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Spatial networks

Networks embedded in space
« Concept

« Structure alone does not contain all the information about the network

- Cost: wiring two nodes is not free but has a cost proportional to the distance of the
nodes

- It directly influences the structure of the emerging network

Distance
* Physical distance
« Economical distance
- Social distance

- Difference in professional
categories

(LLOZ) '[e1e |osIen



Spatial networks

Types of spatial networks
 Transportation networks
» Airline networks
- Bus, subway, railway, and commuters
- Cargo ship networks
* Infrastructure networks
- Road and street networks

- Power grids and water distribution
networks

* The internet
* Neural networks
* Protein networks
« Mobility networks
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Spatial and Planar networks

Spatial networks
* Nodes are embedded in a metric space
« G=(V,E,s(n))

- s: n—(x,y), where n € V and (x,y) are coordinates of a metric space (e.g.
Euclidean space)

» probability of finding a link between nodes usually decreases with the
distance

Planar networks

- Graph that can be drawn in the plane such that edges do not cross each
other but at their endpoints

 Not all spatial networks are planar

 You do not need to know node positions to have
a planar graph.




Mixed measures of topology and space

Distance strength
- Cumulative distance from a node i to all neighbours

Relation Distance strength - degree
- Nodes with same degrees but different s¢

. Correlation sd(k) and k ? (Similar to assortativity)
- Central nodes have higher degrees?

 Hubs tend to connect to farther nodes?

Barthélemy, M. (2014). Spatial networks (pp. 1967-1976). Springer New York.



Mixed measures of topology and space

Compactness (density measure for cities)
« Measures how much a city is filled with roads

W — 1 4A
(b1 — 2+/A)?
- where 4 is the area, L =4/ A is the linear size of a city and £ is the total length of roads

- ¥ € [0,1] (for non degenerate cases, i.e., at least a road, see below)

- With only one road circling the area: the total length is £ = 4\/Z and ¥ =0

2
. If roads constitute a square grid of spacing a (where a<VA4): Cp=2—
a

42
and ¥V =1 — B is large



Mixed measures of topology and space

Route distance between two nodes
dr(i, J)

- Sum of length of segments which belong to the shortest paths
between two nodes in a spatial network

Route factor/Detour index o dr(i, j) A O— >
Qi) = 37 Q/“
E {4y

. d=Euclidean distance
- always larger than [ but the closer to it, the most efficient.

Accessibility
1
- Route index for a specific node (@) = —— > Q(.J)
j

 Average route index for the whole network (@) = y— Y Q)



Simple models

spatial networks



Random geometric graphs

General definition:
- Take a space and distribute nodes randomly
* Nodes are small spheres with radius r

« Two nodes are connected if their spheres overlap — separated with
distance smaller than 2r

- Also called: disk-percolation
- Application: ad-hoc wireless communications

Degree distribution — Poisson distribution
1
Pk; x, o) = I—'ozkp(x)"e_“p(")
¢!
Clustering coefficient

s [2 (3 &
(Ca) ﬁ(i)

Independent of N contrary to random networks
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Spatial small world network

General definition (extension of Watts-Strogatz):
- Take a d dimensional regular lattice
» Assumption: shortcuts are not free but a cost associated with their length
- Links added with a probability g

qe) ~£7°
d A.-"" T~ C
ShorteSt path M M Ja) M m
O —C OO O
- control parameter is the a exponent T--..---"" B
- if a is small: Small world network
b M M M JAA
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L/ \J\ U/ A
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Spatial preferential attachement models

lon

General defin

- Take a space and add successively N nodes at random positions until

typ

Ink nodes accord

reaching dens
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Ing to preferential attachment, but choosing targets

p(d, k) = kF(d)
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» control parameter is the a vision exponent

» Degree distribution

* if a > -1 — scale-free

* if o < -1 — non-scale free




The gravity
law
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Formal description

Origin-destination matrix
- Describe flow of individuals between locations
 Used since decades by geographers
« Definition:
- divide the area of interest into zones (cells) labelled by i=1..N
- count the number of individuals going from location i to location ;

- directed OID Matrix
- weighted AJBjC|PE|T
A 0 0 | 50 0 0 50
* Beware: B 0 0 60 0 30 | 90
- time-dependent TGij)=[clolofo|a][o]x
D 20 0 | 80 0 | 20 | 120
. strc.)n.glly depends on the zone o T 0 o om0
definition o
- Difficult to obtain with conventional methods ®\ /
- Mobile phones, GPS, geosocial apps, ... \/@wl



The gravity law

Number of trips from location i to location j is scaling as

P;P;
Tj = K—
;

- where d; = dg(i,j) is the Euclidean distance between i and
. P i(j)  is the population size at location i(j)

oo
T
|

Inter-city phone communication (Krings et.al.)

