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a b s t r a c t

Complex systems are very often organized under the form of networks where nodes and
edges are embedded in space. Transportation and mobility networks, Internet, mobile
phone networks, power grids, social and contact networks, and neural networks, are all
examples where space is relevant and where topology alone does not contain all the
information. Characterizing and understanding the structure and the evolution of spatial
networks is thus crucial for many different fields, ranging from urbanism to epidemiology.
An important consequence of space on networks is that there is a cost associated with the
length of edges which in turn has dramatic effects on the topological structure of these
networks. We will thoroughly explain the current state of our understanding of how the
spatial constraints affect the structure and properties of these networks.Wewill review the
most recent empirical observations and the most important models of spatial networks.
We will also discuss various processes which take place on these spatial networks, such
as phase transitions, random walks, synchronization, navigation, resilience, and disease
spread.

© 2010 Elsevier B.V. All rights reserved.
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Understanding individual human mobility patterns
Marta C. González1, César A. Hidalgo1,2 & Albert-László Barabási1,2,3

Despite their importance for urban planning1, traffic forecasting2

and the spread of biological3–5 and mobile viruses6, our under-
standing of the basic laws governing human motion remains
limited owing to the lack of tools to monitor the time-resolved
location of individuals. Here we study the trajectory of 100,000
anonymized mobile phone users whose position is tracked for a
six-month period. We find that, in contrast with the random tra-
jectories predicted by the prevailing Lévy flight and random walk
models7, human trajectories show a high degree of temporal and
spatial regularity, each individual being characterized by a time-
independent characteristic travel distance and a significant prob-
ability to return to a few highly frequented locations. After
correcting for differences in travel distances and the inherent
anisotropy of each trajectory, the individual travel patterns col-
lapse into a single spatial probability distribution, indicating that,
despite the diversity of their travel history, humans follow simple
reproducible patterns. This inherent similarity in travel patterns
could impact all phenomena driven by human mobility, from
epidemic prevention to emergency response, urban planning
and agent-based modelling.

Given the many unknown factors that influence a population’s
mobility patterns, ranging from means of transportation to job- and
family-imposed restrictions and priorities, human trajectories are often
approximated with various random walk or diffusion models7,8.
Indeed, early measurements on albatrosses9, followed by more recent
data on monkeys and marine predators10,11, suggested that animal tra-
jectory is approximated by a Lévy flight12,13—a random walk for which
step sizeDr follows a power-law distribution P(Dr) ,Dr2(1 1 b), where
the displacement exponent b , 2. Although the Lévy statistics for some
animals require further study14, this finding has been generalized to
humans7, documenting that the distribution of distances between con-
secutive sightings of nearly half-a-million bank notes is fat-tailed. Given
that money is carried by individuals, bank note dispersal is a proxy
for human movement, suggesting that human trajectories are best
modelled as a continuous-time random walk with fat-tailed displace-
ments and waiting-time distributions7. A particle following a Lévy
flight has a significant probability to travel very long distances in a
single step12,13, which seems to be consistent with human travel pat-
terns: most of the time we travel only over short distances, between
home and work, whereas occasionally we take longer trips.

Each consecutive sighting of a bank note reflects the composite
motion of two or more individuals who owned the bill between
two reported sightings. Thus, it is not clear whether the observed dis-
tribution reflects the motion of individual users or some previously
unknown convolution between population-based heterogeneities and
individual human trajectories. Contrary to bank notes, mobile phones
are carried by the same individual during his/her daily routine, offering
the best proxy to capture individual human trajectories15–19.

We used two data sets to explore the mobility pattern of indivi-
duals. The first (D1) consisted of the mobility patterns recorded over

a six-month period for 100,000 individuals selected randomly from a
sample of more than 6 million anonymized mobile phone users. Each
time a user initiated or received a call or a text message, the location of
the tower routeing the communication was recorded, allowing us
to reconstruct the user’s time-resolved trajectory (Fig. 1a, b). The
time between consecutive calls followed a ‘bursty’ pattern20 (see
Supplementary Fig. 1), indicating that although most consecutive
calls are placed soon after a previous call, occasionally there are long
periods without any call activity. To make sure that the obtained
results were not affected by the irregular call pattern, we also studied
a data set (D2) that captured the location of 206 mobile phone users,
recorded every two hours for an entire week. In both data sets, the
spatial resolution was determined by the local density of the more
than 104 mobile towers, registering movement only when the user
moved between areas serviced by different towers. The average ser-
vice area of each tower was approximately 3 km2, and over 30% of the
towers covered an area of 1 km2 or less.

To explore the statistical properties of the population’s mobility
patterns, we measured the distance between user’s positions at con-
secutive calls, capturing 16,264,308 displacements for the D1 and
10,407 displacements for the D2 data set. We found that the distri-
bution of displacements over all users is well approximated by a
truncated power-law:

P Drð Þ~ DrzDr0ð Þ{bexp {Dr=kð Þ ð1Þ

with exponent b 5 1.75 6 0.15 (mean 6 standard deviation),
Dr0 5 1.5 km and cutoff values k D1j ~400 km and k D2j ~80 km
(Fig. 1c, see the Supplementary Information for statistical valida-
tion). Note that the observed scaling exponent is not far from
b 5 1.59 observed in ref. 7 for bank note dispersal, suggesting that
the two distributions may capture the same fundamental mechanism
driving human mobility patterns.

Equation (1) suggests that human motion follows a truncated
Lévy flight7. However, the observed shape of P(Dr) could be explained
by three distinct hypotheses: first, each individual follows a Lévy tra-
jectory with jump size distribution given by equation (1) (hypothesis
A); second, the observed distribution captures a population-based
heterogeneity, corresponding to the inherent differences between indi-
viduals (hypothesis B); and third, a population-based heterogeneity
coexists with individual Lévy trajectories (hypothesis C); hence, equa-
tion (1) represents a convolution of hypotheses A and B.

To distinguish between hypotheses A, B and C, we calculated the
radius of gyration for each user (see Supplementary Information), inter-
preted as the characteristic distance travelled by user a when observed up
to time t (Fig. 1b). Next, we determined the radius of gyration distri-
bution P(rg) by calculating rg for all users in samples D1 and D2, finding
that they also can be approximated with a truncated power-law:

P rg
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A universal model for mobility and migration
patterns
Filippo Simini1,2,3, Marta C. González4, Amos Maritan2 & Albert-László Barabási1,5,6

Introduced in its contemporary form in 1946 (ref. 1), but with roots
that go back to the eighteenth century2, the gravity law1,3,4 is the pre-
vailing framework with which to predict population movement3,5,6,
cargo shipping volume7 and inter-city phone calls8,9, as well as bilateral
trade flows between nations10. Despite its widespread use, it relies on
adjustable parameters that vary from region to region and suffers
from known analytic inconsistencies. Here we introduce a stochastic
process capturing local mobility decisions that helps us analytically
derive commuting and mobility fluxes that require as input only
information on the population distribution. The resulting radiation
model predicts mobility patterns in good agreement with mobility
and transport patterns observed in a wide range of phenomena, from
long-term migration patterns to communication volume between
different regions. Given its parameter-free nature, the model can be
applied in areas where we lack previous mobility measurements,
significantly improving the predictive accuracy of most of the
phenomena affected by mobility and transport processes11–23.

In analogy with Newton’s law of gravity, the gravity law assumes
that the number of individuals Tij that move between locations i and j
per unit time is proportional to some power of the population of the
source (mi) and destination (nj) locations, and decays with the distance
rij between them as

Tij~
ma

i nb
j

f (rij)
ð1Þ

where a and b are adjustable exponents and the deterrence function
f(rij) is chosen to fit the empirical data. Occasionally Tij is interpreted as
the probability rate of individuals travelling from i to j, or an effective
coupling between the two locations24. Despite its widespread use, the
gravity law has notable limitations:

Limitation one, we lack a rigorous derivation of (1). Whereas
entropy maximization25 leads to (1) with a 5 b 5 1, it fails to offer
the functional form of f(r).

Limitation two, lacking theoretical guidance, practitioners use a
range of deterrence functions (power law or exponential) and up to
nine parameters to fit the empirical data5,7,8,11,14.

Limitation three, as (1) requires previous traffic data to fit the para-
meters [a, b, …], it is unable to predict mobility in regions where we
lack systematic traffic data, areas of major interest in modelling of
infectious diseases.

Limitation four, the gravity law has systematic predictive discrep-
ancies. Indeed, in Fig. 1a we highlight two pairs of counties with similar
origin and destination populations and comparable distance, so
according to (1) the flux between them should be the same. Yet, the
US census (see Supplementary Information) documents an order of
magnitude difference between the two fluxes: only 6 individuals
commute between the two Alabama counties, whereas 44 do in Utah.

