the contagion
process, disregarding the fact that the edges may be active or not
according to a specific time sequence defined by the agents’ activity.

The above finding can be more precisely quantified by calculating
analytically the epidemic threshold in activity driven networks with-
out relying on any time aggregated view of the network connectivity.
By working with activity rates we can derive epidemic evolution
equation in which the spreading process and the network dynamics
are coupled together. Let us assume a distribution of activity poten-
tial x of nodes given by a general distribution F(x) as before. At a
mean-field level, the epidemic process will be characterized by the
number of infected individuals in the class of activity rate a, at time t,
namely It

a. The number of infected individuals of class a at time t 1
Dt given by:

ItzDt
a ~{mDtIt
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where Na is the total number of individuals with activity a. In Eq. (3),
the third term on the right side takes into account the probability that
a susceptible of class a is active and acquires the infection getting a

Figure 2 | Cumulative distribution of the activity potential, FC(x), empirically measured by using four different time windows and a schematic
representation of the proposed network model. In particular, in panel (A) we show the cumulative distributions of the observables x for Twitter, in panel
(B) for IMDb, and in panel (C) for PRL. In panel (D) we show a schematic representation of the model. Considering just 13 nodes and m 5 3, we plot a
visualization of the resulting networks for 3 different time steps. The red nodes represent the firing/active nodes. The final visualization represents the
network after integration over all time steps.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 469 | DOI: 10.1038/srep00469 4

Perra (2012)

N. Perra, et.al., Sci. Rep. 2, 469 (2012)



Activity driven model of time varying networks
Definition 

• N disconnected nodes, with pre-assigned activity rates: 
ai=ηxi 

    where  

• xi is the activity potential of node i - sampled from an 
arbitrary distribution F(x)    and    xi ∈ [ε, 1]

• η is a rescaling factor

• Each time step t  start with N disconnected nodes:

1. With probability ai node i is activated and connect to 
m other nodes randomly 

2. With probability 1-ai node i remains inactive (still can 
receive connections from other active nodes)

• In the end of each time step we delete each link and 
start the loop over again

Although activity driven models in their simplest formu-
lation do not account for many features such as link
persistence, homophily, and underlying social structures
[8–23], they allow the analytical formulation of the
concurrent network and contagion process dynamics in
the form of appropriate mean-field equations, thus allowing
the analytical study of the dynamical process of interest
[25,28–32].
In the following, we study contagion processes using

the basic SIS model [33]. Each node at each time t can be in
the susceptible St or infectious It state. The basic SIS rules
thus define a reaction scheme of the type Sþ I → 2I with
probability per unit time β and I → S with probability per
unit time μ, which represent the contagion and recovery
processes, respectively. We consider the case in which these
two probabilities are the same for all the nodes, and defer
the analysis of scenarios characterized by heterogenous
probability distributions to future works. A central concept
of contagion phenomena is the epidemic threshold.
It defines the conditions necessary for the spreading of
the disease. In networks, the threshold depends on the

moments of the degree distribution PðkÞ that specify the
probability that any node is connected to k distinct
nodes. In uncorrelated annealed networks, the threshold
condition reads β=μ ≥ hki2=hk2i, where hki and hk2i are
the first and second moment of the degree distribution,
respectively [11]. In this expression, β ¼ λhki takes into
account the average contacts per node hki and the per
contact probability of transmission λ. While the expression
might be different in the case of static networks [35–37],
the topological properties of the underlying graph have
critical effects on the threshold.
In time-varying networks, the analytical study of con-

tagion processes is hindered by the difficulties in dealing
with the concurrent time scales of the contagion and
network evolution processes [38–43]. The contagion time
scale τP is defined by the average recovery time, i.e., μ−1.
The network time scale τG is instead dependent on the
convolution of the activity time scale, a−1, of each node.
Considering these observations, it is possible to derive
the mean-field level dynamical equations describing the
contagion process. Let us define the activity block variables
Ita and Sta as the number of infected and susceptible
individuals, respectively, in the class of activity a at
time t. This allows us to write the mean-field evolution
of the number of infected individuals in each group of
nodes with activity a as

