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DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Facebook friendship 

- People joining/leaving
- Friend/Unfriend

‣ Twitter mention network
- Each mention has a timestamp
- Aggregated every day/month/year => still dynamic

‣ World Wide Web
‣ Urban network
‣ …



DYNAMIC NETWORKS

• Most real world networks are dynamic
‣ Nodes can appear/disappear
‣ Edges can appear/disappear
‣ Nature of relations can change

• How to represent those changes?

• How to manipulate dynamic networks?
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Dynamic Networks

Disclaimer

Dynamic network analysis as introduced here is a recent and
still not fully mature �eld, with a large number of contributions,
for which we cannot know yet which one will stand the test of
time. This is therefore my vision of the dynamic network �eld
as of today.

Ubiquity of Dynamic Networks

Most real networks are in fact dynamic: nodes and edges appear
and disappear with time. Think of friendship in social networks,
�ight routes or any human interactions. Networks are often an-
alyzed as static objects because �)it’s harder to obtain dynamic
information, �)Taking dynamic into account makes some analysis
more di�cult.
While more and more aspects of our life become linked to digital
technology, datasets with �ne temporal information also become
more and more common.

Snapshots & Aggregated Networks

Static networks representing dynamic information can be ob-
tained by two processes:

• Snapshots correspond to the state of a network at a partic-
ular point in time, e.g., all follower/followees relationship
at a particular second

• Aggregated Networks are obtained by cumulating infor-
mation over a period of time, e.g., in a phone call network,
in the snapshot representing year ����, an edge exists
between two individuals if they called each other at least
once over the year ����.

Interactions or Relation?

Dynamic networks can be used to represent di�erent types of real
data. In particular, they can be used to represent networks of re-
lations and networks of interactions. For instance, friendships, ac-
quaintances, physical wires, roads, etc. can be thought as rela-
tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-

dependent

• If edges have weights, they can be constant or time-

dependent

Vocabulary

Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien ����)

• Temporal Networks, Contact Sequences and Interval

Graphs (Holme and Saramäki ����)

• Time Varying Graphs (Casteigts et al. ����)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period �.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V, W, E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes

W Vertices presence time V ⇥ T
E Edges presence time V ⇥ V ⇥ T

aLatapy, Viard, and Magnien ����.



SEVERAL FORMALISMS

	

represented by an horizontal solid line parallel to the two dotted lines of involved nodes,
and a vertical solid line joining these two dotted lines (marked with bullets) when the
two nodes start interacting. In Figure 1, for instance, in S (leftmost example) the node a
arrives at time 0 and stays until time 10, and so [0, 10]⇥ {a} ✓ W , i.e. Ta = [0, 10]. This
is represented by a dotted line from time 0 to 10 in front of a in the drawing. Likewise, b
arrives at time 0, then leaves at time 4, joins again at time 5 and stays until time 10, and
so ([0, 4] [ [5, 10])⇥ {b} ✓ W , i.e. Tb = [0, 4] [ [5, 10]. This is represented by a dotted line
from time 0 to 4 and another one from time 5 to 10 in front of b. These two nodes interact
from time 1 to time 3 and from time 7 to time 8, and so ([1, 3] [ [7, 8]) ⇥ {ab} ✓ E, i.e.
Tab = [1, 3] [ [7, 8]. This is represented by a solid line at time 1 between the dotted lines
of a and b, with an horizontal line starting from its middle until time 3, and another such
solid line at time 7 with an horizontal line until time 8.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 1: Simple examples of stream graphs and link streams. Left: a stream
graph S = (T, V,W,E) with T = [0, 10] ✓ R, V = {a, b, c, d}, W = [0, 10]⇥ {a} [ ([0, 4] [
[5, 10]) ⇥ {b} [ [4, 9] ⇥ {c} [ [1, 3] ⇥ {d}, and E = ([1, 3] [ [7, 8]) ⇥ {ab} [ [4.5, 7.5] ⇥
{ac} [ [6, 9] ⇥ {bc} [ [2, 3] ⇥ {bd}. In other words, Ta = [0, 10], Tb = [0, 4] [ [5, 10],
Tc = [4, 9], Td = [1, 3], Tab = [1, 3] [ [7, 8], Tac = [4.5, 7.5], Tbc = [6, 9], Tbd = [2, 3], and
Tad = Tcd = ;. Right: a link stream L = (T, V, E) with T = [0, 10] ✓ R, V = {a, b, c, d},
and E = ([0, 4] [ [6, 9])⇥ {ab} [ [2, 5]⇥ {ac} [ [1, 8]⇥ {bc} [ [7, 10]⇥ {bd} [ [6, 9]⇥ {cd}.
In other words, Ta = Tb = Tc = Td = T and Tab = [0, 4] [ [6, 9], Tac = [2, 5], Tbc = [1, 8],
Tbd = [7, 10] and Tcd = [6, 9].

Given a stream graph S = (T, V,W,E), we define Gt = (Vt, Et), the graph induced
by S at time t. In Figure 1, for instance, we obtain for S at time 2 the graph G2 =
({a, b, d}, {ab, bd}).

We also define G(S) = ({v, Tv 6= ;}, {uv, Tuv 6= ;}) = (
S

t2T Vt,
S

t2T Et) the graph
induced by S: its nodes are those present in S and they are linked together in G(S)
if there exists a time instant in T such that they are linked together in S. In other
words, it is the graph where there is a link between two nodes if they interacted at
least once. In Figure 1, for instance, G(S) = ({a, b, c, d}, {ab, ac, bc, bd}) and G(L) =
({a, b, c, d}, {ab, ac, bc, bd, cd}). One may in addition associate to each node v or link uv a
weight capturing a quantity of interest, like for instance their presence duration |Tv| and
|Tuv|.

Stream graphs model interactions between nodes over time, as well as the dynamics of
nodes themselves. For instance, nodes may represent individuals present in a given building
and links may represent contacts between them. Nodes may represent on-line computers
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TEMPORAL NETWORK

1353304100 1148 1644
1353304100 1613 1672
1353304100 656 682
1353304100 1632 1671

1353304120 1492 1613
1353304120 656 682
1353304120 1632 1671

1353304140 1148 1644

1353304160 656 682
1353304160 1108 1601
1353304160 1632 1671
1353304160 626 698

Time u v

Collected dataset, for instance in (t,u,v) format

Examples: 
-SocioPatterns

-Enron
-…
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represented by an horizontal solid line parallel to the two dotted lines of involved nodes,
and a vertical solid line joining these two dotted lines (marked with bullets) when the
two nodes start interacting. In Figure 1, for instance, in S (leftmost example) the node a
arrives at time 0 and stays until time 10, and so [0, 10]⇥ {a} ✓ W , i.e. Ta = [0, 10]. This
is represented by a dotted line from time 0 to 10 in front of a in the drawing. Likewise, b
arrives at time 0, then leaves at time 4, joins again at time 5 and stays until time 10, and
so ([0, 4] [ [5, 10])⇥ {b} ✓ W , i.e. Tb = [0, 4] [ [5, 10]. This is represented by a dotted line
from time 0 to 4 and another one from time 5 to 10 in front of b. These two nodes interact
from time 1 to time 3 and from time 7 to time 8, and so ([1, 3] [ [7, 8]) ⇥ {ab} ✓ E, i.e.
Tab = [1, 3] [ [7, 8]. This is represented by a solid line at time 1 between the dotted lines
of a and b, with an horizontal line starting from its middle until time 3, and another such
solid line at time 7 with an horizontal line until time 8.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 1: Simple examples of stream graphs and link streams. Left: a stream
graph S = (T, V,W,E) with T = [0, 10] ✓ R, V = {a, b, c, d}, W = [0, 10]⇥ {a} [ ([0, 4] [
[5, 10]) ⇥ {b} [ [4, 9] ⇥ {c} [ [1, 3] ⇥ {d}, and E = ([1, 3] [ [7, 8]) ⇥ {ab} [ [4.5, 7.5] ⇥
{ac} [ [6, 9] ⇥ {bc} [ [2, 3] ⇥ {bd}. In other words, Ta = [0, 10], Tb = [0, 4] [ [5, 10],
Tc = [4, 9], Td = [1, 3], Tab = [1, 3] [ [7, 8], Tac = [4.5, 7.5], Tbc = [6, 9], Tbd = [2, 3], and
Tad = Tcd = ;. Right: a link stream L = (T, V, E) with T = [0, 10] ✓ R, V = {a, b, c, d},
and E = ([0, 4] [ [6, 9])⇥ {ab} [ [2, 5]⇥ {ac} [ [1, 8]⇥ {bc} [ [7, 10]⇥ {bd} [ [6, 9]⇥ {cd}.
In other words, Ta = Tb = Tc = Td = T and Tab = [0, 4] [ [6, 9], Tac = [2, 5], Tbc = [1, 8],
Tbd = [7, 10] and Tcd = [6, 9].