Limitation five, equation (1) predicts that the number of commuters
increases without limit as we increase the destination population nj, yet

1Center for Complex Network Research and Department of Physics, Biology and Computer Science, Northeastern University, Boston, Massachusetts 02115, USA. 2Dipartimento di Fisica ‘‘G. Galilei’’,
Università di Padova, CNISM and INFN, via Marzolo 8, 35131 Padova, Italy. 3Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, H-1111, Hungary. 4MIT,
Department of Civil and Environmental Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. 5Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston,
Massachusetts 02115, USA. 6Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
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Figure 1 | The radiation model. a, To demonstrate the limitations of the
gravity law we highlight two pairs of counties, one in Utah (UT) and the other
in Alabama (AL), with similar origin (m, blue) and destination (n, green)
populations and comparable distance r between them (see bottom left table).
The gravity law predictions were obtained by fitting equation (1) to the full
commuting data set, recovering the parameters [a, b, c] 5 [0.30, 0.64, 3.05] for
r , 119 km, and [0.24, 0.14, 0.29] for r . 119 km of ref. 14. The fluxes predicted
by (1) are the same because the two county pairs have similar m, n and r (top
right table). Yet the US census 2000 reports a flux that is an order of magnitude
greater between the Utah counties, a difference correctly captured by the
radiation model (b, c). b, The definition of the radiation model: an individual
(for example, living in Saratoga County, New York) applies for jobs in all
counties and collects potential employment offers. The number of job
opportunities in each county (j) is nj/njobs, chosen to be proportional to the
resident population nj. Each offer’s attractiveness (benefit) is represented by a
random variable with distribution p(z), the numbers placed in each county
representing the best offer among the nj/njobs trials in that area. Each county is
marked in green (red) if its best offer is better (lower) than the best offer in the
home county (here z 5 10). c, An individual accepts the closest job that offers
better benefits than his home county. In the shown configuration the individual
will commute to Oneida County, New York, the closest county whose benefit
z 5 13 exceeds the home county benefit z 5 10. This process is repeated for
each potential commuter, choosing new benefit variables z in each case.
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A gravity model for inter-city telephone

communication networks

G Krings1,2, F Calabrese2, C Ratti2 and V D Blondel1

1 Université catholique de Louvain (UCL), Department of Applied Mathematics -
4 Avenue Georges Lemaitre, B-1348 Louvain-la-Neuve, Belgium
2 SENSEable City Laboratory, Massachusetts Institute of Technology -
77 Massachusetts Avenue, Cambridge, MA 02139, USA

E-mail: gautier.krings@uclouvain.be

Abstract. We consider a network of mobile phone customers aggregated by
geographical proximity. We analyze the anonymous communication patterns of 2.5
million customers of a Belgian mobile phone operator. Grouping customers by billing
address, we build a social network of cities, that consists of communication between
571 cities in Belgium. We show that inter-city communication intensity is characterized
by a gravity model: the communication intensity between two cities is proportional to
the product of the size of the population of these cities divided by the square of their
distance.

PACS numbers: 89.75.Da, 89.75.Fb, 89.65.Ef



Spatial networks
Networks embedded in space

• Concept
• Structure alone does not contain all the information about the network
• Cost: wiring two nodes is not free but has a cost proportional to the distance of the 

nodes
• It directly influences the structure of the emerging network

G
eisel et.al. (2011)

Distance
• Physical distance
• Economical distance
• Social distance
• Difference in professional 

categories
• …



Spatial networks

Types of spatial networks
• Transportation networks

• Airline networks
• Bus, subway, railway, and commuters 
• Cargo ship networks

• Infrastructure networks
• Road and street networks
• Power grids and water distribution 

networks
• The internet

• Neural networks
• Protein networks
• Mobility networks
• …



Spatial and Planar networks

Spatial networks
• Nodes are embedded in a metric space

• G=(V,E,s(n)) 
• s: n→(x,y), where n ∈ V and (x,y) are coordinates of a metric space (e.g. 

Euclidean space)
• probability of finding a link between nodes usually decreases with the 

distance

Planar networks
• Graph that can be drawn in the plane such that edges do not cross each 

other but at their endpoints
• Not all spatial networks are planar
• You do not need to know node positions to have  

a planar graph.



Mixed measures of topology and space
Distance strength

• Cumulative distance from a node i to all neighbours

10 M. Barthélemy / Physics Reports 499 (2011) 1–101

A relation between the strength sw(k) averaged over the nodes of degree k of the form

sw = Ak�w , (24)

with an exponent �w > 1 (or with �w = 1 but with A 6= hwi) is then the signature of non-trivial statistical correlations
between weights and topology. In particular, a value �w > 1 signals that the typical number of passengers per connection
is not constant and increases with k.

The notion of strength can obviously be extended to many different types of weights. In particular, for spatial networks,
one can define [50] the distance strength of node i by

sdi =
X

j2� (i)

dE(i, j) (25)

where dE(i, j) is the Euclidean distance between nodes i and j. This quantity sd represents the cumulative distances of all the
connections from (or to) the considered airport. Similarly to the usual weight strength, uncorrelated random connections
would lead to a linear behavior of the form sd(k) / k, while otherwise the presence of correlations would be signaled by a
behavior of the form

sd(k) ⇠ k�d (26)

with �d > 1. In such a case, there are correlations between the topology and geography which imply that the typical length
of the connection is not constant, as it would be in the case for �d = 1, but increases with the number of connections.

2.2.2.2. Indices ↵, � and variants. Ringness. Various indices were defined long ago, mainly by scientists working in
quantitative geography, following the 1960s and can be found in [16,54,55] (see also the more recent paper by Xie and
Levinson [56]). Most of these indices are relatively simple, but give valuable information about the structure of the network,
in particular if we are interested in planar networks. These indices were used to characterize the topology of transportation
networks. For example Garrison [57]measured some properties of the Interstate highway system and Kansky [58] proposed
up to 14 indices to characterize these networks. We will here recall the most important indices, the ‘alpha’ and the ‘gamma’
indices. The simplest index is called the gamma index and is simply defined as

� = E
Emax

(27)

where E is the number of edges and Emax is the maximal number of edges (for a given number of nodes N). For non-planar
networks, Emax is given by N(N � 1)/2 for non-directed graphs, while for planar graphs we saw in the Section 2.1.2 that
Emax = 3N � 6 leading to

�P = E
3N � 6

. (28)

The gamma index is a simplemeasure of the density of the network, but one can define a similar quantity by counting the
number of elementary cycles instead of the edges. The number of elementary cycles for a network is known as the cyclomatic
number (see for example [26]) and is equal to

� = E � N + 1. (29)

For a planar graph this number is always less or equal to 2N � 5, which leads naturally to the definition of the alpha index
(also coined ‘meshedness’ in [59])

↵ = E � N + 1
2N � 5

. (30)

This index lies in the interval [0, 1], being equal to 0 for a tree and to 1 for a maximal planar graph. Using the definition of
the average degree hki = 2E/N , the quantity ↵ in the large N limit reads as

↵ ' hki � 2
4

(31)

which shows that in fact for a large network this index ↵ does not contain muchmore information than the average degree.
We note that, more recently, other interesting indices have been proposed specifically in order to characterize road

networks [56,60]. For example, in [60], Courtat et al. noticed that in some cities the degree distribution is very peaked
around 3–4, and they then define the ratio

rN = N(1) + N(3)P
k6=2

N(k)
(32)

Barthélemy, M. (2014). Spatial networks (pp. 1967-1976). Springer New York.

Relation Distance strength - degree
• Nodes with same degrees but different 

• Correlation (k) and k ? (Similar to assortativity)

• Central nodes have higher degrees?

• Hubs tend to connect to farther nodes?

• …

sd

sd



Mixed measures of topology and space
Compactness (density measure for cities)

• Measures how much a city is filled with roads

• where A is the area,  is the linear size of a city and  is the total length of roads

•  (for non degenerate cases, i.e., at least a road, see below)

• With only one road circling the area: the total length is  and 

• If roads constitute a square grid of spacing a  (where a<√A):   

and  is large

L = A ℓT

Ψ ∈ [0,1]

ℓT = 4 A Ψ = 0

ℓT = 2
L2

a

Ψ = 1 −
a2

L2

M. Barthélemy / Physics Reports 499 (2011) 1–101 11

10

Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)

A√A

√A

A a



Mixed measures of topology and space
Route distance between two nodes

• Sum of length of segments which belong to the shortest paths 
between two nodes in a spatial network

Accessibility
• Route index for a specific node

• Average route index for the whole network 

M. Barthélemy / Physics Reports 499 (2011) 1–101 11

10

Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)

Route factor/Detour index

• =Euclidean distance
• always larger than 1 but the closer to it, the most efficient.

dE
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Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)
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Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)
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Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)
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Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)



Simple models 
of

spatial networks



Random geometric graphs
General definition:

• Take a space and distribute nodes randomly
• Nodes are small spheres with radius r
• Two nodes are connected if their spheres overlap — separated with 

distance smaller than 2r
• Also called: disk-percolation
• Application: ad-hoc wireless communications
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Degree distribution — Poisson distribution
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In the context of continuum percolation this quantity is the excluded volume Ve ⌘ p. The average degree is then given by
hki = Np and we can then express R as a function of hki

R = 1p
⇡

 hki
N

�

✓
d + 2
2

◆�1/d

(95)

which shows that for a given average degree hki the nodes (spheres) have to become smaller when more nodes are added.
Similarly to the usual ER random graph, there is a critical average degree above which there is a non empty giant

component. The authors of [186] computed this critical value hkic numerically for different dimensions and proposed the
scaling hkic = 1+bd�� with b = 11.78(5) and � = 1.74(2). This relation also states that in infinite dimensions the random
geometric graph behaves like a ER graph with hkic = 1.

