DYNAMIC NETWORKS

(Dynamic of networks)



DYNAMIC NETWORKS

» Most real world networks are dynamic

» Facebook friendship

- People joining/leaving

- Friend/Unfriend

Twitter mention network

- Each mention has a timestamp

v

- Aggregated every day/month/year => still dynamic
VWorld Wide Web

Urban network
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v



DYNAMIC NETWORKS

» Most real world networks are dynamic

» Nodes can appear/disappear
» Edges can appear/disappear
» Nature of relations can change

* How to represent those changes!

* How to manipulate dynamic networks?



DYNAMIC NETWORKS

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

- Edge presence can be punctual or with duration

- Node presence can be unspecified, punctual or contin-
uous

- If time is continuous, it can be bounded on a period of
analysis or ubounded

- If nodes have attributes, they can be constant or time-
dependent

- If edges have weights, they can be constant or time-
dependent




SEVERAL FORMALISMS
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TEMPORAL NETWORK

Collected dataset, for instance in (t,u,v) format

Time
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= ShIre

Examples:
-SocioPatterns
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Snapshots
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TEMPORAL NETWORK

Interval Graph
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DYNAMIC NETWORKS

Snapsho Aggregat]
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DYNAMIC NETWORKS

Vocabulary

Many different names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper defining those terms. Here is a list of the most
popular:

- Dynamic Networks and Dynamic Graphs
- Longitudinal Networks
-+ Evolving Graphs

+ Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien 2018)

- Temporal Networks, Contact Sequences and Interval
Graphs (Holme and Saramaki 2012)

- Time Varying Graphs (Casteigts et al. 2012)




ANALYZING DYNAMIC
NE TWORKS



ANALYZING DYNAMIC
NETWORKS

* Few snapshots
* Slowly Evolving Networks (SEN)

» Degenerate/Unstable temporal networks



FEVW SNAPSHOTS



FEVW SNAPSHOTS

* The evolution Is represented as a series of a few snapshots.

- Many changes between snapshots

@R EEDe VisUalized as a movie

2007-2008 2009-2010 2011-2012

T — ...,



FEVW SNAPSHOTS

» Each snapshot can be studied as a static graph
* The evolution of the properties can be studied “manually”

* "Node X had low centrality in snapshot t and high centrality In
snapshot t+n”



SLOWLY EVOLVING
NETWORKS
(SEN)



SLOWLY EVOLVING NETWORKS

* Edges change (relatively) slowly

* The network is well defined at any t

» Nodes/edges described by (long lasting) intervals
» Enough snapshots to track nodes

* A static analysis at every (relevant) t gives a dynamic vision

* No formal distinction with previous case (higher observation
frequency)



SLOWLY EVOLVING NETWORKS

= [slalization

» Problem of stability of node positions




SLOWLY EVOLVING NETWORKS
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Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data
(TKDD) 1.1 (2007): 2.



SLOWLY EVOLVING NETWORKS

« Centralities
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TIME SERIES ANALYSIS

» 1S analysis Is a large field of research

e series evolltion of a value over time

» Stock market, temperatures. ..

SNlier app

» Detection of periodic patterns
» Detection of anomalies

» |dentification of global trends

» Evaluation of auto-correlation
» Prediction of future values

» e.0. ARIMA (Autoregressive integrated moving average)

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average



UNSTABLE/DEGENERATE
TEMPORAL NETWORKS

Matthieu Latapy, Tiphaine Viard, and Cléemence Magnien.
‘Stream graphs and link streams for the modeling of inter-
actions over time". In: Social Network Analysis and Mining 8.1
(2018), p. 61.



UNSTABLE TEMPORAL
NETWORK

* The network at a given t Is not meaningful

* How to analyze such a network!?



UNSTABLE TEMPORAL
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UNSTABLE TEMPORAL
NETWORK

» Common solution: transform into SEN using aggregation/
sliding windows

» Information loss
» How to chose a proper aggregation window size!

- New theoretical tools developed to deal with such networks

- Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien 2018)

- Temporal Networks, Contact Sequences and Interval
Graphs (Holme and Saramaki 2012)

- Time Varying Graphs (Casteigts et al. 2012)



CENTRALITIES
&
NETWORK PROPERTIES
IN STREAM GRAPHS



S TREAM GRAPHS

Stream Graph (SG)- Definition

Stream Graphs have been proposed in? as a generic formalism -
It can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or redefining

typical notions of graphs on dynamic networks, including degen-
erate ones.