Given a stream graph S = (T, V,W,E), we define Gt = (Vt, Et), the graph induced
by S at time t. In Figure 1, for instance, we obtain for S at time 2 the graph G2 =
({a, b, d}, {ab, bd}).

We also define G(S) = ({v, Tv 6= ;}, {uv, Tuv 6= ;}) = (
S

t2T Vt,
S

t2T Et) the graph
induced by S: its nodes are those present in S and they are linked together in G(S)
if there exists a time instant in T such that they are linked together in S. In other
words, it is the graph where there is a link between two nodes if they interacted at
least once. In Figure 1, for instance, G(S) = ({a, b, c, d}, {ab, ac, bc, bd}) and G(L) =
({a, b, c, d}, {ab, ac, bc, bd, cd}). One may in addition associate to each node v or link uv a
weight capturing a quantity of interest, like for instance their presence duration |Tv| and
|Tuv|.

Stream graphs model interactions between nodes over time, as well as the dynamics of
nodes themselves. For instance, nodes may represent individuals present in a given building
and links may represent contacts between them. Nodes may represent on-line computers
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DYNAMIC NETWORKS
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-Modification lists
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-1file by graph
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all graphs

-List of edges with
timestamps
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Disclaimer

Dynamic network analysis as introduced here is a recent and
still not fully mature �eld, with a large number of contributions,
for which we cannot know yet which one will stand the test of
time. This is therefore my vision of the dynamic network �eld
as of today.

Ubiquity of Dynamic Networks

Most real networks are in fact dynamic: nodes and edges appear
and disappear with time. Think of friendship in social networks,
�ight routes or any human interactions. Networks are often an-
alyzed as static objects because �)it’s harder to obtain dynamic
information, �)Taking dynamic into account makes some analysis
more di�cult.
While more and more aspects of our life become linked to digital
technology, datasets with �ne temporal information also become
more and more common.

Snapshots & Aggregated Networks

Static networks representing dynamic information can be ob-
tained by two processes:

• Snapshots correspond to the state of a network at a partic-
ular point in time, e.g., all follower/followees relationship
at a particular second

• Aggregated Networks are obtained by cumulating infor-
mation over a period of time, e.g., in a phone call network,
in the snapshot representing year ����, an edge exists
between two individuals if they called each other at least
once over the year ����.

Interactions or Relation?

Dynamic networks can be used to represent di�erent types of real
data. In particular, they can be used to represent networks of re-
lations and networks of interactions. For instance, friendships, ac-
quaintances, physical wires, roads, etc. can be thought as rela-
tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-

dependent

• If edges have weights, they can be constant or time-

dependent

Vocabulary

Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien ����)

• Temporal Networks, Contact Sequences and Interval

Graphs (Holme and Saramäki ����)

• Time Varying Graphs (Casteigts et al. ����)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period �.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V, W, E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes

W Vertices presence time V ⇥ T
E Edges presence time V ⇥ V ⇥ T

aLatapy, Viard, and Magnien ����.
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ANALYZING DYNAMIC 
NETWORKS

• Few snapshots

• Slowly Evolving Networks (SEN)

• Degenerate/Unstable temporal networks
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FEW SNAPSHOTS
• The evolution is represented as a series of a few snapshots.

• Many changes between snapshots
‣ Cannot be visualized as a “movie”



FEW SNAPSHOTS

• Each snapshot can be studied as a static graph

• The evolution of the properties can be studied “manually”

• “Node X had low centrality in snapshot t and high centrality in 
snapshot t+n”



SLOWLY EVOLVING 
NETWORKS 

(SEN)



SLOWLY EVOLVING NETWORKS 

• Edges change (relatively) slowly

• The network is well defined at any t
‣ Nodes/edges described by (long lasting) intervals
‣ Enough snapshots to track nodes 

• A static analysis at every (relevant) t gives a dynamic vision

• No formal distinction with previous case (higher observation 
frequency)



• Visualization
‣ Problem of stability of node positions

SLOWLY EVOLVING NETWORKS 



• Global graph properties

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." ACM Transactions on Knowledge Discovery from Data 
(TKDD) 1.1 (2007): 2.

SLOWLY EVOLVING NETWORKS 



• Centralities

SLOWLY EVOLVING NETWORKS 



TIME SERIES ANALYSIS
• TS analysis is a large field of research

• Time series: evolution of a value over time
‣ Stock market, temperatures…

• “Killer app”:
‣ Detection of periodic patterns
‣ Detection of anomalies
‣ Identification of global trends
‣ Evaluation of auto-correlation
‣ Prediction of future values

• e.g. ARIMA (Autoregressive integrated moving average)
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average



UNSTABLE/DEGENERATE 
TEMPORAL NETWORKS

More constrained Shu�ing

Variants of these shu�ings with additional constraints have been
proposed, for instance the Local timeline shu�ing, randomizing
events time edge by edge, or the Weight constrained timeline

shu�ing, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. ����) for details.

11

(a)

(b)

FIG. II.7: Illustration of intersections between
shu�ing methods. (a) The most random

link-timeline intersection, P[L, pT (�)], constrains the
static topology redistributes the individual timelines on

the links at random. (b) The most random
timeline-snapshot intersection, P[L, t], conserves the

timestamp of each instantaneous event and redistributes
them at random between the existing links.

3. Intersections of shu�ing methods

As we shall see in the following, several MRRMs ex-
ist which constrain both the content of individual time-
lines, i.e. pL(�), and the static topology, i.e. L. This
makes them intersections (Def. II.9) of link and timeline
shu�ings. They are typically implemented similarly to
link shu�ings by redistributing the timelines between the
links, but without randomizing the static structure.
Example II.10. The intersection between the most ran-
dom link shu�ing, P[pL(�)] and the most random time-
line shu�ing, P[L, E], defines the most random link-
timeline intersection: P[L, pL(�)] [Fig. II.7(a)]. This
model constrains both the static topology and all tempo-
ral correlations on individual links, but destroys correla-
tions between network topology and dynamics.

Other MRRMs constraint both the static topology, i.e.
L, and the timestamps of the events, i.e. t. These are thus
intersections of timeline and snapshot shu�ings. They
are typically implemented by exchanging the timestamps
of the events inside each timeline, or alternatively by re-
distributing events between existing links while keeping
their timestamps unchanged.
Example II.11. The intersection between the most
random timeline shu�ing, P[L, E], and the most ran-
dom snapshot shu�ing, P[t], defines the most random
timeline-snapshot intersection: P[L, t] [Fig. II.7(b)].

4. Compositions of shu�ing methods

The final classes of shu�ing methods that we will en-
counter are methods that generate randomized networks
by applying a pair of di�erent shu�ing methods in com-
position, i.e. by applying the second shu�ing to the ran-
domized networks generated by the first.

Not all compositions generate a microcanonical RRM
however. They are e.g. not guaranteed to sample the
randomized networks uniformly. But as we will show in
Section V, compositions between link shu�ings and time-
line shu�ings and between sequence shu�ings and snap-
shot shu�ings always result in a MRRM. Several such
compositions have been used in the literature to produce
MRRMs that randomize both topological and temporal
aspects of a network at the same time (we describe and
characterize them in Section VC).
Example II.12. The composition of the link shu�ing
P[pL(�)] with the timeline shu�ing P[L, E] results in the
MRRM P[L,E] which randomizes both the static topol-
ogy and the temporal order of events while conserving the
number of links L = |L| in the static graph. The compo-
sition of the sequence shu�ing P[pT (�)] with the snap-
shot shu�ing P[t] results in the MRRM P[p(A)] which
randomizes both the topology of snapshots and their tem-
poral order while conserving the multiset of the number
of events in each snapshot, p(A) = [|Et|]t�T .

III. SURVEY OF APPLICATIONS OF
RANDOMIZED REFERENCE MODELS

The applications of MRRMs for temporal networks are
manifold, but all follow two main directions: (i) study-
ing how the network and ongoing dynamical processes are
controlled by the e�ects of temporal and structural cor-
relations that characterize empirical temporal networks,
(ii) highlighting statistically significant features in tem-
poral networks.

(i) Dynamical processes have been studied by using
data-driven models, where temporal interactions are ob-
tained from real data, while the ongoing dynamical pro-
cess is modeled by using any conventional process def-
inition [45, 73] and typically simulated numerically on
the empirical and randomized temporal networks [73, 74].
One common assumption in all these models is that infor-
mation can flow between interacting entities only during
their interactions. This way the direction, temporal, and
structural position, duration, and the order of interac-
tions become utmost important from the point of view
of the dynamical process. MRRMs provide a way to sys-
tematically eliminate the e�ects of these features and to
study their influence on the ongoing dynamical process.
This methodology has recently shown to be successful in
indicating the importance of temporality, bursty dynam-
ics, community structure, weight-topology correlations,
and higher-order temporal correlations on the evolution
of dynamical processes, just to mention a few examples.