In [189], the authors analytically compute the degree distribution for these random geometric graphs. If we assume
that the points are distributed according to a distribution p(x) and the condition for connecting to nodes i and j located at
positions xi and xj, respectively, is dE(i, j)  R, we can then estimate the degree distribution. If we denote by BR(x) the ball
of radius R centered at x, the probability qR(x) that a given node is located in BR(x) is

qR(x) =
Z

BR(x)
dx0p(x0). (96)

The degree distribution for a node located at x is thus given by the binomial distribution

P(k; x, R) =
✓
N � 1

k

◆
qR(x)k[1 � qR(x)]N�1�k. (97)

In the limit N ! 1 and R ! 0, the degree distribution for a node located at x is Poissonian and reads

P(k; x, ↵) = 1
k!↵

kp(x)ke�↵p(x) (98)

where ↵ = hki/
R
dxp2(x) fixes the scale of the average degree. For example, this expression gives for a uniform density

p(x) = p0 a degree distribution of the form

P(k) ⇠ (↵p0)k

k!kd (99)

which decays very rapidly with k. In contrast, if the density decays slowly from a point as p(r) ⇠ r�� , we then obtain
P(k) ⇠ k�d/� , showing that large density fluctuations can lead to spatial scale-free networks [189].

The average clustering coefficient can also be calculated analytically. The argument [186] is the following. If two vertices
i and j are connected to a vertex k it means that they are both in the excluded volume of k. Now, these vertices i and j are
connected only if j is in the excluded volume of i. Putting all the pieces together, the probability to have two connected
neighbors (ij) of a node k is given by the fraction of the excluded volume of i which lies within the excluded volume of k.
By averaging over all points i in the excluded volume of k we then obtain the average clustering coefficient. We thus have
to compute the volume overlap ⇢d of two spheres, which for spherical symmetry reasons depends only on the distance
between the two spheres. In terms of this function, the clustering coefficient is given by

hCdi = 1
Ve

Z

Ve
⇢d(r)dV . (100)

For d = 1, we have

⇢1(r) = (2R � r)/2R = 1 � r/2R (101)

and we obtain

hC1i = 3/4. (102)

For d = 2, we have to determine the area overlapping in Fig. 40, which gives

⇢2(r) = (✓(r) � sin(✓(r)))/⇡ (103)

with ✓(r) = 2 arccos(r/2R) and leads to

hC2i = 1 � 3
p
3/4⇡ ⇡ 0.58650. (104)

Similarly an expression can be derived in d dimensions [186] which for large d reduces to

hCdi ⇠ 3

r
2

⇡d

✓
3
4

◆ d+1
2

. (105)

Clustering coefficient

M. Barthélemy / Physics Reports 499 (2011) 1–101 43

In the context of continuum percolation this quantity is the excluded volume Ve ⌘ p. The average degree is then given by
hki = Np and we can then express R as a function of hki

R = 1p
⇡

 hki
N

�

✓
d + 2
2

◆�1/d

(95)

which shows that for a given average degree hki the nodes (spheres) have to become smaller when more nodes are added.
Similarly to the usual ER random graph, there is a critical average degree above which there is a non empty giant

component. The authors of [186] computed this critical value hkic numerically for different dimensions and proposed the
scaling hkic = 1+bd�� with b = 11.78(5) and � = 1.74(2). This relation also states that in infinite dimensions the random
geometric graph behaves like a ER graph with hkic = 1.

In [189], the authors analytically compute the degree distribution for these random geometric graphs. If we assume
that the points are distributed according to a distribution p(x) and the condition for connecting to nodes i and j located at
positions xi and xj, respectively, is dE(i, j)  R, we can then estimate the degree distribution. If we denote by BR(x) the ball
of radius R centered at x, the probability qR(x) that a given node is located in BR(x) is

qR(x) =
Z

BR(x)
dx0p(x0). (96)

The degree distribution for a node located at x is thus given by the binomial distribution

P(k; x, R) =
✓
N � 1

k

◆
qR(x)k[1 � qR(x)]N�1�k. (97)

In the limit N ! 1 and R ! 0, the degree distribution for a node located at x is Poissonian and reads

P(k; x, ↵) = 1
k!↵

kp(x)ke�↵p(x) (98)

where ↵ = hki/
R
dxp2(x) fixes the scale of the average degree. For example, this expression gives for a uniform density

p(x) = p0 a degree distribution of the form

P(k) ⇠ (↵p0)k

k!kd (99)

which decays very rapidly with k. In contrast, if the density decays slowly from a point as p(r) ⇠ r�� , we then obtain
P(k) ⇠ k�d/� , showing that large density fluctuations can lead to spatial scale-free networks [189].

The average clustering coefficient can also be calculated analytically. The argument [186] is the following. If two vertices
i and j are connected to a vertex k it means that they are both in the excluded volume of k. Now, these vertices i and j are
connected only if j is in the excluded volume of i. Putting all the pieces together, the probability to have two connected
neighbors (ij) of a node k is given by the fraction of the excluded volume of i which lies within the excluded volume of k.
By averaging over all points i in the excluded volume of k we then obtain the average clustering coefficient. We thus have
to compute the volume overlap ⇢d of two spheres, which for spherical symmetry reasons depends only on the distance
between the two spheres. In terms of this function, the clustering coefficient is given by

hCdi = 1
Ve

Z

Ve
⇢d(r)dV . (100)

For d = 1, we have

⇢1(r) = (2R � r)/2R = 1 � r/2R (101)

and we obtain

hC1i = 3/4. (102)

For d = 2, we have to determine the area overlapping in Fig. 40, which gives

⇢2(r) = (✓(r) � sin(✓(r)))/⇡ (103)

with ✓(r) = 2 arccos(r/2R) and leads to

hC2i = 1 � 3
p
3/4⇡ ⇡ 0.58650. (104)

Similarly an expression can be derived in d dimensions [186] which for large d reduces to

hCdi ⇠ 3

r
2

⇡d

✓
3
4

◆ d+1
2

. (105)

Independent of N contrary to random networks



Spatial small world network

General definition (extension of Watts-Strogatz):
• Take a d dimensional regular lattice 
• Assumption: shortcuts are not free but a cost associated with their length
• Links added with a probability q

M. Barthélemy / Physics Reports 499 (2011) 1–101 51

a

b

Fig. 45. Schematic representation of spatial small-world in (a) one dimension and (b) two dimensions. The dashed lines represent the long-range links
occurring with probability q(`) ⇠ `�↵ .
Source: From [219].

4.3.2. Spatial generalizations
One of the first variants of the Watt–Strogatz model was proposed in [135,217,218] and was subsequently generalized

to higher dimensions d [219]. In this variant (see Fig. 45), the nodes are located on a regular lattice in d-dimensions with
periodic boundaries. The main idea is that if the shortcuts have to be physically realized there is a cost associated with their
length. A way to model this is to add links with a probability

q(`) ⇠ `�↵. (145)

For each node, we add a shortcut with probability p, which implies that on average there will be pN additional shortcuts.
Concerning the average shortest path, it is clear that if ↵ is large enough, the shortcuts will be small and the behavior

of h`i will be ‘spatial’ with h`i ⇠ N1/d. On the other hand, if ↵ is small enough we can expect a small-world behavior
` ⇠ logN . In fact, various studies [217,219,220] discussed the existence of a threshold ↵c separating the two regimes,
small- and large-world. We follow here the discussion of [221], who carefully studied the behavior of the average shortest
path. The probability that a shortcut is ‘long’ is given by

Pc(L) =
Z L/2

(1�c)L/2
q(`)d` (146)

where c is small but non-zero. The critical fraction of shortcuts p⇤N = p⇤(L)Ld then satisfies

Pc(L)p⇤(L)Ld ⇠ 1 (147)

which means that if we have a fraction p > p⇤ of long shortcuts, the system will behave as a small-world. We then obtain

p⇤(L) ⇠
⇢
L�d if ↵ < 1
L↵�d�1 if ↵ > 1

(148)

and a logarithmic behavior log L/Ld for ↵ = 1. For a given value of pwe thus have one length scale

L⇤(p) ⇠
⇢
p�1/d if ↵ < 1
p1/(↵�d�1) if ↵ > 1

(149)

which in the special case ↵ = 0was obtained in [222]. Wewill then have the following scaling form for the average shortest
path

h`i = L⇤
F↵

✓
L
L⇤

◆
(150)

where the scaling function varies as

F↵(x) ⇠
⇢
x if x ⌧ 1
ln x if x � 1 (151)

(or even a function of the form (ln x)� (↵) with � (↵) > 0 for x � 1). The characteristic length for ↵ > 1 thus scales as

L⇤(p) ⇠ p1/(↵�d�1) (152)
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Shortest path
• control parameter is the α exponent
• if α is small: 

• if α is large: 

Small world network

Spatial network



Spatial preferential attachement models
General definition:

• Take a space and add successively N nodes at random positions until 
reaching density ρ

• Link nodes according to preferential attachment, but choosing targets 
according to both degrees and distance: p(d, k) = kF(d)

e.g., power law decaying vision

• control parameter is the α vision exponent
• Degree distribution

• if α > -1 — scale-free
• if α < -1 — non-scale free

56 M. Barthélemy / Physics Reports 499 (2011) 1–101

Fig. 49. Various networks obtained with the rule F(d) = d↵ .
Source: From [226].

4.4.2.2. Power law decay of F(d). In this case, the function F in Eq. (157) varies as

F(d) = d↵. (170)

This problem was considered in [128,226,227]. The numerical study presented in [227] shows that in the two-dimensional
case, for all values of ↵ the average shortest path behaves as logN . The degree distribution is however different for ↵ > �1
where it is broad, while for ↵ < �1 it decreases much faster (the numerical results in [227] suggest according to a stretched
exponential).