Let's define a Stream Graph
S=((T,V,W, E)

Set of Possible times (Discrete or Time intervals)
Set of Nodes

Vertices presence time V x T

Edges presencetime V x V x T

9Latapy, Viard, and Magnien 2018,




S TREAM GRAPHS

SG - Time-Entity designation

It Is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:

Nodes At Time: set of hodes present at time ¢
Edges At Time: set of edges present at time ¢
Snapshot: Graph at time t, G¢ = (V4, Et)
Node-time: v; exists if node v Is present at time ¢
Edge-time: (u, v); exists if edge (u,v) is present at
time ¢t

Times Of Node: the set of times during which u Is
present

Times Of Edge: the set of times during which edge
(u, v) Is present




ST REAM GRAPHS

Node presence: The fraction of the total time during

which u Is present in the network ||7;’:L||

Edge presence: The fraction of the total time during

which (u,v) is present in the network |T§;"|)|




S TREAM GRAPHS

SG - Redefining Graph notions

The general idea of redefining static network properties on Stream
Graphs is that If the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.




STREAM GRAPHS

The number/quantity of nodes in a stream graph is defined as the
total presence time of nodes divided by the dataset duration. In
general, it isn't an integer.

More formally:

For instance, N = 2 if there are 4 nodes present half the time, or
two nodes present all the time.
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S TREAM GRAPHS
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S TREAM GRAPHS

The number of edges is defined as the total presence of edges
divided by the total dataset duration.
More formally:

E|
L= ), bww =75,

(u,v),u,veEV

For instance, L = 2 if there are 4 edges present half the time, or
two edges present all the time.




S TREAM GRAPHS
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S TREAM GRAPHS

SG - Edgedomain - L, ..

In Stream Graphs, several possible definitions of Ly, ax could exist:

- Ignoring nodes duration: LL . = |V|?

max

- Ighoring nodes co-presence L2 ., = N?

max

- Taking nodes co-presence into account:
i Z(u,v),u,vev T () T |




S TREAM GRAPHS

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

- - 3
In the following, we will use L) .,

as In Latapy et al.



S TREAM GRAPHS




S TREAM GRAPHS

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have defined
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C' is as subset of W, and the cor-
responding (induced) substream S(C) = (T,V,C, E(C)), with
E(C) ={(, (u,v)) € E, (t,u), (¢,v) € C}.

Example of subgraph (red,left) and induced substream (right).




S TREAM GRAPHS

SG - Cliques

Having defined substreams and density, we can now naturally de-
fine a clique by analogy with static networks as a substream of
density 1. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.




S TREAM GRAPHS

SG - Neighborhood N (u)

The neighborhood N (u) of node w is defined as the cluster com-
posed of node-times such as an edge-time exists between it and
a hode-time of , i.e,

N(u) = {vt, (u,v)t € £}

SG - Degree k(u)

The degree k(u) of node wu is defined as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = [N (u)|
3 +
. e —
5° (N —— - —
21 — I 1
r—T———~—"—~"~"7""7"7"7"7°
0 l It

Example, the neighborhood of node 2 is highlighted in grey.

) — e Lo




S TREAM GRAPHS

SG - Ego-network

The Ego network G, of hode w is defined as the substream in-
duced by its neighborhood, i.e., G, = (T, V, N(u), E(N(u))).

SG - Clustering coefficient

The clustering coefficient C'(u) of node u is defined as the density
of the ego-network of u, i.e.

C(u) = d(N(u))




PATHS AND DISTANCES IN
S TREAM GRAPHS



PATHS

SG - Paths

In a Stream Graph S=(TVW,E), a path P from node-time z, to
node-time y,, IS a sequence (tg, x,vo), (t1,v0,v1), .-, (tx, Vi, y) Of
elementsof T' x V x V such that tg > a.tp < w, ((t;,u;,v;)) € E.
We say that P starts at ¢y, arrives at ¢;.,, has length £ + 1 and
duration ¢, — to.

Examples of two paths from (hode O, t=0.5) to (hode 3, t=1). The
left one starts at 3, arrives at 5, has length 3 and duration 2. The
right one starts at 1, arrives at 4.5, has length 3 and duration 3.5.




Fallmis

SG - Shortest - Fastest - Foremost

-+ Shortest Paths, as in static networks, are paths of minimal
length.

- Fastest Paths are paths of minimal duration.