(ii) MRRMs have commonly been used as null models
to find statistically significant features in temporal net-
works (often termed interaction motifs) or correlations
between the network dynamics and node attributes. This
approach is conceptually the same as using the configura-
tion model to detect overrepresented subgraphs (termed
motifs) in static networks [39, 75, 76]. The di�erence here
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UNSTABLE TEMPORAL 
NETWORK

• The network at a given t is not meaningful

• How to analyze such a network?
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UNSTABLE TEMPORAL 
NETWORK

• Common solution: transform into SEN using aggregation/ 
sliding windows
‣ Information loss
‣ How to chose a proper aggregation window size?

• New theoretical tools developed to deal with such networks
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Dynamic network analysis as introduced here is a recent and
still not fully mature �eld, with a large number of contributions,
for which we cannot know yet which one will stand the test of
time. This is therefore my vision of the dynamic network �eld
as of today.

Ubiquity of Dynamic Networks

Most real networks are in fact dynamic: nodes and edges appear
and disappear with time. Think of friendship in social networks,
�ight routes or any human interactions. Networks are often an-
alyzed as static objects because �)it’s harder to obtain dynamic
information, �)Taking dynamic into account makes some analysis
more di�cult.
While more and more aspects of our life become linked to digital
technology, datasets with �ne temporal information also become
more and more common.

Snapshots & Aggregated Networks

Static networks representing dynamic information can be ob-
tained by two processes:

• Snapshots correspond to the state of a network at a partic-
ular point in time, e.g., all follower/followees relationship
at a particular second

• Aggregated Networks are obtained by cumulating infor-
mation over a period of time, e.g., in a phone call network,
in the snapshot representing year ����, an edge exists
between two individuals if they called each other at least
once over the year ����.

Interactions or Relation?

Dynamic networks can be used to represent di�erent types of real
data. In particular, they can be used to represent networks of re-
lations and networks of interactions. For instance, friendships, ac-
quaintances, physical wires, roads, etc. can be thought as rela-
tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-

dependent

• If edges have weights, they can be constant or time-

dependent

Vocabulary

Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien ����)

• Temporal Networks, Contact Sequences and Interval

Graphs (Holme and Saramäki ����)

• Time Varying Graphs (Casteigts et al. ����)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period �.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V, W, E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes

W Vertices presence time V ⇥ T
E Edges presence time V ⇥ V ⇥ T

aLatapy, Viard, and Magnien ����.
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Disclaimer

Dynamic network analysis as introduced here is a recent and
still not fully mature �eld, with a large number of contributions,
for which we cannot know yet which one will stand the test of
time. This is therefore my vision of the dynamic network �eld
as of today.
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mation over a period of time, e.g., in a phone call network,
in the snapshot representing year ����, an edge exists
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once over the year ����.
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tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-

dependent

• If edges have weights, they can be constant or time-

dependent

Vocabulary

Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien ����)

• Temporal Networks, Contact Sequences and Interval

Graphs (Holme and Saramäki ����)

• Time Varying Graphs (Casteigts et al. ����)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period �.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V, W, E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes

W Vertices presence time V ⇥ T
E Edges presence time V ⇥ V ⇥ T

aLatapy, Viard, and Magnien ����.



STREAM GRAPHS
SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}
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SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.
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c
0 1 time
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c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}
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SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique

12

Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.

11

Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}N = 2



STREAM GRAPHS
SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

L = 1

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a
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0 1 time
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Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.
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Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a
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d
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Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}

In the following, we will use , as in Latapy et al.L3
max



STREAM GRAPHS

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}

N = 2 L = 1

d =
3
6

=
1
2

d =
3
4

d =
3
3

= 1



STREAM GRAPHS
SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

P
(u,v),u,v2V |Tu

T
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use L3

max . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 1

2 (left), 3
4 (center) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}



STREAM GRAPHS

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:

Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exist if node v is present at time t
(u, v)t Edge-time: (u, v)t exist if edge (u, v) is present at

time t, � otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.

Nu Node presence: The fraction of the total time during
which u is present in the network |Tu|

|T |
Luv Edge presence: The fraction of the total time during

which (u, v) is present in the network |Tuv|
|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same property computed on the aggregated graph.

SG - N & L

The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
X

v2V

Nv =
|W |
|T |

For instance, N = 2 if there are � nodes present half the time, or
two nodes present all the time.

SG - L

The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
X

(u,v),u,v2V

Luv =
|E|
|T |

For instance, L = 2 if there are � edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
P

(u,v),u,v2V |Tu
T

Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien ����), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di�erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
�

t �(Gt) dt = 1
|T |

�
t

|Et|
|Vt�Vt| dt =

1
|T |·|V �V |

�
t |Et| dt =

�
t |Et| dt�

t |Vt�Vt| dt = �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V � V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu � Tv|
, �(v) =

�
u2V,u �=v |Tuv|�

u2V,u �=v |Tu � Tv|
and �(t) =

|Et|
|Vt � Vt|

.

If |Tu � Tv| = 0,
�

u2V,u �=v |Tu � Tv| = 0 or |Vt � Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta�Tb|
= 3

9 = 1
3 and

�(bd) =
|Tbd|

|Tb�Td| = 1
2 = 0.5. We also obtain �(d) =

|Tda|+|Tdb|+|Tdc|
|Td�Ta|+|Td�Tb|+|Td�Tc| = 0+1+0

2+2+0 = 0.25 and

�(2) = |E2|
|V2�V2| = 2

3·2/2 = 2
3 .

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
�

t2T uvt dt�
t2T ut·vt dt , �(v) =

P
u2V

�
t2T uvt dtP

u2V

�
t2T ut·vt dt , and

�(t) =
P

uv2V �V uvtP
uv2V �V ut·vt

. Likewise, �(S) =
P

uv2V �V

�
t2T uvt dtP

uv2V �V

�
t2T ut·vt dt .

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) = |Et|

|V �V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) � {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.
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Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively �.�� (left) and � (right).

SG - Clusters & Substreams

In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C, E(C)), with
E(C) = {(t, (u, v)) 2 E, (t, u), (t, v) 2 C}.

6 Substreams and clusters

A graph G� = (V �, E �) is a subgraph of G = (V, E) if V � � V and E � � E. This is denoted
by G� � G.

Given two graphs G = (V, E) and G� = (V �, E �), their intersection is the graph G�G� =
(V � V �, E � E �). It is their largest (with respect to inclusion) common subgraph. Their
union is G � G� = (V � V �, E � E �); it is the smallest graph having both G and G� for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv � E, u � C and v � C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S � = (T �, V �, W �, E �) is a substream of S = (T, V, W, E) if
T � � T , V � � V , W � � W , and E � � E. We denote this by S � � S.

Given two stream graphs S = (T, V, W, E) and S � = (T �, V �, W �, E �), their intersection
is the stream graph S�S � = (T �T �, V �V �, W �W �, E�E �). It is their largest (with respect
to inclusion) common substream. Their union is S �S � = (T �T �, V �V �, W �W �, E �E �);
it is the smallest stream graph having both S and S � for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) � E, (t, u) � C and (t, v) � C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4]�[5, 8])�{a}�[5, 9]�{b}�[3, 8]�{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] � {ab} � [3, 4] �
{ac} � [5, 8] � {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] � [5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = �;

TC
ab = [6, 8], TC

ac = [3, 4] � {5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.
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Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density �. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V � of V as the substream induced by the node cluster (T � V �) � W ,
i.e. (T, V �, (T � V �) � W, (T � V � � V �) � E) of S. Likewise, we define the substream of S
induced by a subset T � of T as the substream induced by (T � � V ) � W , i.e. (T �, V, (T � �
V ) � W, (T � � V � V ) � E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] � {a, b, c}, E �) with E � = [6, 9] � {ab} � [6, 8] � {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C � such that C � C �.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C � such that C � C �.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.
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Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4] � {a, b, c}
and [7, 8] � {b, c, d}. Its other maximal compact cliques are [0, 4] � {a, b}, [6, 9] � {a, b},
[2, 5] � {a, c}, [1, 8] � {b, c}, [7, 10] � {b, d}, [6, 9] � {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] � {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] � {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]� {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] � {b, c, d}. The maximal compact
clique [0, 4]�{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4] � {a, b} � [6, 9] � {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] � {a, b} � [6, 9] � {c, d} � [5, 6] � {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1] � {a, b} �
[8, 9] � {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] � T and X � V , if [b, e] � X is a compact clique
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Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t 2 E}

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10 = 1.25.

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T ⇥ V ⇥ V such that t0 � ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

Examples of two paths from (node �, t=�.�) to (node �, t=�). The
left one starts at �, arrives at �, has length � and duration �. The
right one starts at �, arrives at �.�, has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in � weakly connected
components (including one composed of the singleton node �)

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4



STREAM GRAPHS

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

in S then X necessarily is a clique in G(S). However, if [b, e] � X is maximal in S then
X is not necessarily maximal in G(S), see for instance [0, 4] � {a, b} in Figure 4 ({a, b}
is a clique in G(S) but it is included in its other clique {a, b, c}). Conversely, if a cluster
X of G(S) is a clique then in general there is no [b, e] such that [b, e] � X is a compact
clique in S. Finally, if one considers a graph-equivalent stream, then its maximal cliques
are necessarily compact, and they correspond exactly to the maximal cliques of its induced
graph.