In [226], Manna and Sen study the same model but for various dimensions and for values of ↵ going from �1 to +1
where the node connects to the closest and the farthest node, respectively (Fig. 49). These authors indeed find that if ↵ > ↵c
the network is scale-free and in agreement with [227] that ↵c(d = 2) = �1, while for large dimensions ↵c decreases with
d (the natural guess ↵c = 1 � d is not fully supported by their simulations). This study was complemented by another one
by the same authors [230] in the d = 1 case and where the probability to connect to a node i is given by (which was already
proposed in [128])

⇧n!i ⇠ k�
i dE(n, i)

↵. (171)

For ↵ > ↵c = �0.5 the network is scale-free at � = 1 with an exponent � = 3. They also find a scale-free network for a
line in the ↵–� plane and also for � > 1 and ↵ < �0.5. The degree-dependent clustering coefficient C(k) behaves as

C(k) ⇠ k�b (172)

where the authors found numerically that b varies from 0 to 1 (which is the value obtained in the BA case).
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where the authors found numerically that b varies from 0 to 1 (which is the value obtained in the BA case).



The gravity
law



Formal description
Origin-destination matrix

• Describe flow of individuals between locations
• Used since decades by geographers
• Definition:

• divide the area of interest into zones (cells) labelled by    i=1…N 
• count the number of individuals going from location i to location j

• directed
• weighted
• Beware:

• time-dependent
• strongly depends on the zone 

definition

• Difficult to obtain with conventional methods
• Mobile phones, GPS, geosocial apps, …

T(i,j)=



The gravity law

Number of trips from location i to location j is scaling as

• where                         is the Euclidean distance between i and j 
•                  is the population size at location i(j)
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Fig. 33. Distribution of total length of daily trips. The exponential fits gives a slope L0 ' 25 km.
Source: From [157].
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Fig. 34. Ride distance distribution. (a) Plot of the histogram of distances for observed rides. This distribution can be fitted by a negative binomial law
with parameters r = 2.61 and p = 0.0273, corresponding to a mean µ = 9.28 km and standard deviation � = 5.83 km. This distribution is not a broad
law (such as a Levy flight for example), in contrast with previous findings using indirect measures of movements [152,154]. (b) Ride distance propensity.
Propensity of achieving a ride at a given distance with respect to a null-model of randomized rides.
Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).

3.3.3. The gravity law
The origin–destination matrix contains a large amount of information and allows one to test some ideas about the

structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
that the number of trips from location i to location j follows the ‘Gravity’ law

Tij = K
PiPj
d�
ij

(64)

where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as
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Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).

3.3.3. The gravity law
The origin–destination matrix contains a large amount of information and allows one to test some ideas about the

structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
that the number of trips from location i to location j follows the ‘Gravity’ law

Tij = K
PiPj
d�
ij

(64)

where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as

Inter-city phone communication (Krings et.al.)
• mobile call communication intensity between Belgian 

cities

Urban Gravity: a Model for Intercity Telecommunication Flows 4
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Figure 2. (a) Illustration of the macroscopic communication network (only the top
30% of the links (having the strongest intensity) are represented). Colors indicate the
intensity of communication between the cities: bright colors indicate a strong intensity.
(b) Intensity distribution of the macroscopic network, self edges are not considered.
The red curve shows the lognormal best fit, with parameters µ = 3.93 and � = 1.03

lognormal intensity distribution is sharply di↵erent from what is typically observed in

social networks but is consistent with observations in other macroscopic networks, such

as the intensity of trade between countries, obtained by aggregating the individual trades

made by agents [21].

Many studies have been made on human-to-human communications but few

analyses are available on how these communications, once aggregated at the city level,

are reliant on the properties of that city. In the following, we model the communication

intensity between cities as a function of the population sizes and of the distance between

them.

First, we analyze how communication flowing into and out of cities, scale with population

size. For doing this, for each of the 571 cities we compare the total incoming (L⇤A) and

outgoing (LA⇤) communication intensities, as defined below, to the population sizes of

these cities.

L⇤A =
X

i /2A,j2A

lij, LA⇤ =
X

i2A,j /2A

lij.

As shown on Figure 3 (a), both incoming and outgoing inter-city communication

intensities scale linearly with city size (LA⇤, L⇤A = kP �
A, � = 0.96, confidence interval:

[0.93 0.99], R2 = 0.87). Also, incoming and outgoing communications are strongly

symmetric (LA⇤ ⇡ L⇤A, 8A), that is, calls in one direction always find a match in the

opposite direction.

Another parameter that influences communication intensity between cities is distance.
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(a) (b)

Figure 3. (a) Relation between the outgoing intensity LA⇤ (blue), the incoming
intensity L⇤A (red) and the city population size PA. (b) Dependence of the average
communication intensity between pairs of cities and the average distance separating
them. The black line shows a 1

d2 decrease.

It seems reasonable to expect that the intensity of communication between two cities

will decay when distance increases and other parameters are kept unchanged. This

idea is supported by several studies that suggest gravity-like models for car tra�c [6],

trade [21] or economic activity [22]. In all these cases, the intensity at distance d is

proportional to 1
d2 . For the case of communication, a similar model has been presented

in [3], but with an intensity evolving like 1
d , though the authors acknowledge that their

model does not seem to fit well with the data.

To test the influence of distance on the Belgian network, we measure it as the distance

between the centroids of each cities area. The communication intensity between two

cities is then compared with the distance between them, where a power law decrease,

with an exponent close to �2 is shown (see Fig. 3 (b)). The power law fits very well

for inter-city distances larger than 10 km.

This result suggests that the communication between cities is ruled by the following

gravity model, which is symmetric, scales linearly with the population sizes and

decreases with d2:

LAB = K
PAPB

d2
AB

,

there, the scaling constant K is the gravity constant for a timespan of 6 months of

calling activity.

To ensure the validity of our results, we plotted the estimated intensity given by the

gravity model versus the observed intensity. As shown on Figure 4, the results match

particularly well for pairs of cities A and B that have a large estimated intensity.

The gravitational constant K can be estimated with a simple best fit of the data.

If, over the 6 months of data, the intensity of communication is constant, we obtain

the general gravity constant G = 1.07 · 10�2 s
day . This constant enables us to estimate
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Figure 4. Communication intensity between pairs of cities versus the ratio PAPB

d2
AB

.
The black line shows the gravitational law.

the intensity of communication between any pair of Belgian cities, based on population,

distance and duration of the considered period. Let us finally observe that this gravity

model is consistent with the results presented in [14] that described the probability of

connection between customers based on their distance. One can check that the intensity

of communication between two customers that make a link does not vary much with the

distance between them (see Figure 5), so, the distance decay observed in Figure 3 (b),

does not result from a weaker intensity of communication between customers, but from

a smaller fraction of customers communicating with each other.

The gravity model for inter-city communication intensity is analogous to other models

Figure 5. Average intensity of communication between pairs of nodes, if they make
a link, versus the distance separating them.

of economic and transportation networks, but has to be considered cautiously as it

might be biased by the nature of the data. First of all, Belgium is a small country with

a specific demography and two main language communities. Secondly, we note that our

study relies on the definition of census areas, as defined by the Belgian National Institute



The gravity law

Number of trips from location i to location j is scaling as

• where                         is the Euclidean distance between i and j 
•                  is the population size at location i(j)

• In a general form:
• where                         is the deterrence function describing the effect of space
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Fig. 33. Distribution of total length of daily trips. The exponential fits gives a slope L0 ' 25 km.
Source: From [157].
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Fig. 34. Ride distance distribution. (a) Plot of the histogram of distances for observed rides. This distribution can be fitted by a negative binomial law
with parameters r = 2.61 and p = 0.0273, corresponding to a mean µ = 9.28 km and standard deviation � = 5.83 km. This distribution is not a broad
law (such as a Levy flight for example), in contrast with previous findings using indirect measures of movements [152,154]. (b) Ride distance propensity.
Propensity of achieving a ride at a given distance with respect to a null-model of randomized rides.
Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).

3.3.3. The gravity law
The origin–destination matrix contains a large amount of information and allows one to test some ideas about the

structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
that the number of trips from location i to location j follows the ‘Gravity’ law

Tij = K
PiPj
d�
ij

(64)

where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as
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individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).
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individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
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to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).
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Fig. 35. Traffic flow between i and j as a function of the variable PiPj/d2ij . The line has a slope equal to 1.02.
Source: From [161].

the important case in economics of international trade [159,160]. In this case, the volume of trade between two countries is
given in terms of their economical activity and their distance.

More generally the gravity law (see the theoretical discussion in the Section 3.3.3.5) is written in the form

Tij ⇠ PiPjf (d(i, j)) (65)

where the deterrence function f describes the effect of space.
In the next sections, wewill focus on themost recent measures concerning highways [161], commuters [162], cargo ship

movements [104], and phone communications [134]. We then end this chapter with a theoretical discussion on the gravity
law.

3.3.3.1. Worldwide commuters. Balcan et al. [162] recently studied flows of commuters on the global scale. They studied
more than 104 commuting flows worldwide between subpopulations defined by a Voronoi decomposition and found that
the best fit is obtained by a gravity law of the form

Tij = CP↵
i P

�
j e

�dij/ (66)

where C is a proportionality constant, andwhere the exponents are: for d  300 km, (↵, � ) ' (0.46, 0.64),  = 82 km, and
for d > 300 km: (↵, � ) ' (0.35, 0.37), and  not available. We note an asymmetry in the exponent at small scales which
probably reflects the difference between homes and offices, and which does not hold at large scale where homogenization
seems to prevail.