Itþ1
a ¼ Ita − μIta þ λmðNa − Ita − Rt

aÞa
Z

da0
Ita0
N

þ λmðNa − Ita − Rt
aÞ
Z

da0
Ita0a

0

N
; (1)

where Na is the total number of individuals with activity
rate a (constant over time) and Rt

a are the nodes in the class
a at the time t that have been immunized or removed from
the network. In Eq. (1), the first term considers the number
of infected individuals in class a at time t. The second term
describes the number of nodes that recover going back in
the class Sa. The third term represents the number of
infected individuals generated when nodes in the class
Sta ¼ Na − Ita − Rt

a are active and connect with infected
nodes in the other activity classes. Finally, the last term
considers the number of infected individuals generated
when nodes in the class Sta are linked by active infected
nodes in other activity classes. In the absence of any
controlling strategy Rt

a ¼ 0. In this case, considering the
convolution on all activity time scales and ignoring the
second order terms in I=N, we can write Itþ1 ¼ It−
tμIt þ λmhaiIt þ λmθt, where θt ¼

R
da0Ita0a

0. By multi-
plying both sides of Eq. (1) by a and integrating, we obtain
θtþ1 ¼ θt − μθt þ λmha2iIt þ λmhaiθt. The system equa-
tions for Itþ1 and θtþ1 provide an epidemic outbreak only if
the dominant eigenvalue of the corresponding matrix is
larger than 1. Thus, the epidemic threshold reads as
ðβ=μÞ ≥ ξSIS ≡ 2hai=ðhaiþ

ffiffiffiffiffiffiffiffiffi
ha2i

p
Þ, where hai and ha2i

FIG. 1 (color online). Schematic representation of activity
driven model and control strategies. (a),(b) Temporal network
at two different time steps T1 and T2. (c) Integrated network over
a certain period of time. The size and color of each node describes
its activity, while the width and color of each link describes the
weight. (d)–(f) Random, targeted, and egocentric control strategy
respectively. Immunized nodes are plotted as red squares; probes
as yellow triangles.

PRL 112, 118702 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 MARCH 2014

118702-2



Activity driven model of time varying networks

Features
• The structure of the actual network at each t will be a random network
• The emerging degree distribution of the integrated network will follow the 

same scaling form as the pre-assigned activity distribution

• Real node activity is different…



Egocentric network dynamics

n=0



Egocentric network dynamics

n=1



Egocentric network dynamics

n=2



Egocentric network dynamics

n=3



Egocentric network dynamics

n=3



Egocentric network dynamics

n=3



Egocentric network dynamics

n=3



Egocentric network dynamics

n=4



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie

 =Nodes with final degreekmin
kmin



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie

p(n) = 1� n

n + c
C an offset constant for each class



Egocentric network dynamics with memory
p(n) : probability that the next communication event of an agent with n 
social ties will occur via the establishment of a new (n + 1) social tie

p(n) = 1� n

n + c
pk(n/c) =

1
n/c + c



Social mechanisms
Memory & social reinforcement

• When a node is active it connects with 
probability 

to a random node it has never connected 
before OR with probability

to one of the     node who it has 
connected earlier

n

• After each iteration links are deleted but 
each node keeps remember to their 
previously connected egocentric network

• N disconnected nodes with pre-assigned 
activity: 

ai = xi⌘
where the activity potential is sampled from

F (xi) ⇠ x�⌫
i xi 2 [✏, 1]where

and      is a rescaling factor.⌘

• In each iteration nodes become active 
with probability                and connect 

        nodes randomly.
ai�t

m

N. Perra, et.al., Sci. Rep. 2 469 (2012) 

Activity driven network model
M. Karsai, et.al., Sci. Rep. 4 4001 (2014) 