8 Neighborhood and degree

In the graph G = (V, E), the neighborhood N(v) of v � V is the cluster N(v) = {u, uv � E},
and the degree d(v) of v is the number of nodes in this cluster, which is equal to the number
of links involving v. We then have

�
v2V d(v) = 2 · m.

The average degree in G is d(G) = 1
n ·

�
v2V d(v), and the following relation between

density and average degree holds: �(G) = d(G)
n�1 .

In a stream graph S = (T, V, W, E), we define the neighborhood of a node v as the
following cluster:

N(v) = {(t, u), (t, uv) � E}
and the degree d(v) of v as the number of nodes in this cluster. As with graphs, this is
equal to the number of links involving v:

d(v) =
|N(v)|

|T | =
�

u2V

|Tuv|
|T | =

�

u2V

muv.

With this definition, each node u contributes to the degree of v proportionally to the
duration of its links with v. See Figure 5 for an illustration.

As with graphs, the sum of the degree of all nodes in S is equal to twice the number of
links in S:

�
v2V d(v) =

�
v2V

�
u2V

|Tuv |
|T | = 2 · m.
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Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1, 3] � [7, 8]) � {b} � [4.5, 7.5] � {c} is in blue, leading to d(a) = 3

10 + 3
10 = 0.6.

Right: N(c) = [2, 5] � {a} � [1, 8] � {b} � [6, 9] � {d} is in blue, leading to d(c) = 13
10 = 1.3.

We now define the average node degree of S as follows:

d(V ) =
1

n
·
�

v2V

nv · d(v) =
�

v2V

|Tv|
|W | · d(v)
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Example, the neighborhood of node c is highlighted in blue.
k(c) = 1.3

(|[�,�]|+|[�,�]|+|[�,�]|).

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V, N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cient C(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, u1, v1), ..., (tk, uk, y)of
elements of T ⇥ V ⇥ V such that t0  ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

(hence vi�1 = ui = vj = uj+1) then P � = (u0, v0), . . . , (ui�1, vi�1), (uj+1, vj+1), . . . , (uk, vk)
also is a path from u to v. If one iteratively removes the cycles of P in this way, one
eventually obtains a simple path from u to v.

The path P is a shortest path from u to v if there is no path in G of length lower than
k. Then, k is called the distance between u and v and it is denoted by �(u, v). If there is
no path between u and v then their distance is infinite. The diameter of G is the largest
finite distance between two nodes in V .

In a stream graph S = (T, V, W, E), a path P from (�, u) � W to (�, v) � W is a
sequence (t0, u0, v0), (t1, u1, v1), . . . , (tk, uk, vk) of elements of T �V �V such that u0 = u,
vk = v, t0 � �, tk � �, for all i, ti � ti+1, vi = ui+1, and (ti, uivi) � E, [�, t0] � {u} � W ,
[tk, �] � {v} � W , and for all i, [ti, ti+1] � {vi} � W .

We say that P involves (t0, u), (tk, v), and (t, vi) for all i � [1, k � 1] and t � [ti, ti+1].
We say that path P starts at t0, arrives at tk, has length k + 1 and duration tk � t0.
See Figure 13 for an illustration.
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Figure 13: Paths in a stream graph. Left: a path P1 from (1, d) to (9, c):
P1 = (2, d, b), (3, b, a), (5, a, c). This path has length 3 and duration 3. Center:
another path P2 from (1, d) to (9, c): P2 = (2, d, b), (3, b, a), (7.5, a, b), (8, b, c). This
path has length 4 and duration 6. Right: a path P3 from (0, b) to (8, a): P3 =
(2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a). This path has length 4 and duration 5.5.

If there exists a path from (�, u) to (�, v) in S, we say that (�, v) is reachable from
(�, u), which we denote by (�, u) ��� (�, v). Notice that reachability is asymmetric: if
(�, u) ��� (�, v) then in general (�, v) ���� (�, u) (in particular this is always true if � �= �).
We say that v is reachable from u if there exists � and � such that (�, u) ��� (�, v), which
we also denote by u ��� v. Reachability is asymmetric in this case too: in Figure 13, for
instance, d ��� c (through P1) but c ���� d. We discuss reachability in more details and we
give more complex examples in Section 15.

A subpath Q of path P is a subsequence (ti, ui, vi), (ti+1, ui+1, vi+1), . . . , (tj, uj, vj) of
the sequence defining P , with j � i. Then, Q is a path from (ti, ui) to (tj, vj). In Figure 13,
for instance, Q1 = (5, a, c), Q2 = (3, b, a), (7.5, a, b) and Q3 = (5, a, c), (6.5, c, b), (7.5, b, a)
are subpaths of P1, P2 and P3, respectively.

The path P is a cycle if u = v and [�, �] � {v} � W . In other words, it is a path from
v at time � to itself at time � such that v is present at all times from � to �. This means
that there is a path of length and duration 0 (i.e. the empty sequence) from (�, v) to (�, v)
in S. For instance, Q3 defined above is a cycle, but Q2 is not since b is not present from
time 3 to time 7.5.
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Examples of two paths. The left one starts at �, arrives at �, has
length � and duration �. The right one starts at �, arrives at �.�,

has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

paths have the same length. As a consequence, the distance between two nodes is the same
in the stream and its corresponding graph, and a path is a cycle in the stream if and only
if the corresponding path is a cycle in the graph.

15 Connectedness and connected components

A graph G = (V, E) is connected if for all u and v in V there is a path between u and v in G.
A cluster C is connected if G(C) is connected, and it is a maximal connected cluster if it is
included in no other connected cluster. These clusters are called the connected components
of G, and they form a partition 3 of V . The reachability graph of G is the graph R = (V, E �)
where uv � E � if u— v in G. The connected components of G are exactly but the cliques
of R.

Given a stream graph S = (T, V, W, E), we say that (�, v) is weakly reachable from
(�, u), which we denote by (�, u) - - - (�, v), if there is a sequence (t0, u0, v0), (t1, u1, v1),
. . . , (tk, uk, vk) of elements of T � V � V such that u0 = u, vk = v, for all i, vi = ui+1, and
(ti, uivi) � E, [�, t0] � {u} � W , [tk, �] � {v} � W , and for all i, [ti, ti+1] � {vi} � W .
This sequence is similar to a path from (�, u) to (�, v), except for time constraints: we do
not necessarily have t0 � �, ti+1 � ti, nor � � tk. As a consequence, weak reachability
is symmetric: if (�, u) - - - (�, v) then (�, v) - - - (�, u). In Figure 14 for instance, we have
(9, d) - - - (3, g) through the sequence (8, d, e), (3, e, f), (1, f, g).

We say that S is weakly connected if for all (�, u) and (�, v) in W , (�, u) - - - (�, v).
We say that a cluster C � W is weakly connected if its induced substream S(C) is weakly
connected. It is a weakly connected component of S if it is a maximal weakly connected
cluster of S. Intuitively, this corresponds to the disconnected parts of a drawing of S, see
Figure 14 for an illustration.
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Figure 14: Weakly connected components of a stream graph. This stream graph
has four weakly connected components, each displayed with a di�erent color: [5, 7]�{a, b}
in blue, ([0, 3] � [8, 10]) � {b} � [0, 10] � {c} � [3, 7] � {d} in pink, ([0, 2] � [8, 10]) � {d} �
[0, 10] � {e} � [0, 4] � {f, g} in green, and [7, 10] � {f} � [5, 10] � {g} in orange.

3A partition of a set X into k parts is a family (P1, P2, · · · , Pk) of k subsets of X such that �iPi = X
and Pi � Pj = � for all i �= j.
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Example of a Stream Graph decomposed in � weakly connected
components.

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or the Con�guration Model.

10

models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.
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models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.
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FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:
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models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.
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Based on the link-timeline representation (Def. II.6), we
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line shu�ings, which randomize the timelines but not the
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Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,
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and timeline shu�ings. (a) The most random link
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random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
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as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].
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Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:



PATHS AND DISTANCES IN 
STREAM GRAPHS



PATHS

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10 = 1.25.

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T ⇥ V ⇥ V such that t0 � ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

Examples of two paths from (node �, t=�.�) to (node �, t=�). The
left one starts at �, arrives at �, has length � and duration �. The
right one starts at �, arrives at �.�, has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in � weakly connected
components (including one composed of the singleton node �)

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4



PATHS
SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

in S then X necessarily is a clique in G(S). However, if [b, e] � X is maximal in S then
X is not necessarily maximal in G(S), see for instance [0, 4] � {a, b} in Figure 4 ({a, b}
is a clique in G(S) but it is included in its other clique {a, b, c}). Conversely, if a cluster
X of G(S) is a clique then in general there is no [b, e] such that [b, e] � X is a compact
clique in S. Finally, if one considers a graph-equivalent stream, then its maximal cliques
are necessarily compact, and they correspond exactly to the maximal cliques of its induced
graph.