- mobile call communication intensity between Belgian
cities
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Figure 3. (a) Relation between the outgoing intensity L4 (blue), the incoming
intensity L.a (red) and the city population size P4. (b) Dependence of the average
communication intensity between pairs of cities and the average distance separating
them. The black line shows a d% decrease.




The gravity law

Number of trips from location i to location j is scaling as

- where d; = dg(i,j) isthe Euclidean distance between i and
P i(j)  is the population size at location i(j)

- In a general form: Ty ~ P;P;f (d(i, j))

- where  f(d(,j)) IS the deterrence function describing the effect of space



The gravity law - empirical summary

Both exponential and power-law dependence is observable

Network [Ref.] N Gravity law form Results

Railway express [ 164] 13 PiP;/d oc=1.0

Korean highways [161] 238 PiP;/dj o=2.0

Global cargo ship [104] 951 0il;d;° exp(—djj/k) o = 0.59

Commuters (worldwide) [162] n/a P,.“Pjyl exp(—di/«k) (o, y) = (0.46, 0.64) for d < 300 km
(o, ¥) = (0.35,0.37) for d > 300 km

US commuters by county [163] 3109 P{"Pjy/dg- (o, y,0) = (0.30,0.64, 3.05) ford < 119 km
(o, y,0) =(0.24,0.14,0.29) ford > 119 km

Telecommunication flow [134] 571 PiPid;; ° o=20




The gravity law - as a null model

Usage as a network null model

- Consider a spatial network (e.g., phone calls, trips, etc.)

- Fit a gravity model best explaining the observed network. If the population is unknown or not relevant, the
degrees of nodes (in/out degrees in directed networks) can be used as a “population”

- =>Random model with a given edge probability for each pair of node
- The obtained network is a null model to which the observed network can be compared



The gravity law - as a null model

Example of application: Space-independent communities

- In the usual modularity, the fraction of internal edges is compared between the observed network and a
configuration model.

- One can replace the configuration model by a gravity model

- Space-independent communities
Space-dependent communities

Expert, P., Evans, T. S., Blondel, V. D., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of
Sciences, 108(19), 7663-7668.



The gravity law - flavors

Agnostic deterrence function

- The influence of distance might be more complex than a power-law or an exponential. In particular, it is
often non-monotonic (first increasing, then decreasing. Think of airplanes, bicyles, public transports...
unlikely to use for short distances)

- A deterrence function can be learned from data

- Computed by comparing the number of trips observed at a given distance with the number of trip
expected if distance has no effect (a configuration model)

iy = Zitirs )

zi,ﬂdij:d Kk

00 00! 00! 14000

Distance d

Degree corrected gravity model

- The standard gravity model, even fitted to data, do not conserve degrees

- Solution: Methods to uncover the population of nodes that would best explain observed
degrees



The gravity law - example
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The gravity law - example

== fDist3

fid) =

0 2000 4000 6000 8000 10000 12000 14000

Distance d (meters)



The gravity law - example
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The gravity law - example
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The radiation
law



The radiation law

Limitations of the gravity law
1. Requires previous data to fit

2. The number of travelers between destinations
depends only on their populations and distances.
In reality, this value depends probably of other
opportunities
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The radiation law

Intuition: Model how people move for jobs

1.Individuals look for job in all cities
2.Each city has a number of job opportunities
- Each job has a value of interest, considered random

3. What is the probability for a job-seeker to choose a job in city ¢
located at distance d?

» Depends only on how many jobs offered in cities at a
distance equal or lower than d (probability to find a better job

closer)

The model is parameter-free!




