Buildings Network for Urban System Diagnostic

Lorenza Pacini - PhD student

10th October 2019

L'Aboratoire de MAthématiques - Université de Savoie Mont Blanc Ampère - Unicersité Claude Bernard Lyon 1 IXXI - École Normale Supèrieure de Lyon

Introduction

Spatial networks

Graph: G = (V, E) **Nodes/vertices:**

 $V = \{i \mid i \text{ is a node}\}$

Links/edges:

 $E = \{(i,j) \mid i,j \in V \text{ and } \exists \text{ an } i-j \text{ interaction}\}$

Weighthed adjacency matrix:

$$W_{ij} = \begin{cases} w_{ij} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Spatial network:

 $w_{ij} \leftrightarrow \text{spatial proximity}$

1

Proteins vs. cities

The urban system

Individual components: buildings

Model

Buildings network

$$G = (V, E), \quad V = \{i \mid i \text{ is a (merged) building}\}$$

$$E = \{(i, j) \mid i, j \in V \text{ and } \exists \text{ (point}_i \in i, \text{point}_j \in j) \text{ with}$$

$$\mathsf{dist}(\mathsf{point}_i, \mathsf{point}_j) \leq 30\mathsf{m} \text{ and no other buildings in between.}\}$$

$$A_{ij} = \begin{cases} 1 \text{ if } (i,j) \in E \\ 0 \text{ otherwise} \end{cases}$$
 $k_i = \sum_{j=1}^{N} A_{ij}$

Merging of buildings

Iterative procedure:

REPEAT

- Merge adjacent buildings
- Take convex hull

UNTIL no further merging is possible

Buildings network

Link weight w_{ij} : buffer i (j) of 30m and calculate the area $S_{i^*,j}$ (S_{i,j^*}) of intersection with j (i).

$$w_{ij} = S_{i^*,j} + S_{i,j^*}$$
 $w_i = \sum_{j=1}^{N} w_{ij}$

Buildings network of Montplaisir

Try it! O github.com/lorpac/building-network

Node properties

Node properties

$w/k \leftrightarrow packing$

Usage: system diagnostic

Case study: perturbation

Lyon - w/k

A biomimicry approach

Proteins vs. cities

A biomimicry approach doi.org/10.1680/jbibn.16.00010

Problem analysis

Abstraction of the technical problem

Transposition to biology

Identification of potential biological models

Selection of biological model(s)

Abstraction of biological strategies

Transposition to technology

Implementation and test

Save the date

Atelier "Biomimétisme pour la modélisation et la planification de systèmes urbains" Friday 31st January, 2020 14h - 16h Thank you for your attention.