8 Neighborhood and degree

In the graph G = (V, E), the neighborhood N(v) of v � V is the cluster N(v) = {u, uv � E},
and the degree d(v) of v is the number of nodes in this cluster, which is equal to the number
of links involving v. We then have

�
v2V d(v) = 2 · m.

The average degree in G is d(G) = 1
n ·

�
v2V d(v), and the following relation between

density and average degree holds: �(G) = d(G)
n�1 .

In a stream graph S = (T, V, W, E), we define the neighborhood of a node v as the
following cluster:

N(v) = {(t, u), (t, uv) � E}
and the degree d(v) of v as the number of nodes in this cluster. As with graphs, this is
equal to the number of links involving v:

d(v) =
|N(v)|

|T | =
�

u2V

|Tuv|
|T | =

�

u2V

muv.

With this definition, each node u contributes to the degree of v proportionally to the
duration of its links with v. See Figure 5 for an illustration.

As with graphs, the sum of the degree of all nodes in S is equal to twice the number of
links in S:

�
v2V d(v) =

�
v2V

�
u2V

|Tuv |
|T | = 2 · m.
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Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1, 3] � [7, 8]) � {b} � [4.5, 7.5] � {c} is in blue, leading to d(a) = 3

10 + 3
10 = 0.6.

Right: N(c) = [2, 5] � {a} � [1, 8] � {b} � [6, 9] � {d} is in blue, leading to d(c) = 13
10 = 1.3.

We now define the average node degree of S as follows:

d(V ) =
1

n
·
�

v2V

nv · d(v) =
�

v2V

|Tv|
|W | · d(v)
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Example, the neighborhood of node c is highlighted in blue.
k(c) = 1.3

(|[�,�]|+|[�,�]|+|[�,�]|).

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V, N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cient C(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, u1, v1), ..., (tk, uk, y)of
elements of T ⇥ V ⇥ V such that t0  ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

(hence vi�1 = ui = vj = uj+1) then P � = (u0, v0), . . . , (ui�1, vi�1), (uj+1, vj+1), . . . , (uk, vk)
also is a path from u to v. If one iteratively removes the cycles of P in this way, one
eventually obtains a simple path from u to v.

The path P is a shortest path from u to v if there is no path in G of length lower than
k. Then, k is called the distance between u and v and it is denoted by �(u, v). If there is
no path between u and v then their distance is infinite. The diameter of G is the largest
finite distance between two nodes in V .

In a stream graph S = (T, V, W, E), a path P from (�, u) � W to (�, v) � W is a
sequence (t0, u0, v0), (t1, u1, v1), . . . , (tk, uk, vk) of elements of T �V �V such that u0 = u,
vk = v, t0 � �, tk � �, for all i, ti � ti+1, vi = ui+1, and (ti, uivi) � E, [�, t0] � {u} � W ,
[tk, �] � {v} � W , and for all i, [ti, ti+1] � {vi} � W .

We say that P involves (t0, u), (tk, v), and (t, vi) for all i � [1, k � 1] and t � [ti, ti+1].
We say that path P starts at t0, arrives at tk, has length k + 1 and duration tk � t0.
See Figure 13 for an illustration.
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Figure 13: Paths in a stream graph. Left: a path P1 from (1, d) to (9, c):
P1 = (2, d, b), (3, b, a), (5, a, c). This path has length 3 and duration 3. Center:
another path P2 from (1, d) to (9, c): P2 = (2, d, b), (3, b, a), (7.5, a, b), (8, b, c). This
path has length 4 and duration 6. Right: a path P3 from (0, b) to (8, a): P3 =
(2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a). This path has length 4 and duration 5.5.

If there exists a path from (�, u) to (�, v) in S, we say that (�, v) is reachable from
(�, u), which we denote by (�, u) ��� (�, v). Notice that reachability is asymmetric: if
(�, u) ��� (�, v) then in general (�, v) ���� (�, u) (in particular this is always true if � �= �).
We say that v is reachable from u if there exists � and � such that (�, u) ��� (�, v), which
we also denote by u ��� v. Reachability is asymmetric in this case too: in Figure 13, for
instance, d ��� c (through P1) but c ���� d. We discuss reachability in more details and we
give more complex examples in Section 15.

A subpath Q of path P is a subsequence (ti, ui, vi), (ti+1, ui+1, vi+1), . . . , (tj, uj, vj) of
the sequence defining P , with j � i. Then, Q is a path from (ti, ui) to (tj, vj). In Figure 13,
for instance, Q1 = (5, a, c), Q2 = (3, b, a), (7.5, a, b) and Q3 = (5, a, c), (6.5, c, b), (7.5, b, a)
are subpaths of P1, P2 and P3, respectively.

The path P is a cycle if u = v and [�, �] � {v} � W . In other words, it is a path from
v at time � to itself at time � such that v is present at all times from � to �. This means
that there is a path of length and duration 0 (i.e. the empty sequence) from (�, v) to (�, v)
in S. For instance, Q3 defined above is a cycle, but Q2 is not since b is not present from
time 3 to time 7.5.
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Examples of two paths. The left one starts at �, arrives at �, has
length � and duration �. The right one starts at �, arrives at �.�,

has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Connected Components

Various de�nitions for connected components have been pro-
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����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.
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Figure 14: Weakly connected components of a stream graph. This stream graph
has four weakly connected components, each displayed with a di�erent color: [5, 7]�{a, b}
in blue, ([0, 3] � [8, 10]) � {b} � [0, 10] � {c} � [3, 7] � {d} in pink, ([0, 2] � [8, 10]) � {d} �
[0, 10] � {e} � [0, 4] � {f, g} in green, and [7, 10] � {f} � [5, 10] � {g} in orange.

3A partition of a set X into k parts is a family (P1, P2, · · · , Pk) of k subsets of X such that �iPi = X
and Pi � Pj = � for all i �= j.
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Example of a Stream Graph decomposed in � weakly connected
components.

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or the Con�guration Model.
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models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.
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as well as possible additional constraints on the order of
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dividual snapshots completely at random leads to the
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Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:
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and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

(1,2)
(1,3)
(2,3)
(2,4)

(2,4)
(3,4)
(1,3)
(1,2)

Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:

Check experiments



PATHS

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

in S then X necessarily is a clique in G(S). However, if [b, e] � X is maximal in S then
X is not necessarily maximal in G(S), see for instance [0, 4] � {a, b} in Figure 4 ({a, b}
is a clique in G(S) but it is included in its other clique {a, b, c}). Conversely, if a cluster
X of G(S) is a clique then in general there is no [b, e] such that [b, e] � X is a compact
clique in S. Finally, if one considers a graph-equivalent stream, then its maximal cliques
are necessarily compact, and they correspond exactly to the maximal cliques of its induced
graph.

8 Neighborhood and degree

In the graph G = (V, E), the neighborhood N(v) of v � V is the cluster N(v) = {u, uv � E},
and the degree d(v) of v is the number of nodes in this cluster, which is equal to the number
of links involving v. We then have

�
v2V d(v) = 2 · m.

The average degree in G is d(G) = 1
n ·

�
v2V d(v), and the following relation between

density and average degree holds: �(G) = d(G)
n�1 .

In a stream graph S = (T, V, W, E), we define the neighborhood of a node v as the
following cluster:

N(v) = {(t, u), (t, uv) � E}
and the degree d(v) of v as the number of nodes in this cluster. As with graphs, this is
equal to the number of links involving v:

d(v) =
|N(v)|

|T | =
�

u2V

|Tuv|
|T | =

�

u2V

muv.

With this definition, each node u contributes to the degree of v proportionally to the
duration of its links with v. See Figure 5 for an illustration.

As with graphs, the sum of the degree of all nodes in S is equal to twice the number of
links in S:

�
v2V d(v) =

�
v2V

�
u2V

|Tuv |
|T | = 2 · m.
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Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1, 3] � [7, 8]) � {b} � [4.5, 7.5] � {c} is in blue, leading to d(a) = 3

10 + 3
10 = 0.6.

Right: N(c) = [2, 5] � {a} � [1, 8] � {b} � [6, 9] � {d} is in blue, leading to d(c) = 13
10 = 1.3.

We now define the average node degree of S as follows:

d(V ) =
1

n
·
�

v2V

nv · d(v) =
�

v2V

|Tv|
|W | · d(v)
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Example, the neighborhood of node c is highlighted in blue.
k(c) = 1.3

(|[�,�]|+|[�,�]|+|[�,�]|).

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V, N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cient C(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, u1, v1), ..., (tk, uk, y)of
elements of T ⇥ V ⇥ V such that t0  ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

(hence vi�1 = ui = vj = uj+1) then P � = (u0, v0), . . . , (ui�1, vi�1), (uj+1, vj+1), . . . , (uk, vk)
also is a path from u to v. If one iteratively removes the cycles of P in this way, one
eventually obtains a simple path from u to v.