The radiation law

The model can be formulated in terms of radiation and absorption

- take locations i and j with populations (in-degree) m; and »n; and at distance r;

- denote s;; the total population in the circle with radius 7; centered at i
(excluding the source and destination population)

. 1’ is the number of commuters (out-degree)

ml-nj
<Tz]> = 1; :
(ml' + Slj)(mi + n] + Sij) n




The radiation law

Comparison with census data and the
gravity law predictions
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The radiation law

Beware

* The real relevance of the radiation law in general cases is
disputed. Parameter free is an advantage, but also a strong
drawback in many situations... The real world is complex !



MULTI-GRAPHS



MULTIGRAPH

» Multi-graph: several edges allowed between same nodes

» Often used In conjunction with labels:

» One edge for friendship,
» one edge for family,
» one edge for co-worker. ..

» Without labels, can be simplified as a weighted graph

* It several labels, can be considered as separate graphs for
analysis



MULTI-PARTITE GRAPHS



MULTI-PARTITE GRAPHS

» Bi-partite: there exists 2 kinds of nodes, and links can be only
between nodes of different types

» Multi-partite: similar but with more than 2 types. Much less common

* Not strictly different from normal graphs: if you don’t know
the two categories of nodes, it looks like any network

* [ he problem is that some definitions of normal graphs

become meaningless
» =>(lustering coefficient



MULTI-PARTITE GRAPHS

» Bi-partite networks are quite commonly use

» Actors - Films
» Clients - Products
» Reserchers - conferences/institutions

At

* Normal methods work but sometimes give unintuitive results:
» Specific variants have been proposed



MULTI-PARTITE GRAPHS

Modularity: do not count pairs of nodes of same types

QB — # Z Z(Auv - Puv)é(guahv) —
u=19=1




MULTI-PARTITE GRAPHS
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MULTI-PARTITE GRAPHS

* Large Iiterature on the topic, in particular applications to

recommendation
» Users - products => propose the right products to the right user

Kunegis, J., De Luca, E. W., & Albayrak, S. (2010, June). The link prediction problem in bipartite networks. In International Conference on Information Processing and
Management of Uncertainty in Knowledge-based Systems (pp. 380-389). Springer, Berlin, Heidelberg.

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102.

Zhang, P., Wang, J., Li, X,, Li, M., Di, Z., & Fan, Y. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its
Applications, 387(27), 6869-6875.



HYPERGRAPHS



11 PERGRAFPFTS

» “Generalization” of graph

* An edge Is not limited to 2 extremities

2




11 PERGRAFPFTS

» Most common usage: represent a single event involving several
nodes

* In social networks; |0 students attending a same course A

» Normal network: 45 undirected edges. Giant clique.Very dense

- Problem: if 5 attend another course B and the others another course C => no way to see
who worked with whom (a single clique, with double links or weights=2)

» Hypergraph: A single link with ten endpoints

- And we can add 2 single links with 5 endpoints and still differentiate attendances

» Another example: In Bitcoin, transactions are multi-input, multi-
output. Some transactions have 000 input, 1000 output

» 500 000 links for a single transaction in a normal network!



11 PERGRAFPFTS

* In practice, very few direct usages

» Too difficult to handle ? To different from normal networks!?

* Hypergraphs can be transformed in bi-partite graphs

» Social Network: student nodes and class nodes
» Bitcoin: transaction nodes and address nodes



MULTILAYER NETWORKS



MULTILAYER NETWORKS

» Multiplex network
» Multislice network
» Multitype network

» Heterogenous information network

Kivela 20147



MULTILAYER NETWORKS

» Can be used to represent:

» Several types of relations between the same nodes

Bus transportation network

Bicycle transportation network

Car transportation network

Figure 2. Superlayer representation of the Madrid transportation system. The figure represents the three transportation modes
considered: tram (yellow nodes, upper layer), metro (purple nodes, mid layer) and buses (white nodes, bottom layer). See
Tablel for statistics of these layers.




MULTILAYER NETWORKS

M@ fRocNlised to represent:
» Several snapshots of the same network
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MULTILAYER NETWORKS

Both/Other



MULTILAYER NETWORKS

» Relations can be:
» Only between same nodes in different layers

- Public transport interconnection
» Between different nodes in different layers
- Information transfert form person A on Facebook to person B on Instagram.