At this granularity level, there is then a dependence of the traffic on populations and distances with specific exponents
andwith exponentially decreasing deterrence function. At a smaller scale, different results for US commuters were obtained
in [163], and as suggested in [162] the observed differencesmight have originated in the different granularities used in these
studies (a problem known as the ‘modifiable areal unit problem’ in geography). Indeed, in [162], the granularity is defined
by a Voronoi decomposition, while in [163], counties are used which are administrative boundaries, not necessarily well
consistent spatially with gravity centers of mobility processes.

3.3.3.2. Korean highways. In [161], Jung et al. studied the traffic on the Korean highway system for the year 2005. The system
consists of 24 routes and 238 exits, and the total length of the system is about 3000 km. The highway network is described by
a symmetrizedweightmatrix Tij, which represents the traffic flow between i and j. The in- and out-traffic are well correlated
with population, as already seen in the worldwide airline network [143], where the population Pi of city i scales with the
strength si as

Pi ⇠ s↵i (67)

with ↵ ⇡ 0.5, while it is close to one in [98,161]. For 30 cities with population larger than 200,000, Jung et al. study the
traffic flow Tij as a function of the population of the two cities Pi and Pj, with the distance dij between i and j, and used the
original formulation of the gravity law

wij ⇠ PiPj
d�
ij

(68)

with � = 2 (see Fig. 35).
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Fig. 35. Traffic flow between i and j as a function of the variable PiPj/d2ij . The line has a slope equal to 1.02.
Source: From [161].

the important case in economics of international trade [159,160]. In this case, the volume of trade between two countries is
given in terms of their economical activity and their distance.

More generally the gravity law (see the theoretical discussion in the Section 3.3.3.5) is written in the form

Tij ⇠ PiPjf (d(i, j)) (65)

where the deterrence function f describes the effect of space.
In the next sections, wewill focus on themost recent measures concerning highways [161], commuters [162], cargo ship

movements [104], and phone communications [134]. We then end this chapter with a theoretical discussion on the gravity
law.

3.3.3.1. Worldwide commuters. Balcan et al. [162] recently studied flows of commuters on the global scale. They studied
more than 104 commuting flows worldwide between subpopulations defined by a Voronoi decomposition and found that
the best fit is obtained by a gravity law of the form

Tij = CP↵
i P

�
j e

�dij/ (66)

where C is a proportionality constant, andwhere the exponents are: for d  300 km, (↵, � ) ' (0.46, 0.64),  = 82 km, and
for d > 300 km: (↵, � ) ' (0.35, 0.37), and  not available. We note an asymmetry in the exponent at small scales which
probably reflects the difference between homes and offices, and which does not hold at large scale where homogenization
seems to prevail.

At this granularity level, there is then a dependence of the traffic on populations and distances with specific exponents
andwith exponentially decreasing deterrence function. At a smaller scale, different results for US commuters were obtained
in [163], and as suggested in [162] the observed differencesmight have originated in the different granularities used in these
studies (a problem known as the ‘modifiable areal unit problem’ in geography). Indeed, in [162], the granularity is defined
by a Voronoi decomposition, while in [163], counties are used which are administrative boundaries, not necessarily well
consistent spatially with gravity centers of mobility processes.

3.3.3.2. Korean highways. In [161], Jung et al. studied the traffic on the Korean highway system for the year 2005. The system
consists of 24 routes and 238 exits, and the total length of the system is about 3000 km. The highway network is described by
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The gravity law - empirical summary
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Table 1
List of various empirical studies on the gravity law (we essentially focused on recent and illustrative results).

Network [Ref.] N Gravity law form Results

Railway express [164] 13 PiPj/d�
ij � = 1.0

Korean highways [161] 238 PiPj/d�
ij � = 2.0

Global cargo ship [104] 951 OiIjd��
ij exp(�dij/) � = 0.59

Commuters (worldwide) [162] n/a P↵
i P

�
j exp(�dij/) (↵, � ) = (0.46, 0.64) for d < 300 km

(↵, � ) = (0.35, 0.37) for d > 300 km
US commuters by county [163] 3109 P↵

i P
�
j /d�

ij (↵, � , � ) = (0.30, 0.64, 3.05) for d < 119 km
(↵, � , � ) = (0.24, 0.14, 0.29) for d > 119 km

Telecommunication flow [134] 571 PiPjd��
ij � = 2.0

studies. Indeed, in [162], the granularity is defined by a Voronoi decomposition, while in [163], counties are used which
are administrative boundaries and not necessarily spatially consistent with mobility processes (a problem known as the
modifiable areal unit problem in geography). In addition, the different exponents could depend on the transportation mode
used, of the scale, or other effects linked to the heterogeneity of users and trips.

In this short discussion, we thought that it could be useful to recall the classical optimization problem and one of themost
important derivations of the gravity law which uses entropy maximization, and also to give a simple statistical argument
which could shed light on the most important mechanisms in this problem.
Optimization

We first recall the classical approach which is at the basis of many studies (see for example [158]). We are interested in
this problem in determining the OD matrix Tij given the constraints

X

j

Tij = Ti (71)

X

i

Tij = Tj. (72)

These represent 2N constraints for N2 unknowns and as long as N > 2 many different choices for Tij are possible. If we
assume that the transport from i to j has a cost Cij, we can then choose Tij such that the total cost

C =
X

ij

TijCij (73)

is minimum. This is the classical transportation problem and can be traced back to the 18th century and Monge [158].
Another approach consists in requiring that Tij = T 0

ij risj, where T 0 is a given set of interzonal weights and where sj and ri are
given constants. For an extensive discussion on this latter approach, see [158].
Entropy maximization

Interestingly enough, the gravity model can be shown to result essentially from the maximization of entropy [165].
Wilson, a physicist who became interested in transportation research, very early proposed that the trips Tij are such that the
quantity

⌦ = T !
⇧ijTij!

(74)

is maximal, which corresponds to trip arrangements with the largest number of equivalent configurations (ormicrostates in
the statistical physics language). In this expression, T = P

ij Tij is the total number of trips and the maximization is subject
to the natural constraints on the origin–destination matrix

X

j

Tij = Ti (75)

X

i

Tij = Tj (76)

and to a cost constraint
X

ij

TijCij = C (77)

where Cij is the cost to travel from i to j and where C is the total quantity of resources available. This maximization is easy
to perform with the help of Lagrange multipliers, and one obtains

Tij = AiBjTiTje��Cij (78)

Both exponential and power-law dependence is observable



The gravity law - as a null model

Usage as a network null model
• Consider a spatial network (e.g., phone calls, trips, etc.)
• Fit a gravity model best explaining the observed network. If the population is unknown or not relevant, the 

degrees of nodes (in/out degrees in directed networks) can be used as a “population”
• =>Random model with a given edge probability for each pair of node
• The obtained network is a null model to which the observed network can be compared



The gravity law - as a null model

Example of application: Space-independent communities
• In the usual modularity, the fraction of internal edges is compared between the observed network and a 

configuration model.
• One can replace the configuration model by a gravity model

Expert, P., Evans, T. S., Blondel, V. D., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of 
Sciences, 108(19), 7663-7668.

PSpa
ij ¼ NiNjf ðdijÞ [5]

where Ni is, as in Eq. 1, a notion of importance of node i and
where the deterrence function

f ðdÞ ¼
∑

i;jjdij¼d

Aij

∑

i;jjdij¼d

NiNj
; [6]

is the weighted average of the probability Aij∕ðNiNjÞ for a link to
exist at distance d. It is thus directly measured from the data† and
not fitted by a determined functional dependence, as is often the
case (15). By construction, the total weight of the network is
conserved as required. Depending on the system under scrutiny,
Ni may be the number of inhabitants in a city or the degree of a
node when it corresponds to a single person in a social network.
It is worth mentioning that in the latter case and if the embedding
in space does not play a role—i.e., where f ðdÞ is flat—the stan-
dard NG model is exactly recovered (SI Text).

From now on, let us denote by QSpa the version of modularity
(3) whose null model PSpa

ij is given by Eq. 5. QSpa incorporates
nonstructural information about the nodes (i.e., their position
in physical space). By definition, QSpa favors communities made
of nodes i and j such that Aij − PSpa

ij is large—i.e., pairs of nodes
which are more connected than expected for that distance. Com-
pared to QNG, QSpa tends to give larger contributions to distant
nodes and its optimization is expected to uncover modules driven
by nonspatial factors.

Numerical Validation
Belgian Mobile Phone Data. To compare the partitions obtained by
optimizing QNG and QSpa, let us first focus on a Belgian mobile
phone network made of 571 communes (the 19 communes form-
ing Brussels are merged into one) and of the symmetrized num-
ber of calls fAijg571i;j¼1 between them during a time period of 6 mo
(see ref. 38 for a more detailed description of the data). This net-
work is aggregated from the anonymized customer–customer
communication network of a large mobile phone provider by
using the billing commune associated to each customer. The
number of customers in each commune i is given by Ni. This net-
work provides an ideal test for our method because of the impor-
tance of nonspatial factors driving mobile phone communication,
namely, the existence of two linguistic communities in Belgium:‡ a
Flemish community and a French community mainly concen-
trated in the north and the south of the country, respectively.
As reported in ref. 38, when the weights between communes
are given by the average duration of communication between
people, a standard NG modularity optimization recovers a bipar-
tition that closely follows the linguistic border.