The path P is a shortest path from u to v if there is no path in G of length lower than
k. Then, k is called the distance between u and v and it is denoted by �(u, v). If there is
no path between u and v then their distance is infinite. The diameter of G is the largest
finite distance between two nodes in V .

In a stream graph S = (T, V, W, E), a path P from (�, u) � W to (�, v) � W is a
sequence (t0, u0, v0), (t1, u1, v1), . . . , (tk, uk, vk) of elements of T �V �V such that u0 = u,
vk = v, t0 � �, tk � �, for all i, ti � ti+1, vi = ui+1, and (ti, uivi) � E, [�, t0] � {u} � W ,
[tk, �] � {v} � W , and for all i, [ti, ti+1] � {vi} � W .

We say that P involves (t0, u), (tk, v), and (t, vi) for all i � [1, k � 1] and t � [ti, ti+1].
We say that path P starts at t0, arrives at tk, has length k + 1 and duration tk � t0.
See Figure 13 for an illustration.
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Figure 13: Paths in a stream graph. Left: a path P1 from (1, d) to (9, c):
P1 = (2, d, b), (3, b, a), (5, a, c). This path has length 3 and duration 3. Center:
another path P2 from (1, d) to (9, c): P2 = (2, d, b), (3, b, a), (7.5, a, b), (8, b, c). This
path has length 4 and duration 6. Right: a path P3 from (0, b) to (8, a): P3 =
(2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a). This path has length 4 and duration 5.5.

If there exists a path from (�, u) to (�, v) in S, we say that (�, v) is reachable from
(�, u), which we denote by (�, u) ��� (�, v). Notice that reachability is asymmetric: if
(�, u) ��� (�, v) then in general (�, v) ���� (�, u) (in particular this is always true if � �= �).
We say that v is reachable from u if there exists � and � such that (�, u) ��� (�, v), which
we also denote by u ��� v. Reachability is asymmetric in this case too: in Figure 13, for
instance, d ��� c (through P1) but c ���� d. We discuss reachability in more details and we
give more complex examples in Section 15.

A subpath Q of path P is a subsequence (ti, ui, vi), (ti+1, ui+1, vi+1), . . . , (tj, uj, vj) of
the sequence defining P , with j � i. Then, Q is a path from (ti, ui) to (tj, vj). In Figure 13,
for instance, Q1 = (5, a, c), Q2 = (3, b, a), (7.5, a, b) and Q3 = (5, a, c), (6.5, c, b), (7.5, b, a)
are subpaths of P1, P2 and P3, respectively.

The path P is a cycle if u = v and [�, �] � {v} � W . In other words, it is a path from
v at time � to itself at time � such that v is present at all times from � to �. This means
that there is a path of length and duration 0 (i.e. the empty sequence) from (�, v) to (�, v)
in S. For instance, Q3 defined above is a cycle, but Q2 is not since b is not present from
time 3 to time 7.5.
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Examples of two paths. The left one starts at �, arrives at �, has
length � and duration �. The right one starts at �, arrives at �.�,

has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

paths have the same length. As a consequence, the distance between two nodes is the same
in the stream and its corresponding graph, and a path is a cycle in the stream if and only
if the corresponding path is a cycle in the graph.

15 Connectedness and connected components

A graph G = (V, E) is connected if for all u and v in V there is a path between u and v in G.
A cluster C is connected if G(C) is connected, and it is a maximal connected cluster if it is
included in no other connected cluster. These clusters are called the connected components
of G, and they form a partition 3 of V . The reachability graph of G is the graph R = (V, E �)
where uv � E � if u— v in G. The connected components of G are exactly but the cliques
of R.

Given a stream graph S = (T, V, W, E), we say that (�, v) is weakly reachable from
(�, u), which we denote by (�, u) - - - (�, v), if there is a sequence (t0, u0, v0), (t1, u1, v1),
. . . , (tk, uk, vk) of elements of T � V � V such that u0 = u, vk = v, for all i, vi = ui+1, and
(ti, uivi) � E, [�, t0] � {u} � W , [tk, �] � {v} � W , and for all i, [ti, ti+1] � {vi} � W .
This sequence is similar to a path from (�, u) to (�, v), except for time constraints: we do
not necessarily have t0 � �, ti+1 � ti, nor � � tk. As a consequence, weak reachability
is symmetric: if (�, u) - - - (�, v) then (�, v) - - - (�, u). In Figure 14 for instance, we have
(9, d) - - - (3, g) through the sequence (8, d, e), (3, e, f), (1, f, g).

We say that S is weakly connected if for all (�, u) and (�, v) in W , (�, u) - - - (�, v).
We say that a cluster C � W is weakly connected if its induced substream S(C) is weakly
connected. It is a weakly connected component of S if it is a maximal weakly connected
cluster of S. Intuitively, this corresponds to the disconnected parts of a drawing of S, see
Figure 14 for an illustration.
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Figure 14: Weakly connected components of a stream graph. This stream graph
has four weakly connected components, each displayed with a di�erent color: [5, 7]�{a, b}
in blue, ([0, 3] � [8, 10]) � {b} � [0, 10] � {c} � [3, 7] � {d} in pink, ([0, 2] � [8, 10]) � {d} �
[0, 10] � {e} � [0, 4] � {f, g} in green, and [7, 10] � {f} � [5, 10] � {g} in orange.

3A partition of a set X into k parts is a family (P1, P2, · · · , Pk) of k subsets of X such that �iPi = X
and Pi � Pj = � for all i �= j.
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Example of a Stream Graph decomposed in � weakly connected
components.

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or the Con�guration Model.
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models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.
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models as they all conserve the nodes V, the temporal
duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
Example II.7. The most random event shu�ing pos-
sible, P[p(� )], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)�L, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) � � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]t�T ,
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FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static
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timelines. (b) The most random timeline shu�ing,
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FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
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shu�ing, P[t], completely randomizes each snapshot
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as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:
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E). Event shu�ings furthermore conserve the multiset of
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but they all conserve at least the above features.
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random, while the most random instant-event shu�ing is
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straints on the static topology (i.e. on the configuration
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�(i,j) � �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.
Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.
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as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)�E , as well as any additional con-
straints on the individual snapshot graphs �t � �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].
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duration tmax � tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(� ) = [�q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.
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Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:
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RANDOM MODELS

• In many cases, in network analysis, useful to compare a 
network to a randomized version of it
‣ Clustering coefficient, assortativity, modularity, …

• In a static graph, 2 main choices:
‣ Keep only the number of edges (ER model)
‣ Keep the number of edges and the degree of nodes (Configuration model)

• In dynamic networks, it is more complex…



RANDOM MODELS
SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10 = 1.25.

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths

In a Stream Graph S=(T,V,W,E), a path P from node-time x↵ to
node-time y! is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T ⇥ V ⇥ V such that t0 � ↵,tk  !, ((ti, ui, vi)) 2 E .
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk � t0 .

Examples of two paths from (node �, t=�.�) to (node �, t=�). The
left one starts at �, arrives at �, has length � and duration �. The
right one starts at �, arrives at �.�, has length � and duration �.�.

SG - Shortest - Fastest - Foremost

• Shortest Paths, as in static networks, are paths ofminimal

length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
����) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in � weakly connected
components (including one composed of the singleton node �)

RandomModels

We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. ����), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in �main families, Snapshot Shu�ing, Sequence Shu�ing, Link

Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4
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RANDOM MODELS
Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:

A

C

B

D

t={1,3,5,6}

t={5,6}

t={2,3,4} t={1,2,3,4}

Link Shuffling

A

C

B

D

t={1,3,5,6}t={5,6}

t={2,3,4}

t={1,2,3,4}

Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:

A

C

B

D

t={1,2,3}

t={5,7}

t={7,8} t={1,2,3,5}

Timeline Shuffling

A

C

B

D

t={1,5}

t={2,5,8}

t={1,3,7} t={2,3,7}

More constrained Shu�ing

Variants of these shu�ings with additional constraints have been
proposed, for instance the Local timeline shu�ing, randomizing
events time edge by edge, or the Weight constrained timeline

shu�ing, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. ����) for more.

Going Further

Book: Holme and Saramäki ����
Stream Graph de�nition: Latapy, Viard, and Magnien ����
Transforming dynamic networks into static networks: Kivelä et al.
����
Dynamic Communities: Rossetti and Cazabet ����
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More constrained Shu�ing

Variants of these shu�ings with additional constraints have been
proposed, for instance the Local timeline shu�ing, randomizing
events time edge by edge, or the Weight constrained timeline

shu�ing, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. ����) for details.
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(a)

(b)

FIG. II.7: Illustration of intersections between
shu�ing methods. (a) The most random

link-timeline intersection, P[L, pT (�)], constrains the
static topology redistributes the individual timelines on

the links at random. (b) The most random
timeline-snapshot intersection, P[L, t], conserves the

timestamp of each instantaneous event and redistributes
them at random between the existing links.