- Foremost Paths are paths arriving first.

Furthermore, one can combine those properties, defining for in-
stance:

Fastest shortest paths (paths of minimum duration among those
of minimal length)

Shortest fastest paths (paths of minimal length among those of
minimal duration)

Cleds &EilnErts



PATHS

Various definitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
2018) for details. One of the simplest one is the weakly connected
component, defined such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in 4 weakly connected
components.




RANDOM MODELS FOR
DYNAMIC NETWORKS

Laetitia Gauvin et al. “Randomized reference models for temporal networks”. In: SIAM Review 64.4 (Nov. 2022)



RANDOM MODELS

* In many cases, In network analysis, useful to compare a
network to a randomized version of It

» Clustering coefficient, assortativity, modularity, ...

* In a static graph, 2 main choices:

» Keep only the number of edges (ER model)
» Keep the number of edges and the degree of nodes (Configuration model)

* In dynamic networks, it Is more complex...



RANDOM MODELS

Snapshot Shuffling Sequence Shuffling

Snapshot Shuffling keeps the order of snapshots, randomize
edges inside snapshots. Any random model for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

Sequence Shuffling keeps each snapshot identical, switch ran-
domly their order.

..
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t1 t2 t3 t4
@ Sequence Shuffling
@ Snapshot Shuffling
O—0)
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t1 2 i3 t4 1 12 t3 t4




RANDOM MODELS

Link Shuffling

Link Shuffling keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node

pairs, e.g..

t={1,3,5,6}

t=(2,3,4} t={1,2,3,4} E> t={5,6}

Link Shuffling
t={5.6} t=(2,3,4}

t={1,2,3,4} Q
B

t={1,3,5,6}

Timeline Shuffling

Timeline Shuffling keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
IS to redistribute randomly activation period among all edges, e.g.:

t={1,2,3} t={1,"}
A
t={7,8} t={1,2,5, E> t={1,3,7} t={2,3,7}
Timeline Shufflin
© t={",7} 9 © t={2,",8}




RANDOM MODELS

More constrained Shuffling

Variants of these shufflings with additional constraints have been
proposed, for instance the Local timeline shuffling, randomizing
events time edge by edge, or the Weight constrained timeline
shuffling, randomizing events while conserving the number of ob-
servations for each edge. See (Gauvin et al. 2018) for details.

Time aggregated Link timelines

Laetitia Gauvin et al. “Randomized reference models for temporal networks”. In:
SIAM Review 64 .4 (Nov. 2022)

Node timelines Structure aggregated

T — T



DTINAMIC COMMUNTE
BlAR@HE®

Rossetti, G., & Cazabet, R. (2018). Community discovery
in dynamic networks: a survey. ACM Computing Surveys
(CSUR), 51(2), 1-37.

Cazabet, R., Boudebza, S., & Rossetti, G. (2020). Evaluating community detection
algorithms for progressively evolving graphs. Journal Of Complex Networks



EOMMUNITY DE | EC THEHS.

Static networks Dynamic Networks

Clusters: Sets of nodes Clusters: Sets of time-nodes,
.e., pairs (node,time)

Sl



EOMMUNITY DE | EC THEHS.

Static networks Dynamic Networks

Clusters: Sets of nodes Clusters: Sets of time-nodes,
.e., pairs (node,time)
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DYNAMIC COMMUNITIES ?

More than 50 methods published, broad categories

(A) Instant Optimal (B) Temporal Trade-Off (C) Cross-Time

(A1) Iterative, (B1) Update by Global Optimization

Similarity Based

(C1) Fixed Memberships,

Fixed Properties
(B2) Informed CD by

(A2) Iterative, Multi-Objective Optimization
Core-Node Based

(C2) Fixed Memberships,

Evolving Properties
(B3) Update by Set of Rules

(A3) Multi-Step Matching

(C3) Evolving Memberships,
Fixed Properties

(B4) Informed CD by Network Smoothing

(C4) Evolving Memberships,
Evolving Properties

Clusters at t depends only on the current state

of the network Clusters at t depends on current and past

Clusters are non-temporally smoothed states of the network Clusters at t depends on both past and future
(Communities labels, however, can be Clusters are incrementally temporally states of the network

smoothed) smoothed Clusters are Completely temporally smoothed

55—

Rossetti, G., & Cazabet, R. (2018). Community discovery
in dynamic networks: a survey. ACM Computing Surveys
(CSUR), 51(2), 1-37. 54



CATEGORIES

* Instant optimal:

» Allows reusing static algorithms
» No partition smoothing

» Labels can be smoothed

» Simple to parallelize

S



CATEGORIES

* lemporal trade-off

» Cannot be parallelized (iterative)
» => Best suited for real-time analysis / tasks

M@ ress- ['ime

» Requires to know the whole evolution in advance

» => Not surted for real-time analysis, potentially the best smoothed (a
posteriori interpretation)

56



WAl MAKES DCES
INTERES TING

NARRATIVES ?