Both versions of modularity are optimized using the spectral
method described in ref. 62. Visualization of the results are shown
in Fig. 1. The NG modularity uncovers 18 spatially compact
modules, similar to those observed in other spatially extended
networks and mainly determined by short-range interactions
between communes. Although boundaries of this partition coin-
cide with the linguistic separation of the country (38), the una-
ware would not discover the existence of two linguistic
communities only from Fig. 1. The spatial modularity uncovers

a strikingly different type of structure: an almost perfect biparti-
tion of the country where the two largest communities account for
about 75% of all communes (see SI Text for more details) and
nicely reproduce the linguistic separation of the country. More-
over, Brussels is assigned to the French community, in agreement
with the fact that approximately 80% of its population is French
speaking and despite the fact that it is spatially located in
Flanders. The remaining smaller communities (not bigger than
10 communes each) originate from the constraints imposed by
a hard partitioning, which is blind to overlapping communities
and might thus misclassify Flemish communes strongly interact-
ing with Brussels and communes that have mixed language popu-
lations. A similar bipartition is found by considering only the signs
of the dominant eigenvector of the modularity matrix (see
SI Text).

Statistical Tests. The values for the optimal modularities can be
found in Table 1. It is important to stress that a direct comparison
of QNG and QSpa is meaningless because modularity is a way to
compare different partitions of the same graph and so its absolute
value is inconsequential. Moreover, the value of modularity is
expected to be lower when its null model is closer to the real

Fig. 1. Decomposition of a Belgianmobile phone network into communities
(see main text). Each node represents a commune and its size is proportional
to its number of clients Ni . (Upper) Partition into 18 communities found by
optimizing NG modularity. (Lower) Partition into 31 communities found
by optimizing Spa modularity.

†In practice, when analyzing empirical data, the distance between two cities is binned
such as to smoothen f ðdÞ. The dependence of our results on bin size is explored
in SI Text.

‡There also exists a German-speaking community made of 0.73% of the national
population
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PSpa
ij ¼ NiNjf ðdijÞ [5]

where Ni is, as in Eq. 1, a notion of importance of node i and
where the deterrence function

f ðdÞ ¼
∑

i;jjdij¼d

Aij

∑

i;jjdij¼d

NiNj
; [6]

is the weighted average of the probability Aij∕ðNiNjÞ for a link to
exist at distance d. It is thus directly measured from the data† and
not fitted by a determined functional dependence, as is often the
case (15). By construction, the total weight of the network is
conserved as required. Depending on the system under scrutiny,
Ni may be the number of inhabitants in a city or the degree of a
node when it corresponds to a single person in a social network.
It is worth mentioning that in the latter case and if the embedding
in space does not play a role—i.e., where f ðdÞ is flat—the stan-
dard NG model is exactly recovered (SI Text).

From now on, let us denote by QSpa the version of modularity
(3) whose null model PSpa

ij is given by Eq. 5. QSpa incorporates
nonstructural information about the nodes (i.e., their position
in physical space). By definition, QSpa favors communities made
of nodes i and j such that Aij − PSpa

ij is large—i.e., pairs of nodes
which are more connected than expected for that distance. Com-
pared to QNG, QSpa tends to give larger contributions to distant
nodes and its optimization is expected to uncover modules driven
by nonspatial factors.

Numerical Validation
Belgian Mobile Phone Data. To compare the partitions obtained by
optimizing QNG and QSpa, let us first focus on a Belgian mobile
phone network made of 571 communes (the 19 communes form-
ing Brussels are merged into one) and of the symmetrized num-
ber of calls fAijg571i;j¼1 between them during a time period of 6 mo
(see ref. 38 for a more detailed description of the data). This net-
work is aggregated from the anonymized customer–customer
communication network of a large mobile phone provider by
using the billing commune associated to each customer. The
number of customers in each commune i is given by Ni. This net-
work provides an ideal test for our method because of the impor-
tance of nonspatial factors driving mobile phone communication,
namely, the existence of two linguistic communities in Belgium:‡ a
Flemish community and a French community mainly concen-
trated in the north and the south of the country, respectively.
As reported in ref. 38, when the weights between communes
are given by the average duration of communication between
people, a standard NG modularity optimization recovers a bipar-
tition that closely follows the linguistic border.

Both versions of modularity are optimized using the spectral
method described in ref. 62. Visualization of the results are shown
in Fig. 1. The NG modularity uncovers 18 spatially compact
modules, similar to those observed in other spatially extended
networks and mainly determined by short-range interactions
between communes. Although boundaries of this partition coin-
cide with the linguistic separation of the country (38), the una-
ware would not discover the existence of two linguistic
communities only from Fig. 1. The spatial modularity uncovers

a strikingly different type of structure: an almost perfect biparti-
tion of the country where the two largest communities account for
about 75% of all communes (see SI Text for more details) and
nicely reproduce the linguistic separation of the country. More-
over, Brussels is assigned to the French community, in agreement
with the fact that approximately 80% of its population is French
speaking and despite the fact that it is spatially located in
Flanders. The remaining smaller communities (not bigger than
10 communes each) originate from the constraints imposed by
a hard partitioning, which is blind to overlapping communities
and might thus misclassify Flemish communes strongly interact-
ing with Brussels and communes that have mixed language popu-
lations. A similar bipartition is found by considering only the signs
of the dominant eigenvector of the modularity matrix (see
SI Text).

Statistical Tests. The values for the optimal modularities can be
found in Table 1. It is important to stress that a direct comparison
of QNG and QSpa is meaningless because modularity is a way to
compare different partitions of the same graph and so its absolute
value is inconsequential. Moreover, the value of modularity is
expected to be lower when its null model is closer to the real

Fig. 1. Decomposition of a Belgianmobile phone network into communities
(see main text). Each node represents a commune and its size is proportional
to its number of clients Ni . (Upper) Partition into 18 communities found by
optimizing NG modularity. (Lower) Partition into 31 communities found
by optimizing Spa modularity.

†In practice, when analyzing empirical data, the distance between two cities is binned
such as to smoothen f ðdÞ. The dependence of our results on bin size is explored
in SI Text.

‡There also exists a German-speaking community made of 0.73% of the national
population

Expert et al. PNAS ∣ May 10, 2011 ∣ vol. 108 ∣ no. 19 ∣ 7665
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Space-dependent communities
Space-independent communities



The gravity law - flavors

Agnostic deterrence function
• The influence of distance might be more complex than a power-law or an exponential. In particular, it is 

often non-monotonic (first increasing, then decreasing. Think of airplanes, bicyles, public transports… 
unlikely to use for short distances)

• A deterrence function can be learned from data
• Computed by comparing the number of trips observed at a given distance with the number of trip  

expected if distance has no effect (a configuration model)

Distance d

f(d)f(d) =
∑i,j|dij=d Aij

∑i,j|dij=d kikj

Degree corrected gravity model
• The standard gravity model, even fitted to data, do not conserve degrees
• Solution: Methods to uncover the population of nodes that would best explain observed 

degrees



The gravity law - example

Nodes: station (2D position)
Edges: number of trips over a period

(a) Spatial Eccentricity (b) Degree bias

Fig. 1: Illustration of computed spatial eccentricity and degree bias for Lyon’s
BSS dataset and typical gravity null model.

follows [7]:

f(d) =

P
i,j|dij=d

AijP
i,j|dij=d

ninj

(2)

with Aij the observed flow (number of trips, communications, etc.) between
nodes i and j.

We can note that in the particular case where the distance has no e↵ect, the
deterrence function is a constant function, and the gravity-based model becomes
exactly the configuration model

2.1 Limits of the gravity-based model

There is a bias when computing directly the gravity-based null-model on a col-
lected spatial network, as it has been done in [6,7] on BSS or any other dataset:
the observed strength of nodes (number of incoming/outgoing trips) is chosen
as a proxy for the intrinsic strength. Because the observed strength of a node
in a network generated according to the gravity null-model depends both on its
intrinsic strength and on its distance to other nodes, this result systematically
underestimates the intrinsic strength of nodes with few nodes around (those lo-
cated at the periphery) and overestimate the strength of those located in the
centre. This bias can be checked on any dataset, as we illustrate in Fig.1, by
computing the spatial eccentricity of nodes, defined as the average distance to
all other stations, and the degree bias db for in/out degrees, defined as :

db(i) =
degGM (i)

degD(i)
(3)

with degGM the degree according to the gravity model and degD the degree
observed in original data.



The gravity law - example

Distance d (meters)

f(d)



The gravity law - example

(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Radiation

Fig. 3. Communities found on the Lyon BSS dataset, using di↵erent null models.

Fig. 4. Details of the two communities discovered using DCgravity null-model that
correspond to enjoyable/convenient trips in the city, that were hidden by the influence
of space proximity.

We could also investigate other usages besides community detection: null
models are used as references for properties such as clustering coe�cient, motif
frequencies, or, more straightforwardly, to discover the most significant edges
and nodes in a network.