3. Intersections of shu�ing methods

As we shall see in the following, several MRRMs ex-
ist which constrain both the content of individual time-
lines, i.e. pL(�), and the static topology, i.e. L. This
makes them intersections (Def. II.9) of link and timeline
shu�ings. They are typically implemented similarly to
link shu�ings by redistributing the timelines between the
links, but without randomizing the static structure.
Example II.10. The intersection between the most ran-
dom link shu�ing, P[pL(�)] and the most random time-
line shu�ing, P[L, E], defines the most random link-
timeline intersection: P[L, pL(�)] [Fig. II.7(a)]. This
model constrains both the static topology and all tempo-
ral correlations on individual links, but destroys correla-
tions between network topology and dynamics.

Other MRRMs constraint both the static topology, i.e.
L, and the timestamps of the events, i.e. t. These are thus
intersections of timeline and snapshot shu�ings. They
are typically implemented by exchanging the timestamps
of the events inside each timeline, or alternatively by re-
distributing events between existing links while keeping
their timestamps unchanged.
Example II.11. The intersection between the most
random timeline shu�ing, P[L, E], and the most ran-
dom snapshot shu�ing, P[t], defines the most random
timeline-snapshot intersection: P[L, t] [Fig. II.7(b)].

4. Compositions of shu�ing methods

The final classes of shu�ing methods that we will en-
counter are methods that generate randomized networks
by applying a pair of di�erent shu�ing methods in com-
position, i.e. by applying the second shu�ing to the ran-
domized networks generated by the first.

Not all compositions generate a microcanonical RRM
however. They are e.g. not guaranteed to sample the
randomized networks uniformly. But as we will show in
Section V, compositions between link shu�ings and time-
line shu�ings and between sequence shu�ings and snap-
shot shu�ings always result in a MRRM. Several such
compositions have been used in the literature to produce
MRRMs that randomize both topological and temporal
aspects of a network at the same time (we describe and
characterize them in Section VC).
Example II.12. The composition of the link shu�ing
P[pL(�)] with the timeline shu�ing P[L, E] results in the
MRRM P[L,E] which randomizes both the static topol-
ogy and the temporal order of events while conserving the
number of links L = |L| in the static graph. The compo-
sition of the sequence shu�ing P[pT (�)] with the snap-
shot shu�ing P[t] results in the MRRM P[p(A)] which
randomizes both the topology of snapshots and their tem-
poral order while conserving the multiset of the number
of events in each snapshot, p(A) = [|Et|]t�T .

III. SURVEY OF APPLICATIONS OF
RANDOMIZED REFERENCE MODELS

The applications of MRRMs for temporal networks are
manifold, but all follow two main directions: (i) study-
ing how the network and ongoing dynamical processes are
controlled by the e�ects of temporal and structural cor-
relations that characterize empirical temporal networks,
(ii) highlighting statistically significant features in tem-
poral networks.

(i) Dynamical processes have been studied by using
data-driven models, where temporal interactions are ob-
tained from real data, while the ongoing dynamical pro-
cess is modeled by using any conventional process def-
inition [45, 73] and typically simulated numerically on
the empirical and randomized temporal networks [73, 74].
One common assumption in all these models is that infor-
mation can flow between interacting entities only during
their interactions. This way the direction, temporal, and
structural position, duration, and the order of interac-
tions become utmost important from the point of view
of the dynamical process. MRRMs provide a way to sys-
tematically eliminate the e�ects of these features and to
study their influence on the ongoing dynamical process.
This methodology has recently shown to be successful in
indicating the importance of temporality, bursty dynam-
ics, community structure, weight-topology correlations,
and higher-order temporal correlations on the evolution
of dynamical processes, just to mention a few examples.

(ii) MRRMs have commonly been used as null models
to find statistically significant features in temporal net-
works (often termed interaction motifs) or correlations
between the network dynamics and node attributes. This
approach is conceptually the same as using the configura-
tion model to detect overrepresented subgraphs (termed
motifs) in static networks [39, 75, 76]. The di�erence here
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COMMUNITY DETECTION

Static networks Dynamic Networks

Clusters: Sets of nodes  Clusters: Sets of time-nodes, 
i.e., pairs (node,time)

156 link streams for modelling interactions over time and application to the analysis
of ip traffic

We propose here to model email exchanges directly as
link streams, i.e. series of triplets (t, a, b) meaning that
individuals a and b exchanged an email at time t. We
then introduce notions that capture both the temporal and
structural nature of these exchanges. We use a typical
dataset obtained from a public mailing-list archive to il-
lustrate our approach. We analyze this dataset using our
model, with a special focus on the properties of threads
within the whole archive. Our goal is to understand how
the now classical concept of communities in complex net-
works may translate to threads in link streams represent-
ing email exchanges. Indeed, we expect the exchanges of
a given thread to involve a specific set of individuals for a
specific period of time, thus being dense from both struc-
tural and temporal point of views. This is illustrated in
Figure A.1.

a
b
c
d

0 5 time15 2010

e

Figure A.1: An example of link stream
representing email exchanges between
individuals a, b, c, d and e, with threads
represented by colored areas. For
instance, at time 5, b and c exchange
an email, as well as d and e. Threads
are a priori dense series of exchanges
involving a limited group of nodes
during a limited period of time.

A.2 Dataset

Archives of exchanges in various mailing-lists are readily
available on the web, and studying them provides very
rich insights on various issues. They have the advantage of
being publicly available in many cases, and some involve
large amounts of users over long time periods.

A typical example is provided by Debian mailing
list [SPI, 2015]: it contains emails sent from over 51753
email addresses, over 20 years. In addition, exchanges in
this mailing-list have been studied in the past [Wang, 2014,
Sowe et al., 2006, Dorat et al., 2007]. Finally, this dataset
provides the thread information for each message, that we
can use as a ground truth. For all these reasons, we use in
this paper the Debian mailing list to illustrate and validate

Gaumont, N., Viard, T., Fournier-S’Niehotta, R., Wang, Q., & Latapy, M. 
(2016). Analysis of the temporal and structural features of threads in a 
mailing-list. In Complex Networks VII
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COMMUNITY DETECTION

Static networks Dynamic Networks

Clusters: Sets of nodes  

[Viard 2016]

Clusters: Sets of time-nodes, 
i.e., pairs (node,time)
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APPROACHES TO DCD
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DYNAMIC COMMUNITIES ?

Rossetti, G., & Cazabet, R. (2018). Community discovery 
in dynamic networks: a survey. ACM Computing Surveys 
(CSUR), 51(2), 1-37.

More than 50 methods published, broad categories
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CATEGORIES

• Instant optimal: 
‣ Allows reusing static algorithms
‣ No partition smoothing
‣ Labels can be smoothed
‣ Simple to parallelize
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CATEGORIES

• Temporal trade-off
‣ Cannot be parallelized (iterative)
‣ => Best suited for real-time analysis / tasks

• Cross-Time
‣ Requires to know the whole evolution in advance
‣ => Not suited for real-time analysis, potentially the best smoothed (a 

posteriori interpretation)

56



WHAT MAKES DCD 
INTERESTING

NARRATIVES ?
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SMOOTHNESS / STABILITY

• No Smoothness: Partition at t should be the same as found by 
a static algorithm.

• Smoothness: Partition at t is a trade-off between “good” 
communities for the graph at t and similarity with partitions at 
different times
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COMMUNITY EVENTS

Growth Contraction
t t+1 t t+1

Merging
t t+1

Splitting
t t+1

Birth
t t+1

Death
t t+1

t t+1 t+nt+n-1

Resurgence59



PROGRESSIVE EVOLUTION
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… …

2 communities 1 community??
Intermediate state

How to track communities, giving a coherent dynamic structure ?
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IDENTITY PRESERVATION
Challenges in Community Discovery on Temporal Networks 9

Time

Nodes

A

B

C

Fig. 2 Illustration of the ship of Theseus paradox. Each horizontal line represents a node. A same
color represents nodes belonging to the same community according to a topological criterion (e.g.,
SBM). The community A is progressively modified until reaching state B. Community C is com-
posed of the same nodes as the other community at its start. Which cluster (B or C) has the same
identity as A? What if all details of the evolution are not known?

• Instant Optimal approaches are the best choice when the final goal is to provide
communities that are as good as possible at each step of the evolution of the
network;

• Cross-Time approaches are the best choice when the final goal is to provide com-
munities that are coherent in time, particularly over the long term;

• Temporal Trade-off approaches represent a trade-off between these other two
classes: they are the best choice in the case of continuous monitoring, rapidly
evolving data, and in some cases, limited memory applications. However, they
can be subject to “avalanche” effects due to the limited temporal information they
leverage to identify communities (i.e., partitions evolve based on local temporal-
optimal solutions that, on the long run may degenerate).