• A node can build a connection by 
initiating or receiving it

p(n) = c/(n+ c)

1� p(n)



Activity driven network with memory

memoryless process reinforced process

⌘ = 1 ✏ = 10�3⌫ = 2.8

m = 1 �t = 1 c = 1



DYNAMIC COMMUNITY 
DETECTION

Rossetti, Giulio, and Cazabet, Rémy. "Community discovery in dynamic networks: a survey." ACM Computing Surveys (CSUR) 51.2 (2018): 35.



COMMUNITY DETECTION

Static networks Dynamic Networks

Sets of nodes  Sets of periods of nodes

156 link streams for modelling interactions over time and application to the analysis
of ip traffic

We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.

a
b
c
d

0 5 time15 2010

e

Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate

[Viard 2016]



COMMUNITY DETECTION

Static networks Dynamic Networks

Sets of nodes  Sets of periods of nodes

[Viard 2016]



DYNAMIC CD SPECIFICITIES

• Dynamic community detection is not a mere iterated static 
community detection problem
‣ Dynamic community detection ? 
‣ 1) Apply Louvain algorithm at every step
‣ 2)Match somehow
‣ 3)Problem solved.



COMMUNITY DETECTION

Growth Contraction
t t+1 t t+1

Merging
t t+1

Splitting
t t+1

Birth
t t+1

Death
t t+1

t t+1 t+nt+n-1

Resurgence

Community events
(or operations)



COMMUNITY DETECTION
Growth Contraction

t t+1 t t+1

Merging
t t+1

Splitting
t t+1

Birth
t t+1

Death
t t+1

t t+1 t+nt+n-1

Resurgence

Community events
(or operations)

Which one persists ?
-Oldest ?

-Most similar ?
-Larger ?

-…



IDENTITY PRESERVATION

Challenges in Community Discovery on Temporal Networks 9

Time

Nodes

A

B

C

Fig. 2 Illustration of the ship of Theseus paradox. Each horizontal line represents a node. A same
color represents nodes belonging to the same community according to a topological criterion (e.g.,
SBM). The community A is progressively modified until reaching state B. Community C is com-
posed of the same nodes as the other community at its start. Which cluster (B or C) has the same
identity as A? What if all details of the evolution are not known?

• Instant Optimal approaches are the best choice when the final goal is to provide
communities that are as good as possible at each step of the evolution of the
network;

• Cross-Time approaches are the best choice when the final goal is to provide com-
munities that are coherent in time, particularly over the long term;

• Temporal Trade-off approaches represent a trade-off between these other two
classes: they are the best choice in the case of continuous monitoring, rapidly
evolving data, and in some cases, limited memory applications. However, they
can be subject to “avalanche” effects due to the limited temporal information they
leverage to identify communities (i.e., partitions evolve based on local temporal-
optimal solutions that, on the long run may degenerate).

2.2 Preservation of identity: the ship of Theseus paradox

The smoothness problem affects the way nodes are split into communities at each
time. A different notion is the question of identity preservation along time, which
arises in particular in case of a continued slow evolution of communities. It is well
illustrated by the paradox of the ship of Theseus. It is originally an ancient thought
experiment introduced by Plutarch about the identity of an object evolving through
time. It can be formulated as follows:

Let’s consider a famous ship, the ship of Theseus, composed of planks, and kept
in a harbor as a historical artifact. As time passes, some planks deteriorate and need
to be replaced by new ones. After a long enough period, all the original planks of
the ship have been replaced. Can we consider the ship in the harbor to still be the

Ship of Theseus [Plutarch., 75]



A very concrete problem :

SORBONNE 
UNIVERSITY

May 68
PARIS 1

PARIS 2

…

PARIS 13

January 2018

PARIS 4
SORBONNE  
UNIVERSITY

Who gets Marie Curie Nobel Prizes points 
in the Shanghai University Ranking ?

