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ENS de Lyon, INRIA, CNRS
esteban.bautista-ruiz@ens-lyon.fr

October 10, 2019

October 10, 2019 1 / 19



The big data era

Introduction October 10, 2019 2 / 19

� Modern systems generate massive amounts of data

I Sensor systems
I Internet of things
I Digital documents

� Technological progress permits to store and effortlessly access it

� Valuable source of information to better solve real world problems

� To get insights from all these data, we need to first organize it

I Separate emails that are spam from those that are not
I Organize documents by topic
I Identify bank transactions that are fraud

� Numerous classification techniques have been proposed over the years

� Classifiers need to learn from annotated data.

� Issue: annotated data do not follow the big data trend



The scarcity of labelled data
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Raw data Linear classifier

Labelled examples are insufficient to learn
something about the data
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Q: How to learn from limited amounts of
labelled data?

A: Use a similarity graph to learn from both
labelled and unlabelled data



Graph node classification
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Graph from data Label propagation

Graphs are powerful objects to represent data
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Q: How to propagate the labelled data in the
graph?

A: Google’s PageRank!



PageRank for data classification
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The PageRank assigns a score function to graph vertices according to
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� y : indicator function of annotated nodes (1 if annotated, 0 otherwise)

� µ: regularization parameter

� f : PageRank vector

� Smoothness: similar vertices should have similar values in f

� Fitting: f should be consistent with labelled data

The solution of this problem coincides with the equilibrium
state of a random walk process



PageRank as a diffusion process
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The solution of the PageRank problem is a random walk process:

f T =
∞∑
k=0

(1− α)αkyTPk ,

where α = 1/(1 + µ)

� k = 0: walker at a label with probability one

� k + 1: walkers decides to jump to a neighbor with probability α, or to
restart to the labels with probability (1− α)

� fu ∝ probability of finding a walker, at equilibrium, at node u



Illustration
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Data PageRank vectors u ∈ Sk : argmaxkFuk



Reducing the number of labelled points
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Data PageRank vector Final decision?

In practice, unfeasible to collect labelled data for hundreds or thousands of
classes. Can we indentify classes individually?



The sweep-cut algorithm
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Sweep-cut

A sweep-cut is a procedure to identify individual classes from a PageRank vector.

� Let v1, . . . , vN be a rearrangement of the vertices in descending order, so that the
permutation vector q satisfies qvi = fvi /dvi ≥ qvi+1 = fvi+1/dvi+1

� Let Sj = {v1, . . . , vj} be the set of vertices indexed by the first j elements of q.

� Let τ(f ) = minj hSj , where hSj is the ratio of external and internal links of Sj .

� Retrieve Ŝgt = Sj for the set Sj achieving τ(f )

Permutation Sweep



Drawbacks?

� Unbalanced data settings lead to classification biases

� RW properties (e.g. Mixing rate, mean passage times, etc) highly
sensitive to non-trivial network structure

� Reliable classifications with few labelled data only under simple data
settings

� Curse of dimensionality issue causes flat functions

� Avoid sweep-cuts to retrieve sub-classes conforming one bigger class
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Sensitivity to non-trivial network structures
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Balanced setting: wl = wr = 1



Sensitivity to non-trivial network structures
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Skewed setting: wl = 10;wr = 1
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How to solve this issue?

Tweaking random walk dynamics: Lévy flights?



Lévy flights
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Lévy flights induced by Lγ for 0 < γ < 1 (Riascos, Phys. Rev. E 90, 2014)

Lγ = (D −W )γ = QΛγQT = Dγ −Wγ

(Pγ)uv = (D−1
γ Wγ)uv ∝ ∆−γuv .



Extending PageRank to Lévy flights
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Proposition: extending PageRank to Lévy flights

arg min
f
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Solution: equilibrium state of Lévy flight process

f T =
∞∑
k=0

(1− α)αkyTPk
γ ,

where α = 1/(1 + µ)



Revisiting the skewed graph via Lévy flights
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Skewed setting: wl = 10;wr = 1 and γ = 0.01



Recap
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� Graphs are useful objects to represent data

� Graphs allow to learn from labelled and unlabelled data to
improve classifiers

� Random walkers are a simple yet effective approach to
propagate information in the graph (PageRank algorithm)

� Random walkers can be sensitive to trapping regions in the
graph

� Anomalous diffusion processes, like Lévy flights, may carry a
better alternative in certain applications