SMOOTHNESS / STABILITY

* No Smoothness: Partition at € should be the same as found by
a static algorithm.

* Smoothness: Partition at € Is a trade-off between “good”
communities for the graph at € and similarity with partrtions at
different times

58



COMMUNITY EVENTS

H H
t t+1 t —> t+1
Growth Contraction
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PROGRESSIVE EVOLU TION

Lo o 0. D0 eeD 0. oo,

) communities

” | community

Intermediate state

How to track communities, giving a coherent dynamic structure !

60



IDENTITY PRESERVATION

Ship of Theseus [Plutarch., /5]

=
I
[
I
Nodes ','-—————-
I
I
I
[ 1

Time

2 problems:
| )Find node clusters at each t

2)Assign labels between same communities at # t

Cazabet, R., & Rossetti, G. (2019). Challenges in community discovery on temporal
networks. In Temporal Network Theory (pp. 181-197). Springer, Cham.



EMPIRICAL EVALUATION

Cazabet, R., Boudebza, S., & Rossetti, G. (2020). Evaluating community detection
algorithms for progressively evolving graphs. Journal Of Complex Networks

62



el BRI

» Choose methods based on the same definrtion of a static
community: Modularity (most widespread), but different
approaches to dynamics

» Generate dynamic networks with planted dynamic community
SHEllEnlEe

63



SET TING

Scenario description

Instructions in
Ad-hoc language

SPLITY(...)

=)

Generated
nodes and partitions

SPLIT(...)

O O
O O
O O

Partition 1 Partition 2

Edges generation

Edges generated to match
the evolving community structure

SPLIT(...)

T1 12 T3 T4 15

64




t=1
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(b) The static graph at time t=0, ver-
sion sharp
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(c) The static graph at time t=0, ver-
sion blurred
65 (a = 0.8, 8 = 0:25, 5= =—1GHI



METHODS

* Instant Optimal

» No smoothing

Louvain at each step, match with Jaccard

* Temporal trade-off
» |Implicit Global

- Louvain at each step in initialized by the previous partition (same local maximum), +Jaccard
» DYNAMO

Update partition only based on edge changes to keep modularity high
» Smoothed-graph

Each snapshot is modified to artificially raise the probability to obtain similar partition as previous step, then
Louvain+]accard

@ reoss-Time

» Transversal Network

Create a single graph by adding edges between same nodes in successive snapshots (Mucha et al.), then
(modified) Modularity optimization

» Label-Smoothing

Create a “Community Survival graphs™: nodes are static communities(Louvain), edges weighted by Jaccard
Similarity. Apply Louvain on it. 66
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(c) The static graph at time t=0, ver-
sion blurred
(@ =0.8,8 = 0.25, 3, = 0.01 )
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MEASURING DC QUALITY?

* Evaluation at each step (No smoothness)

» Average Mutual Information (similarity at each step)
» Average Modularity

 Evaluation of Smoothness

» SM-=Partitions: Average Mutual Information between successive partrtions
- Label independent, insensitive to glitches, Identity loss

» SM-=Nodes: Inverse of number of affiliation change
- Sensitive to glitches
» SM-=Labels: Inverse of Shannon entropy of nodes labels
- Sensitive to Identity Loss
e Longitudinal Score

» Modified mutual information of time-node (u,t)
69



MEASURING DC QUALITY?

DYNAMO implicit-global label-smoothing

running time running time running time

no-smoothing smoothed-graph transversal-network

running time running time running time

70



o SUM UP ON DY NAISS
GRAPHS



1O SUNTUE

» Currently, most practitioners still use the snapshot approaches

» No widespread framework
» No widespread coding libraries (pathpy, tnetwork, tacoma=>limited usage)
» Datasets still relatively limrted

* But considered an important topic to work on

» Dynamic is everywhere
» Dynamic changes many things in many cases