PARIS 6…

IDENTITY PRESERVATION



SMOOTHNESS / STABILITY

• Community smoothness is a fundamental problem

• Algorithms are stochastic / approximations
‣ The same algorithm ran twice on the same graph might yield different results
‣ Small, local perturbations might generate large, global community changes

- Shift between different local maximum 



SMOOTHNESS / STABILITY

• Let’s consider that we have a perfect, deterministic method
‣ e.g., always discovering the solution of maximal modularity
‣ Each partition might nevertheless be quite different from previous/next one
‣ Imagine a borderline situation in which a single edge change makes the 

community go from 1 to 2 communities, back and forth.

• What we are actually searching is a “simple” (parsimonious) 
model. 
‣ We want a trade-off between quality and simplicity (smoothness)



SMOOTHNESS / STABILITY

• No Smoothness: Partition at each t should be the same as 
found by a static algorithm.

• Smoothness: Partition at t is a trade-off between “good” 
communities for the graph at t and similarity with partitions at 
different times



COMMUNITY DETECTION
Over 40 methods published



CATEGORIES

• Instant optimal: 
‣ Work only with snapshots
‣ No partition smoothing
‣ Labels can be smoothed
‣ Easy to parallelize

‣ =>Best suited for large networks with few steps of evolution (<100?)



CATEGORIES

• Temporal trade-off
‣ Works with any type of temporality (in theory)
‣ Cannot be parallelized (iterative)
‣ => Best suited for real-time analysis / tasks

• Cross-Time
‣ Works with any type of temporality (in theory)
‣ Requires to know the whole evolution in advance
‣ => Not suited for real-time analysis, potentially the best smoothed (a 

posteriori interpretation)



COMMUNITY DETECTION
Chapitre 3. Conception d’un algorithme de détection de communautés dynamiques

Figure 3.25 – Visualisation de communautés dynamiques, par Rosvall et al. [RB10]

a cependant plusieurs inconvénients : il est di�cile de trouver une information précise

dessus, elle est parfois di�cile à lire, et elle reste limitée à de petits graphes. Surtout, elle

ne pourrait pas être utilisé pour des communautés vraiment complexes, dans lesquelles les

nœuds pourraient appartenir à plusieurs communautés, et en changeraient. La position de

chaque nœud sur l’axe vertical est en e↵et décidée en fonction de la communauté à laquelle

il appartient, et c’est cette position qui assure la visibilité des communautés. Si un nœud

appartient fortement à plusieurs communautés, il n’est plus possible de le placer à une

position pertinente.

– Rosvall et al [RB10] proposent une visualisation de très grande qualité, très pertinente dans

le cas de réseaux contenant relativement peu de communautés (Figure 3.25. Le point le

plus intéressant est que l’on peut représenter des fusions et des divisions de communautés.

Le problème est cependant qu’ici aussi, il n’est pas possible de prendre en compte le

recouvrement, un nœud ne peut appartenir qu’à une et une seule communauté. De plus,

comme on peut le voir sur l’illustration, cette méthode n’est adaptée qu’à des graphes dont

l’évolution n’est constitué que de quelques instantanés. Dans le cas de graphes contenant

de très nombreuses étapes, la visualisation deviendrait trop complexe pour vraiment être

utile. (Croisement des di↵érentes lignes, etc.)

La solution que nous avons adoptée devait répondre à trois exigences :

– Permettre de prendre en compte des communautés avec recouvrement

– Permettre de suivre le détail de l’évolution des communautés

– Permettre de représenter de grands graphes

Nous avons finalement opté pour une visualisation interactive. Au premier niveau de visualisa-

tion, seules les communautés sont représentées, comme montré sur la figure 3.26. Chaque ligne

horizontale correspond à une communauté, et on voit clairement ses dates de naissance et de

disparition. Il peut y avoir de nombreuses communautés sans que cela ne rende la visualisation

complexe.