Space-dependent communities



The gravity law - example
(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Details DCgravity

Fig. 2: Communities found on the Lyon BSS dataset, using di↵erent null models.

and 343 nodes (stations). We use the great circle distance between stations to
learn the deterrence function, although the di↵erence with euclidean distance is
negligeable for such short distances.

In Fig. 2, we can observe the communities discovered using the Louvain
algorithms and di↵erent null-models. Using the usual configuration model, com-
munities correspond to geographical areas of the city, matching more or less
arrondissements (city districts) of Lyon. Results obtained using Gravity and
Degree Constrained Gravity are comparable, but the DC ones are even less
spacially constrained. The most remarkable ones, highlighted in Fig. 2(d), cor-
respond to convenient and enjoyable routes along banks of the rivers and parcs.
These clusters were only partially discovered using the usual gravity null-model,
and arguably correspond to typical usage patterns of Lyon’s BSS.

4 Conclusion

In this article, we have shown the interested of using a degree-corrected null-
model, by focusing on community detection. Such a null-model has many other
potential applications: it can be used by bike sharing planners as a model of trip
prediction, and as such, can help to predict the activity impact on the global
activity of adding or removing stations. It could also be used to estimate the
interest of users toward a station, independently of its relative position to others,
or to estimate more accurately the influence of distance.

Some (social) space-independent communities that were previously hidden by spatial constraints



The radiation
law



The radiation law
Limitations of the gravity law

1.  Requires previous data to fit

2.  The number of travelers between destinations 
depends only on their populations and distances. 
In reality, this value depends probably of other 
opportunities



The radiation law

Intuition: Model how people move for jobs
1.Individuals look for job in all cities 

2.Each city has a number of job opportunities

• Each job has a value of interest, considered random

3. What is the probability for a job-seeker to choose a job in city c 
located at distance d?

• Depends only on how many jobs offered in cities at a 
distance equal or lower than d (probability to find a better job 
closer)

The model is parameter-free!



The radiation law
The model can be formulated in terms of radiation and absorption

• take locations i and j with populations (in-degree) mi and nj and at distance rij 

• denote sij the total population in the circle with radius rij centered at i 
(excluding the source and destination population)

•  is the number of commuters (out-degree)Ti

 12 
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⟨Tij⟩ = Ti
minj

(mi + sij)(mi + nj + sij)
.



The radiation law
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Comparison with census data and the 
gravity law predictions
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Simini. et.al, Nature 2010



The radiation law

Beware
• The real relevance of the radiation law in general cases is 

disputed. Parameter free is an advantage, but also a strong 
drawback in many situations… The real world is complex !



MULTI-GRAPHS



MULTIGRAPH

• Multi-graph: several edges allowed between same nodes

• Often used in conjunction with labels: 
‣ One edge for friendship, 
‣ one edge for family, 
‣ one edge for co-worker…

• Without labels, can be simplified as a weighted graph

• If several labels, can be considered as separate graphs for 
analysis



MULTI-PARTITE GRAPHS



MULTI-PARTITE GRAPHS

• Bi-partite: there exists 2 kinds of nodes, and links can be only 
between nodes of different types
‣ Multi-partite: similar but with more than 2 types. Much less common

• Not strictly different from normal graphs: if you don’t know 
the two categories of nodes, it looks like any network

• The problem is that some definitions of normal graphs 
become meaningless
‣ =>Clustering coefficient



MULTI-PARTITE GRAPHS

• Bi-partite networks are quite commonly use
‣ Actors - Films
‣ Clients - Products
‣ Reserchers - conferences/institutions
‣ …

• Normal methods work but sometimes give unintuitive results:
‣ Specific variants have been proposed



MULTI-PARTITE GRAPHS

Modularity: do not count pairs of nodes of same types



MULTI-PARTITE GRAPHS
Clustering Coefficient:

2/6 2/4 2/8

Of a pair Of a Node: Average among 
nodes N at distance 2



MULTI-PARTITE GRAPHS

• Large literature on the topic, in particular applications to 
recommendation
‣ Users - products => propose the right products to the right user

Kunegis, J., De Luca, E. W., & Albayrak, S. (2010, June). The link prediction problem in bipartite networks. In International Conference on Information Processing and 
Management of Uncertainty in Knowledge-based Systems (pp. 380-389). Springer, Berlin, Heidelberg.

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102.

Zhang, P., Wang, J., Li, X., Li, M., Di, Z., & Fan, Y. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its 
Applications, 387(27), 6869-6875.



HYPERGRAPHS



HYPERGRAPHS

• “Generalization” of graph

• An edge is not limited to 2 extremities



HYPERGRAPHS
• Most common usage: represent a single event involving several 

nodes

• In social networks: 10 students attending a same course A
‣ Normal network: 45 undirected edges. Giant clique. Very dense

- Problem: if 5 attend another course B and the others another course C => no way to see 
who worked with whom (a single clique, with double links or weights=2)

‣ Hypergraph: A single link with ten endpoints
- And we can add 2 single links with 5 endpoints and still differentiate attendances

• Another example: in Bitcoin, transactions are multi-input, multi-
output. Some transactions have 1000 input, 1000 output
‣ 500 000 links for a single transaction in a normal network!



HYPERGRAPHS

• In practice, very few direct usages
‣ Too difficult to handle ? To different from normal networks?

• Hypergraphs can be transformed in bi-partite graphs
‣ Social Network: student nodes and class nodes
‣ Bitcoin: transaction nodes and address nodes



MULTILAYER NETWORKS



MULTILAYER NETWORKS

• Multiplex network 

• Multislice network 

• Multitype network

• Heterogenous information network

[Kivela 2014]



MULTILAYER NETWORKS
• Can be used to represent:

‣ Several types of relations between the same nodes
- Bus transportation network
- Bicycle transportation network
- Car transportation network
- …



MULTILAYER NETWORKS

• Can be used to represent:
‣ Several snapshots of the same network



MULTILAYER NETWORKS

Both/Other



MULTILAYER NETWORKS

• Relations can be:
‣ Only between same nodes in different layers

- Public transport interconnection 
‣ Between different nodes in different layers

- Information transfert form person A on Facebook to person B on Instagram.



MULTILAYER NETWORKS
• All usual definitions on static networks can be extended to 

multilayer networks
‣ Degree, clustering coefficient, community detection…

• The problem is that there are many ways to do it, and it 
depends on what your layers represent
‣ Degree of a person on a multilayer network of facebook, Twitter, Linked-in?

• If you used a multilayer network, it is because it was not well 
summarized by a single network…
‣ Same definition for multilayer dynamic and multilayer different types?



MULTILAYER NETWORKS

A simple idea: multilayers networks can be 
transformed into simple networks



MULTILAYER NETWORKS

• Matrix representation:
‣ Many algorithms on networks work on adjacency matrices

• Solution1: Tensors
‣ Be careful if not all nodes in all layers!
‣ Interesting when only links between same nodes in <> layers

• Solution 2: Supra-adjacency matrix
‣ Or flattened tensors



MULTILAYER NETWORKS

Blue, green: intra-layer

gray: inter-layer 1

black: inter-layer2

Cognitive map: relations between 
4 people seen by each of these 4 people



Interdependent
networks



Example 1: Infrastructure networks
1 Network of Interdependent Networks 29

Fig. 1.11 Left: Power grid and Internet dependence in Italy. Analysis of this system can explain the
cascade failure that led to the 2003 blackout. Right: Inter-dependence of fundamental infrastructures.
A further example is a recent event in Cyprus (July 2011), where an explosion caused a failure of
the electrical power lines, which in turn caused the countries water supply to shut down, due to the
strong coupling between these two networks

significant cascading failures throughout the global economic system. Based on the
success of complex networks in modeling interconnected systems, applying complex
network theory to study economic systems has been given much attention [77–84].

The strong connectivity in financial and economic networks allows catastrophic
cascading node failure to occur whenever the system experiences a shock, especially
if the shocked nodes are hubs or are highly central in the network [7, 63, 76, 85, 86].
To thus minimize systemic risk, financial and economic networks should be designed
to be robust to external shocks.

In the wake of the recent global financial crisis, increased attention has been given
to the study of the dynamics of economic systems and to systemic risk in particular.
The widespread impact of the current EU sovereign debt crisis and the 2008 world
financial crisis show that, as economic systems become increasingly interconnected,
local exogenous or endogenous shocks can provoke global cascading system failure
that is difficult to reverse and that can cripple the system for a prolonged period of
time. Thus policy makers are compelled to create and implement safety measures
that prevent cascading system failures or that soften their systemic impact.

To study the systemic risk to financial institutions, we analyze a coupled (bipartite)
bank-asset network in which a link between a bank and a bank asset exists when the
bank has the asset on its balance sheet. Recently, Huang et al. [87] presented a

Interdependent infrastructure networks
• Power-grid networks
• Communication networks
• railway networks
• Water supply
• Gas supply
• Transportation and fuel

Motivation
• To understand correlated failure
• To assess risk of interdependency
• To design robust interdependent 

networks against attack and 
random failure

 

Figure 4. Interdependent Infrastructure Sectors 

Most critical infrastructure system vulnerabilities can be reduced below the level 
that potentially invites attempts to create a national catastrophe. By protecting key 
elements in each critical infrastructure and by preparing to recover essential services, the 
prospects for a terrorist or rogue state being able to achieve large-scale, long-term 
damage can be minimized. This can be accomplished reasonably and expeditiously. 

The most critical infrastructure system 
vulnerabilities can be reduced below 
those levels that invite attack or cause a 
national catastrophe. 