(a)




MULTILAYER NETWORKS

« All usual definitions on static networks can be extended to
multilayer networks

» Degree, clustering coefficient, community detection...

* [ he problem is that there are many ways to do it, and 1t
depends on what your layers represent

» Degree of a person on a multilayer network of facebook, Twitter; Linked-in?

* If you used a multilayer network;, it Is because it was not well
summarized by a single network...

» Same definrtion for multilayer dynamic and multilayer different types!



MULTILAYER NETWORKS

A simple idea: multilayers networks can be
transformed Into simple networks




MULTILAYER NETWORKS

» Matrix representation:

» Many algorithms on networks work on adjacency matrices

e Solution | : Tensors

» Be careful if not all nodes in all layers!
» Interesting when only links between same nodes In <> layers

» Solution 2: Supra-adjacency matrix
» Or flattened tensors



MULTILAYER NETWORKS

advice friendship
1234'1234{1234|123 1234/1234/12341234

Blue, green: intra-layer
oray: Inter-layer |

black: inter-layerZ

. Cognitive map: relations between
—————— 4 people seen by each of these < upEIsE




Interdependent
networks



Example 1: Infrastructure networks

Interdependent infrastructure networks

Power-grid networks
Communication networks
railway networks

Water supply

Gas supply

Transportation and fuel

Motivation

To understand correlated failure
To assess risk of interdependency

To design robust interdependent
networks against attack and
random failure

Fuels, Lubricarnt

==
- —

gy
-

&
+" +° 7 Fuel Transport,
I ¥ Shipping

Fuel for Generators,
- NS — — 8

P, = R ————.
’ Fuels, Lubricants
! e A i 7 ; X
’ -' Fower for Pumping ] ros port, =
|l SE “'FEH.E'E!&, - Ijr-f ——— \ o, i
1o 183 ‘W, o Powerfor. . g \
1 88§ Powar for Pump Compressors, :
[ IBER and Lift Stations, Storage, -
[ a3 Control Systema_ Cantrol |
[ :é EFE P Systems i
1 =k I for
i TS - watel fo Fuel e [
1<' 158 ¥ coolind: # S~ gen®"=T A '
i It -ﬁ rnl'lﬁ F I . ] LY ]
) 3 1 Reduction. 7 | Heat ” L
] — i —
A I
"'-. - \'\-\.- "II
. Wory, o 'y
LY ~
. = w w A /)
- - - ;'
b i L e ' - - “'f
. -
L) L i
ey T -
8 - ke Fuel for _l_'_;qu_fr_ilgfﬁ - e 'del.lﬂbﬂ
= o b ) Dt
e e e e e L L
Watar for production, Geoi™d
Peerenboom, Fisher, and Whitfield, 2001
OillGas
NS R &= = Compressor Station Power Power
\‘\\__ T Plant  Supply Electric Power
Fuel/Supply —e =

Communications 3 Substation

== Swithching
2= . Office

Transportation

Transport

End Office |
Water

==
= . Emergency
Reservoir ' : Services
Substation = 2
ir Emergency
— SIS sa— Call Center
= : egislative Military
. i, O 8 ___NJ1  Installations
Check ATM  Federal e a o s
Processing Reserve N

Center Pension/Service Payments Government
Treasury Department Services



Example 1: Infrastructure networks

Example: 2003 Italy blackout
A power line between | and CH was damaged by storm

Power outage for 12 hours in Italy and spread to Switzerland for 3 hours
56 millions of people without electricity

110 trains cancelled

All flights were cancelled

People stuck and sleeping in the metro
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Interdependent networks

Network structure
- co-existing networks with

- links exist between nodes of the same network

- links between networks assign the dependency between nodes in different
layers

- The identities of nodes are not necessarily the same in different layers




Interdependent networks - definition

Take two networks A and B

- Nodes in A depend on one or more nodes in B and vice versa

Types of links
-+ Connectivity links

-+ Connect nodes from the same layer (A or B)

- They allow the information to spread between nodes of the same layer
- Dependency links