Il est ensuite possible d’observer le détail de l’évolution de chacune de ces communautés (via

un simple clic dans la version intéractive). La visualisation est alors semblable, mais chaque ligne
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3.4. Aspects pratiques
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Figure 3.24 – Visualisation de communautés dynamiques, par Mucha et al. [MRM+10]

De manière à ce que le graphe reste cohérent au cours de la vidéo, les nœuds sont positionnés

à l’aide d’un modèle masse ressort qui se met à jour à chaque modification du réseau. Les nœuds

et liens non modifiés par la dernière modification du réseau restent donc approximativement à la

même place. La bibliothèque GraphStream [DGO+07], spécialement développée pour travailler

avec des graphes dynamiques, a été utilisée pour développer cet outil.

On peut voir quelques illustrations tirées d’une vidéo représentant l’évolution d’un réseau

réel sur la figure 3.23 Cette vidéo peut être générée automatiquement à partir du format de

fichier TNF que nous avons décrit précédemment.

L’inconvénient principal de cette méthode est qu’elle ne permet pas de visualiser de grands

réseaux complexes. Comme pour toute visualisation de réseaux, les graphes très denses et com-

portant beaucoup de nœuds ne peuvent être représentés sous cette forme, a fortiori un réseau

dynamique.

Représentation statique de communautés dynamiques

Pour visualiser plus e�cacement des communautés dynamiques, une autre solution consiste

à en proposer une visualisation statique. Cette approche a déjà été adoptée dans la littérature

auparavant. Deux solutions ont été proposées :

– Mucha et al. [MRM+10] utilisent une visualisation dans laquelle les nœuds ont une place

fixe sur l’axe des ordonnées, tandis que le temps est sur l’axe des abscisses. 3.24. Cette

visualisation permet de bien voir le renouvellement des nœuds des communautés, elle
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COMMUNITY DETECTION
Chapitre 3. Conception d’un algorithme de détection de communautés dynamiques

199919981997199619951994 2001 2002 2003 2004 2005 2006 2007

Figure 3.26 – Visualisation statique de communautés dynamiques. Chaque ligne horizontale
correspond à une communauté. On peut observer les dates de début et de fin des communautés.
Un clic sur une de ces communautés a�che le détail de son évolution.

Il est ensuite possible d’observer le détail de l’évolution de chacune de ces communautés (via

un simple clic dans la version intéractive). La visualisation est alors semblable, mais chaque ligne

correspond désormais à un nœud, et ses dates de début et de fin correspondent au moment où

il a intégré puis quitté la communauté.

Le recouvrement, bien que n’étant pas expressément représenté, ne pose donc pas de problème

de visualisation : le nœud apparait dans le détail de chacune des communautés auxquelles il

appartient.

3.4.3 Graphes aptes à être étudiés

La littérature est riche de nombreux travaux consistant à transformer des données réelles

collectées sur le terrain en un réseau pouvant être étudié de manière statique. On peut citer,

par exemple, la création de réseaux de co-auteurs à partir de bases de publications, ou les

mécanismes d’agrégations permettant de créer un réseau statique à partir d’interactions répétées.

Par exemple, lorsque l’on souhaite étudier le réseau formé par des appels téléphoniques entre

individus sur une période donnée, on peut attribuer un lien entre chaque individu ayant appelé

un autre au moins une fois. On peut également attribuer un poids à chacun des liens pour

représenter le nombre d’appels entre ces individus. Pour éliminer du bruit dans le réseau, il

est également possible de définir un seuil, et tout lien dont le poids sera en-dessous de ce seuil

sera éliminé. Il existe ainsi de nombreux procédés pour créer des réseaux statiques à partir de

données qui n’en sont pas sous leur forme d’origine, ou pour rendre des réseaux de terrain plus

pertinents, plus faciles à étudier.