Such preparation and protection can be achieved over the next few years, given a 
dedicated commitment by the federal government and an affordable investment of 
resources. We need to take actions and allocate resources to decrease the likelihood that 
catastrophic consequences from an EMP attack 
will occur, to reduce our current serious level of 
vulnerability to acceptable levels and thereby 
reduce incentives to attack, and to remain a 
viable modern society even if an EMP attack 
occurs. Since this is a matter of national security, the federal government must shoulder 
the responsibility of managing the most serious infrastructure vulnerabilities.  

Homeland Security Presidential Directives 7 and 8 lay the authoritative basis for 
the Federal government to act vigorously and coherently to mitigate many of the risks to 
the Nation from terrorist attack. The effects of EMP on our major infrastructures lie 

9 



Example 1: Infrastructure networks

continue this process until no further splitting and link removal can
occur (Fig. 2d). We find that this process leads to a percolation phase
transition for the two interdependent networks at a critical threshold,
p 5 pc, which is significantly larger than the equivalent threshold for a
single network. As in classical network theory21–25, we define the giant
mutually connected component to be the mutually connected cluster
spanning the entire network. Below pc there is no giant mutually
connected component, whereas above pc a giant mutually connected
cluster exists.

Our insight based on percolation theory is that when the network
is fragmented, the nodes belonging to the giant component connect-
ing a finite fraction of the network are still functional, whereas the
nodes that are part of the remaining small clusters become non-
functional. Therefore, for interdependent networks only the giant

mutually connected cluster is of interest. The probability that two
neighbouring A-nodes are connected by A « B links to two neigh-
bouring B-nodes scales as 1/N (Supplementary Information). Hence,
at the end of the cascade process of failures, above pc only very small
mutually connected clusters and one giant mutually connected clus-
ter exist, in contrast to traditional percolation, wherein the cluster
size distribution obeys a power law. When the giant component
exists, the interdependent networks preserve their functionality; if
it does not exist, the networks split into small fragments that cannot
function on their own.

We apply our model first to the case of two Erdo0 s–Rényi net-
works21–23 with average degrees ÆkAæ and ÆkBæ. We remove a random
fraction, 1 2 p, of the nodes in network A and follow the iterative
process of forming a1-, b2-, a3-, …, b2k- and a2k11-clusters as

a11

a12

a13

a11

a12

a13

a31

a32

a33

a34

b21

b22

b23

b24

b21

b22

b23

b24

Attack

Stage 1 Stage 2 Stage 3A B

a b c d

Figure 2 | Modelling an iterative process of a cascade of failures. Each
node in network A depends on one and only one node in network B, and vice
versa. Links between the networks are shown as horizontal straight lines, and
A-links and B-links are shown as arcs. a, One node from network A is
removed (‘attack’). b, Stage 1: a dependent node in network B is also
eliminated and network A breaks into three a1-clusters, namely a11, a12 and
a13. c, Stage 2: B-links that link sets of B-nodes connected to separate a1-
clusters are eliminated and network B breaks into four b2-clusters, namely

b21, b22, b23 and b24. d, Stage 3: A-links that link sets of A-nodes connected to
separate b2-clusters are eliminated and network A breaks into four a3-
clusters, namely a31, a32, a33 and a34. These coincide with the clusters b21, b22,
b23 and b24, and no further link elimination and network breaking occurs.
Therefore, each connected b2-cluster/a3-cluster pair is a mutually connected
cluster and the clusters b24 and a34, which are the largest among them,
constitute the giant mutually connected component.

a b c

Figure 1 | Modelling a blackout in Italy. Illustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
200320. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
network and as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)

at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. c, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).
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Example: 2003 Italy blackout
• A power line between I and CH was damaged by storm
• Power outage for 12 hours in Italy and spread to Switzerland for 3 hours
• 56 millions of people without electricity
• 110 trains cancelled
• All flights were cancelled
• People stuck and sleeping in the metro



Interdependent networks
Network structure

• co-existing networks with
• links exist between nodes of the same network
• links between networks assign the dependency between nodes in different 

layers
• The identities of nodes are not necessarily the same in different layers



Interdependent networks - definition
Take two networks A and B

• Nodes in A depend on one or more nodes in B and vice versa

6 D. Y. Kenett et al.

Fig. 1.1 Example of two interdependent networks. Nodes in network B (communications network)
are dependent on nodes in network A (power grid) for power; nodes in network A are dependent
on network B for control information

To adequately model most real-world systems, understanding the interdependence
of networks and the effect of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing coupling between networks is
analogous to the introduction of interactions between particles in statistical physics,
which allowed physicists to understand the cooperative behavior of such rich phe-
nomena as phase transitions. Surprisingly, preliminary results on mathematical mod-
els [44, 45] show that analyzing complex systems as a network of coupled networks
may alter the basic assumptions that network theory has relied on for single networks.
Here we will review the main features of the theoretical framework of Network of
Networks (NON), and present some real world applications.

1.2 Overview

In order to model interdependent networks, we consider two networks, A and B, in
which the functionality of a node in network A is dependent upon the functionality
of one or more nodes in network B (see Fig. 1.1), and vice-versa: the functionality
of a node in network B is dependent upon the functionality of one or more nodes in
network A. The networks can be interconnected in several ways. In the most general
case we specify a number of links that arbitrarily connect pairs of nodes across
networks A and B. The direction of a link specifies the dependency of the nodes it
connects, i.e., link Ai → B j provides a critical resource from node Ai to node B j .
If node Ai stops functioning due to attack or failure, node B j stops functioning as
well but not vice-versa. Analogously, link Bi → A j provides a critical resource
from node Bi to node A j .

To study the robustness of interdependent networks systems, we begin by remov-
ing a fraction 1 − p of network A nodes and all the A-edges connected to these
nodes. As an outcome, all the nodes in network B that are connected to the removed
A-nodes by A → B links are also removed since they depend on the removed nodes
in network A. Their B edges are also removed. Further, the removed B nodes will
cause the removal of additional nodes in network A which are connected to the re-
moved B-nodes by B → A links. As a result, a cascade of failures that eliminates
virtually all nodes in both networks can occur. As nodes and edges are removed, each

Types of links
• Connectivity links

• Connect nodes from the same layer (A or B)
• They allow the information to spread between nodes of the same layer

• Dependency links
• Connect nodes of different layers (between A and B)
• Assumption: for a node to function in one layer needs support from another node 

from another layer

• Direction of dependency links
• Ai → Bj

• i node in A provides a critical 
resource to j node in B

• If node i fails, the supported node 
j fails as well



HIGHER ORDER NETWORKS
(HON)



HIGHER ORDER NETWORKS

• Recent and very active field of research

• Many networks are built using logs of sequence of items 
encountered by actors
‣ People travelling in public transport go through stations
‣ Consumer buy products on amazon one after the other

• Normal network: split sequences in pairs
‣ Higher order: conserve the memory of previous items
‣ From Markovian to non-Markovian



HIGHER ORDER NETWORKS

• Typical example: air traffic.

• Many cities does not have direct trips
‣ e.g.: Lyon->Tokyo
‣ Flight goes through stopover: Lyon->Paris->Tokyo

• If we want to create a weighted network of trips:
‣ We count the number of trips Lyon->Paris, and Paris->Tokyo
‣ We forget the information of previous/Next step



HIGHER ORDER NETWORKS
• This transformation to a Markovian process induce an 

important information loss

• From Paris, 
‣ 1% passengers go to Tokyo
‣ 1% passengers go to Geneva

• You know that a passenger leaving Paris comes from Lyon
‣ 1% probability to go to Tokyo
‣ 1% probability to go to Geneva 
‣ =>Wrong!
‣ If the passenger comes from lyon, much more likely to go to Tokyo than to 

Geneva!



HIGHER ORDER NETWORKS
• Non-markovian process

• Markovian process:
‣ A random process in which the future is independent from the past
‣ Describe a process: Markov chains



HIGHER ORDER NETWORKS

Round trips
Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory in network flows and its effects on spreading dynamics and community detection. 
Nature communications, 5, 4630.



HIGHER ORDER NETWORKS



HIGHER ORDER NETWORKS

• New nodes are created
‣ Do not correspond to an original item (a city)
‣ Correspond to an item AND an origin

• A single element of memory: second-order network

• Two elements of memory: third-order network

• etc.



HIGHER ORDER NETWORKS



HIGHER ORDER NETWORKS

• Random walk approaches generalize naturally to higher order 
networks
‣ Centrality: PageRank
‣ Communities: Infomap

• They are based on the principle of a markovian processes
‣ At each step, the random walker decides to follow an out-going link
‣ This probability can depend on the walker origin



HIGHER ORDER NETWORKS
• Applying a community detection algorithm to a HON

• A node is now a tuple (node, history)

• If we apply a community detection algorithm:
‣ Communities are composed of (node,history) vertices
‣ We can go back to a traditional community partition:

- We forget the memory part of nodes
- Several instances of same nodes in same community
- Same node in different communities
- =>Overlapping communities



HIGHER ORDER NETWORKS



HIGHER ORDER NETWORKS

• Weakness: complexity

• Number of nodes multiplied by number of possible arrival 
sources

• => Rare cases could be ignored, current issue

Lambiotte, R., Rosvall, M., & Scholtes, I. (2019). From networks to optimal higher-order models of complex systems. Nature physics, 15(4), 313-320.