- Connect nodes of different layers (between A and B)

-+ Assumption: for a node to function in one layer needs support from another node
from another layer

- Direction of dependency links

- Ai — B /Y‘ﬁ’m/x

. . . - A l° d 1/ 1
+ Inode in A provides a critical /W/
resource to jnode in B Network B
- If node i fails, the supported node
jfails as well




HIGHER ORDER NETWORKS
(HON)



HIGHER ORDER NETWORKS

» Recent and very active field of research

* Many networks are bullt using logs of sequence of items

encountered by actors

» People travelling in public transport go through stations
» Consumer buy products on amazon one after the other

* Normal network: split sequences in pairs

» Higher order: conserve the memory of previous items
» From Markovian to non-Markovian



HIGHER ORDER NETWORKS

* lypical example: air traffic.

» Many crties does not have direct trips
» e.g.: Lyon->Tokyo
» Flight goes through stopover: Lyon->Paris-> Tokyo

» |[f we want to create a weighted network of trips:

» We count the number of trips Lyon->Paris, and Paris->Tokyo
» We forget the information of previous/Next step



HIGHER ORDER NETWORKS

* This transformation to a Markovian process induce an
important information loss

* From Paris,

» |96 passengers go to Tokyo
» |96 passengers go to Geneva

* You know that a passenger leaving Paris comes from Lyon

| % probability to go to Tokyo

| % probability to go to Geneva

» =>Wrong!

» |f the passenger comes from lyon, much more likely to go to Tokyo than to
Geneval
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HIGHER ORDER NETWORKS

- Non-markovian process

» Markovian process:

» A random process in which the future Is independent from the past
» Describe a process: Markov chains sunny
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HIGHER ORDER NETWORKS

a First-order Markov
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Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory in network flows and its effects on spreading dynamics and community detection.

Nature communications, 5, 4630.



HIGHER ORDER NETWORKS

a Assemble data

New York =» Chicago =» New York 9 83"
New York =» Chicago=» San Francisco { 031
San Francisco =»New york =» Chicago =» San francisco
Atlanta = Chicago= Atlanta

ksonville =» Atlanta=> Chicago =» Atlanta => Jacksonville

b c

ﬁf;v-—: Extract network ZT

A 4
New York =» Chicago 174,085 New York =+ Chicago=» New York 50,104
Chicago =» New York 172,830 New York =+ Chicago =»San Francisco '
Chicago =* San Francisco 95,977 San Francisco =»New York=» Chicago
San Francisco=» New York 99 140 Atlanta =»Chicago=» Atlanta
Chicago =» Atlanta 2 569 ' : :
Atlanta =» Chicago 79 467
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HIGHER ORDER NETWORKS

 Nlew nodes are created

» Do not correspond to an original item (a city)
» Correspond to an item AND an origin

* A single element of memory: second-order network
* Iwo elements of memory: third-order network

* etC.



HIGHER ORDER NETWORKS

Raw event sequence data
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Extract higher-order dependencies
from raw event sequences

Higher-order dependencies
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HIGHER ORDER NETWORKS

* Random walk approaches generalize naturally to higher order

networks

» Centrality: PageRank
» Communities: Infomap

* They are based on the principle of a markovian processes

» At each step, the random walker decides to follow an out-going link
» This probability can depend on the walker origin



HIGHER ORDER NETWORKS

* Applying a community detection algorithm to a HON
* A node Is now a tuple (node, history)

* If we apply a community detection algorithm:

» Communities are composed of (node,history) vertices

» We can go back to a traditional community partition:
- We forget the memory part of nodes
- Several instances of same nodes In same community
- Same node In different communities
- =>Qverlapping communities
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A First-order network
View photo Upload photo

WDBJ7 home

Other pages

B HON

View photo|Upload photo \ Upload photo|View photo

View photo Upload photo

Other pages




HIGHER ORDER NETWORKS

* Weakness: complexity

* Number of nodes multiplied by number of possible arrival
sources

B e cases could be Ignored, current Issue

Lambiotte, R., Rosvall, M., & Scholtes, I. (2019). From networks to optimal higher-order models of complex systems. Nature physics, 15(4), 313-320.