Dans le cas des réseaux temporels, peu de travaux ont été faits sur le sujet. Au cours de nos

recherches, nous avons été amené à travailler sur ces aspects, et certains d’entre eux nous ont

semblé importants à décrire ici.
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EXAMPLE OF METHODS

• No-smoothing (Adapted from [Greene et al.])

• Implicit Global (Aynaud et al.)

• DYNAMO (Implicit local, Zhuang et al. 2017)

• DYNMOGA (Explicit Smoothing, Folino et al 2010)

• Transversal Network (Mucha et al.)

• Label Smoothing (Falkowski et al.)

Same definition of static communities: modularity



• No-smoothing 

‣ Communities are detected at every step using a static algorithm (e.g. Louvain 
Algorithm)

‣ Similarities are computed between communities in consecutive steps (at t and t+1 
(e.g., Jaccard index))

‣ Most similar communities are matched between t and t+1

J(A, B) =
|A ∩ B |
|A ∪ B |

=
|A ∩ B |

|A | + |B | − |A ∩ B |
.

Greene, Derek, Donal Doyle, and Padraig Cunningham. "Tracking the evolution of communities in dynamic social networks." 2010 international conference on advances in 
social networks analysis and mining. IEEE, 2010.

EXAMPLE OF METHODS



• Label-smoothing 

‣ Communities are detected at every step using a static algorithm (e.g. Louvain 
Algorithm)

‣ Similarities are computed between all communities in all steps(e.g., Jaccard index))

‣ A community network is generated, in which nodes are communities and edges 
are weighted by similarity

‣ A community detection algorithm (e.g., Louvain) is applied on the community 
network to find dynamic communities.

EXAMPLE OF METHODS

Falkowski, Tanja, Jörg Bartelheimer, and Myra Spiliopoulou. "Community dynamics mining." ECIS. 2006.



• Implicit Global

‣ Communities are detected in the first step using the Louvain algorithm

‣ At the next step, the Louvain algorithm is initialized with previous communities as 
seeds (instead of each node in its own community)

‣ =>tend to stay around the same local maximum

EXAMPLE OF METHODS

Aynaud, Thomas, and Jean-Loup Guillaume. "Static community detection algorithms for evolving networks." 8th International Symposium on Modeling and Optimization in 
Mobile, Ad Hoc, and Wireless Networks. IEEE, 2010.



• DYNAMO (not working with snaphsots) (implicit local)

‣ Communities are detected in the first step using a static algorithm

‣ At each network modification, local rules are applied to preserve a high 
modularity, without re-running a global optimization

EXAMPLE OF METHODS

Zhuang, Di, J. Morris Chang, and Mingchen Li. "DynaMo: Dynamic Modularity-based Community Detection in Evolving Social Networks." arXiv preprint arXiv:1709.08350 
(2017).



• DYNMOGA (explicit global)

‣ Communities are detected on the first snapshot using a static algorithm

‣ For snapshot t+1, a genetic algorithm is used to solve a multi-objective 
optimization problem:

- Optimize a partition quality function (e.g., modularity) (SC, Snapshot Cost)

- Optimize the similarity to the previous partition (e.g., Normalized Mutual 
Information) (TC, Temporal Cost)

- A parameter  allows to tune the importance of both aspectsα

EXAMPLE OF METHODS

Folino, Francesco, and Clara Pizzuti. "A multiobjective and evolutionary clustering method for dynamic networks." 2010 International Conference on Advances in Social 
Networks Analysis and Mining. IEEE, 2010.

cost = αSC + (1 − α)TC



• Transversal Network (cross-time)

‣ A transversal network is built: nodes are couples (nodes, time), edges link the 
same node in adjacent snapshots

‣ A community detection algorithm is run on this transversal network

- (Note: modified Modularity to avoid overestimating expected edges between 
nodes in different time steps, i.e., custom random graph)

EXAMPLE OF METHODS

Mucha, Peter J., et al. "Community structure in time-dependent, multiscale, and multiplex networks." science 328.5980 (2010): 876-878.