2.2 Preservation of identity: the ship of Theseus paradox

The smoothness problem affects the way nodes are split into communities at each
time. A different notion is the question of identity preservation along time, which
arises in particular in case of a continued slow evolution of communities. It is well
illustrated by the paradox of the ship of Theseus. It is originally an ancient thought
experiment introduced by Plutarch about the identity of an object evolving through
time. It can be formulated as follows:

Let’s consider a famous ship, the ship of Theseus, composed of planks, and kept
in a harbor as a historical artifact. As time passes, some planks deteriorate and need
to be replaced by new ones. After a long enough period, all the original planks of
the ship have been replaced. Can we consider the ship in the harbor to still be the

Ship of Theseus [Plutarch., 75]

Cazabet, R., & Rossetti, G. (2019). Challenges in community discovery on temporal 
networks. In Temporal Network Theory (pp. 181-197). Springer, Cham.

2 problems: 
1)Find node clusters at each t

2)Assign labels between same communities at  t≠
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EMPIRICAL EVALUATION

Cazabet, R., Boudebza, S., & Rossetti, G. (2020). Evaluating community detection 
algorithms for progressively evolving graphs. Journal Of Complex Networks
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SETTING

• Choose methods based on the same definition of a static 
community: Modularity (most widespread), but different 
approaches to dynamics

• Generate dynamic networks with planted dynamic community 
structure
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SETTING

…
SPLIT(…)
MERGE(…)
DEATH(…)
…

Partition 1 Partition 2 T1 T2 T3 T4 T5

Scenario description Edges generation

Instructions in 
Ad-hoc language

Generated 
nodes and partitions

Edges generated to match 
the evolving community structure

SPLIT(…) SPLIT(…)

Figure 2: Illustration of the benchmark generation process.

of RDYN.
In several other articles, notably [13, 23, 33, 11, 31, 35, 34, 3], ad-hoc bench-

marks were introduced, usually to test one specific scenario, with similar or
more restricted scopes.

Unlike all previous methods, the benchmark we propose introduces a lan-
guage to represent any scenario of community evolution by specifying events
(merge, split, etc.), either through its complete description, or by drawing ran-
domly sequences of events (see section 4.2 for examples). It also generates a
network with 1) stable links (links present in t are likely to be present in t+1),
2) communities with known properties (see section 3.2.1 for details), 3)Able to
represent progressive events, such as a progressive merge or split.

To the best of our knowledge, a single paper has been published so far com-
paring empirically dynamic community detection algorithms: in [7], 5 methods
have been tested on RDyn benchmark [28]. They were compared in terms of
average community quality at each step. In this article, we compare on di↵erent
aspects, by introducing measures of smoothness and longitudinal quality (see
Section 4.3)

3 Synthetic network generation process

The benchmark we propose follows a two-step process (Fig. 2):

1. Scenario description: the experimenter defines initial communities and
the scenario of their evolution (sequence of events).

2. Edges generation: edges are generated by a partly-random process.
They form a dynamic network corresponding to the described community
structure, satisfying some community quality properties.

3.1 Scenario description

Any scenario can be described by a set of community events, each of them
modifying the a�liation of nodes. To represent these community events, we

5
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(a) Planted dynamic communities, represented using the TAM visualization.
Each node is represented as a thin horizontal line. Colors represent com-
munities. Grey areas represent anbiguous a�liations. Events are identified
by arrows and names, e.g., blue communities A and B merge into a singe
community identified as B, and this process last from steps 30 to 60.

(b) The static graph at time t=0, ver-
sion sharp

(↵ = 0.9,� = 0.05,�r = 0.01)

(c) The static graph at time t=0, ver-
sion blurred

(↵ = 0.8,� = 0.25,�r = 0.01 )

Figure 4: A simple scenario of community evolution.
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METHODS
• Instant Optimal

‣ No smoothing
- Louvain at each step, match with Jaccard

• Temporal trade-off
‣ Implicit Global

- Louvain at each step in initialized by the previous partition (same local maximum), +Jaccard
‣ DYNAMO

- Update partition only based on edge changes to keep modularity high
‣ Smoothed-graph

- Each snapshot is modified to artificially raise the probability to obtain similar partition as previous step, then 
Louvain+Jaccard

• Cross-Time
‣ Transversal Network

- Create a single graph by adding edges between same nodes in successive snapshots (Mucha et al.), then 
(modified) Modularity optimization

‣ Label-Smoothing
- Create a “Community Survival graphs”: nodes are static communities(Louvain), edges weighted by Jaccard 

Similarity. Apply Louvain on it. 66



(a) No-Smoothing (b) Label-Smoothing

Figure 5: Comparison of partitions obtained using two di↵erent methods on the
ad-hoc scenario, sharp flavor. Most communities are captured accurately, with
some key di↵erences: resurgence events are identified by Label-Smoothing but
not by the other, The ship of theseus is labeled di↵erently, etc.

• Being based on Modularity optimisation. We want all methods to agree
on the definition of the best static partition on a single network, so that
their di↵erences depend only on the dynamic of the network. We chose
the Modularity optimization approach because it is the most widespread,
although a similar work could be done with SBM or Matrix factorization
[22] based approaches, for instance.

• They represent well the variety of approaches used to tackle the dynamic
aspect

• Their source code is available, or implementing them faithfully is not too
di�cult.

• They are scalable enough. We had for instance to discard popular methods
such as DYNMOGA [9], Estrangement Confinement [17] and FacetNet
[23], whose complexity is not compatible with having hundreds of steps of
evolution.

The algorithms compared in this paper are the following:
No-Smoothing: The approach we will use as a reference consists in apply-

ing a static algorithm on the snapshot at each step, and then matching the most
similar communities in consecutive steps, based on the Jaccard Coe�cient. We
use the Louvain method [4] at each step, and the matching process, common to
several approaches, is described in section 4.1.1.

Implicit-Global This method introduced in [1] uses a form of implicit
smoothing [29]: at each step, the Louvain algorithm is run, but instead of start-
ing it with each node in its own community, the previous partition is used as
seed.

DYNAMO [36] is a recent method updating at each evolution step the
community structure according to changes in the graph, based on a set of local
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(a) No-Smoothing (b) Label-Smoothing

(c) DYNAMO (d) Transversal-Network

(e) Implicit-Global (f) Smoothed-Graph

Figure 6: Comparison of partitions obtained using all methods on the ad-hoc
scenario, blurred variant. We annotated exampled of typical smoothing prob-
lems: Glitches, Identity loss and Oversimplification
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MEASURING DC QUALITY?

• Evaluation at each step (No smoothness)
‣ Average Mutual Information (similarity at each step)
‣ Average Modularity 

• Evaluation of Smoothness
‣ SM-Partitions: Average Mutual Information between successive partitions

- Label independent, insensitive to glitches, Identity loss
‣ SM-Nodes: Inverse of number of affiliation change

- Sensitive to glitches
‣ SM-Labels: Inverse of Shannon entropy of nodes labels

- Sensitive to Identity Loss
• Longitudinal Score

‣ Modified mutual information of time-node (u,t)
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MEASURING DC QUALITY?

Figure 8: Radar chart of ranks of di↵erent methods for µ = 0.2. Higher
score is better. We observe that the No-Smoothing method obtains among
the best results in instantaneous scores (Q,AMI,ARI), while Smoothed-Graph
and Implicit-Global obtain higher scores in smoothing scores. Label-Smoothing
has the highest score in label smoothness.

while for higher µ, Smoothed-Graph and in some cases Label-Smoothing
obtain the highest scores. This is coherent with the observation that
static algorithms become unstable when the community structure is not
unambiguously defined, and that smoothing is therefore needed to obtain
stable dynamic communities.

From Fig.8 , we can make the following additional observations: Smoothed-
Graph and Implicit-Global provide the strongest smoothing, but, as a conse-
quence, compared with the reference No-Smoothing method, they have commu-
nities of lower quality in each individual snapshot.

4.4 Scalability evaluation

Another important aspect to consider in comparing methods is their capacity
to handle large networks with many steps of evolution. The complexity of the
No-Smoothing approach, for instance, is simple to estimate. It can be defined
as TOCD + (T � 1)OM , with T the number of steps, OCD the complexity to
run the static community detection algorithm at each step, OM the complexity
of the matching process between consecutive partitions. The first part, which is
the most costly, can be trivially parallelized. The computational complexity is
therefore linearly proportional to the number of steps and depends on the size
of the network at each step and the chosen static algorithm. Other algorithms
have complexities that depend on other factors and are harder to formulate

21

70



TO SUM UP ON DYNAMIC 
GRAPHS



TO SUM UP

• Currently, most practitioners still use the snapshot approaches
‣ No widespread framework
‣ No widespread coding libraries (pathpy, tnetwork, tacoma=>limited usage)
‣ Datasets still relatively limited

• But considered an important topic to work on
‣ Dynamic is everywhere
‣ Dynamic changes many things in many cases