DCD EVALUATION



DCD EVALUATION

• Tests on synthetic networks 
‣ We know what we want to find
‣ We run algorithms and check the results

• Tests on real networks
‣ Start from a real dataset
‣ Transform into an appropriate dynamic network (if needed)
‣ Run algorithms and try to interpret results



SYNTHETIC NETWORK



DCD EVALUATION

• Benchmarks allow to generate networks with a controlled 
community structure 
‣ Based on LFR benchmark of Stochastic Block Models



EVALUATING COMMUNITY DETECTION ALGORITHMS FOR PROGRESSIVELY EVOLVING GRAPHS 11 of 20

(a) The dynamic communities

(b) The static graph at time t=0, version sharp

(a = 0.9,µ = 0.05)
(c) The static graph at time t=0, version
blurred (a = 0.8,µ = 0.25)

FIG. 2: A simple scenario of community evolution. It uses the Temporal Activity Map (TAM [10]
visualization approach, i.e., each node has a fixed vertical positions, edges are not represented, times
is on the horizontal axis, and colors correspond to community affiliations (two nodes with the same
color belongs to the same community, wether they are in the same timestep or different ones). Nodes
appear grey when they have no known affiliation, which corresponds to periods during which events are
on-going, affected communities not being properly defined. Nodes not present in the network at a given
time appear white in the dynamic network.
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FIG. 3: Comparison of partitions obtained using two different methods on the ad-hoc scenario, sharp

flavor.

to search for the best algorithm, but rather to study the consequences of choices made to integrate the
dynamic into the community detection process. We have selected algorithms based on the following
criteria:

• The six methods chosen are based on the idea of Modularity optimisation. All four methods
therefore agree on the definition of the best static communities on a single network, but differ on
the interpretation of their dynamic.

• They represent well the variety of approaches used to tackle the dynamic aspect

• Their source code is available, or they can be implemented easily.

No-smoothing: The approach we will use as a reference consists in applying a static algorithm on
the snapshot at each step, and then matching the most similar communities in consecutive steps. We
use the Louvain method [] at each step, and the matching process, common to several approaches, is
described in section 4.1.1.

Implicit Global This method introduced in [? ] use a form of implicit smoothing [? ]: at each
step, the Louvain algorithm is run, but instead of starting it with each node in its own community, the
previous partition is used as seed. Similar methods based on the same idea have been proposed in [? ?
? ], but these are harder to reproduce faithfully, so we implemented this simple original version.

DYNAMO [17] is a recent method updating at each evolution step the community structure accord-
ing to changes in the graph, based on a set of local rules. The primary goal is to be faster than
No-smoothing while reaching similar Modularity scores, by avoiding to recompute communities from
scratch at each step, but as Implicit Global, it could also introduce some smoothing by staying close to
a previous local minima (implicit local smoothing). Previous methods with the same mechanism exist
[? ? ], but DYNAMO claims to improve some of their weaknesses, and its code is available.

DYNMOGA [4] is explicitly trying to smooth the community structure by optimizing at each step
t a multi-objective quality functions, considering the modularity at t and the NMI with the partitions at
t �1. It does so using a genetic algorithm.

Transversal Network is a popular method introduced by Mucha et al. [? ] with a Cross-Time

approach, i.e. communities at t depends on earlier and later steps of the network. The principle of the
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FIG. 4: Comparison of partitions obtained using all methods on the ad-hoc scenario, blurred variant.
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TO SUM UP ON DYNAMIC 
GRAPHS



TO SUM UP

• Currently, most practitioners still use the snapshot approaches

• Most researchers agree that it has many drawbacks

• But currently:
‣ No single framework
‣ No library
‣ Dataset not as ubiquitous as static graphs

- (often privates…)


