
RANDOM GRAPHS MODELS



WHY USING RANDOM 
GRAPH MODELS

• Several good reasons:
‣ Study some properties in a “controlled environment” 

- How does property X behaves when increasing property Y ?
‣ Compare an observed network with a randomized version

- Is observed property X “exceptional”, or any similar network with same property Y and Z ?
‣ Explain a given phenomenon

- Such simple mechanism can reproduce property X and Y
‣ Generate synthetic datasets

- Testing an algorithm on 100 variations of the same network



NULL MODELS

• Using Random Graphs as Null models
‣ Assume some properties (X1, X2, …) of your data are given
‣ And that everything else is random

- =>Is what you are observing on property Y unexpected/random/exceptional ?
‣ Principle of a reference point

• Obvious in non-graph data



NULL MODELS
• Total CO2 emissions 2017: 

‣ China: 37 000 Mt, Germany: 796 Mt, France: 338 Mt
- So China emit “more” than Germany and France

• Considering variable population
‣ China: 7.7 — Germany: 9.6 — France: 4.8

- So Germany emit more (per person) than China, and then France

• Considering variable Trade.(consumption-based index)
‣ China: 6.27 — Germany: 10.84 — France: 6.93

- So China is the lowest of the three

• What about countries T°? Cumulated historical emissions? 
Land area? Geopolitical reasons (nuclear…)?



CLASSES OF SYNTHETIC  
NETWORKS

Network Science
Cheatsheet

Made by
Remy Cazabet

� Random graphs

Many elements of this course are inspired by the excellent classes by
Aaron Clauset, than can be found online:

http://tuvalu.santafe.edu/~aaronc/courses/5352/

Synthetic networks usages
Using synthetic networks is essential in network science for several reasons.
In particular, they allow to:

• Study some properties in a controled environment. What happens if
we increase propertyX , while keeping all other properties constant?

• Compare an observed network with a randomized version of it. I ob-
served property X in my data, is it something remarkable, or would I
observe the same thing on a random network similar to my graph?

• Explain a phenomenon. Property X seems exceptional. It can be re-
produced in random networks by simple mechanism Y.

• Generate synthetic datasets, for instance to test the same algorithm
on multiples variations of the same network.

Synthetic networks types
There are three main types of synthetic networks:

• Deterministic models are instances of famous graphs or, more
commonly, repeated regular patters. e.g.,Caveman graph, grids, lat-
tices.

• Generativemodels assign to eachpair of nodes a probability of hav-
ing an edge according to their properties (degree, label, etc.). e.g.,
Erdős Rényi, Con�guration model, etc.

• Mechanistic models create networks by following a set of rules, a
process de�ned by an algorithm. e.g., Preferential attachment, Forest
�re, etc.

Regular lattices
Regular lattices are de�ned as repetition of the same pattern a given (poten-
tially in�nite) number of times. Nodes all have the same degree. The pattern
can be in �, � or more dimensions.
The clustering coe�cient depends on the structure, it can be large if the
structure is made of triangles, for instance. It is the same for all nodes (ex-
cept potentially nodes at the boundaries).
The average distance grows quickly with n, if k ⌧ n

Erdős-Rényi (ER) model
The Erdős-Rényi (ER)model is the simplest random graph model. Assum-
ing that we know the number of nodes and the number of edges, and no
other information, then edges are simply put between randomly chosen pair
of nodes.
ER models can be de�ned in two ways:

• in the G(n,L) formulation, the number of edges of the generated
graph is set to exactlyL, and thusL random pairs of nodes are cho-
sen among the set of all existing node pairs(sharp constraint, micro-
canonical ensemble).

• in the G(n, p) formulation, an edge is added between any set of
node with a probability p.(soft constraint, canonical ensemble).

Properties of both model are similar when the number of edges (de�ned by
L or p) is large.

Random version of observed graph
When one wants to compare a real network with a randomized version of it
(also called a rewired network), the usual way is not to start from the origi-
nal network and to actually rewire it edge by edge, but instead to generate
a new ER random graph keeping the same number of nodes and the same
number of edges (or the same density) as the observed network. Properties
of the observed network can then be compared with the generated net-
work. Note that it does note make sense to compare the properties of any
particular node in both networks, since nodes in the random graph have no
identity. Note that in some applications, there is not need to actually gener-
ate a random graph: one can simply compare properties of the real network
with theoretical properties of the random graph.

Soft ER
In the soft ER, the number of edges is not known in advance. The distribu-
tion of the number of edges in the soft ER are described by the binomial
distributionB(Lmax

, p)
From the known properties of the Binomial distribution, it can be shown that:

• The expected number of edges is hLi = pL
max ,

• The variance of the number of edges is �2 = L
max

p(1 � p)

Binomial distribution

The Binomial distribution B(Nb, pb) is a discrete distribu-
tion which model the number of successes x in a sequence
of Nb independent experiments with success probability pb .
For instance, it models how many times (x) one will ob-
tain a � (success) if they throw a dice Nb times and that
the probability to obtain a � is 1

6 . It is de�ned as P (x) =
�Nb

x

�
px(1� pb)N�x .

�N
x

�
is the binomial coe�cient, describ-

ing the number of ways, disregarding order, that x elements
can be chosen among Nb .

ER: Degree distribution
Since each node has an independent probability to be connected with each
other node, the degree distribution of the ER model is modeled as a bino-
mial distribution B(N � 1, p), i.e., the probability to have a given degree
knowing that we have a probability p to have a link with each of the other
nodes in the graph. From the properties of the Binomial distribution, we
know that:

• The expected average degree is hki = p(N � 1)

• The variance of the degree is �2
k
= p(N � 1)(1 � p)

We can note that the distribution becomes increasingly nar-
row as the network size increases, i.e., we are increasingly
con�dent that the degree of a node is in the vicinity of hki:

�k

hki
=

1

(N � 1)1/2

ER: Approximation of degree distribution
by a Poisson Distribution
When the number of nodesN is large and the average degree hki is small,
the degree distribution can be approximated by a Poisson distribution. From
the properties of Poisson distributions, we approximate that for a network
with average degree hki:

• The variance of the degree is �k =
p

hki

Poisson distribution

The Poisson distribution (Delta) is a discrete distribution
modeling the probability of observing exactly x occurrences
of an event in a period of duration�t if this event occurs ran-
domly and that there are in average � occurrences of it dur-
ing a period �t . It is known that the Poisson distribution is a
good approximation of the Binomial approximationwhenNb

is large and pb is small, which is the case for sparse graphs.
working with the Poisson distribution is convenient because
it depends only on a single parameter Delta.

ER: Clustering Coe�cient
The Global Clustering Coe�cient of a network is de�ned as the fraction
of closed triads among all triads. Since any edge (u, v) has a �x probabil-
ity to exist p independently of the existence of any other edge in the net-
work, the probability of having edge (a, c) 2 E for a triad [a, b, c] such as
(a, b), (b, c) 2 E is p.
Thus, the clustering coe�cient of an ER graph is C

g = p . Since we know
that most real networks are sparse, p is small, thus C

g is small. A similar
reasoning can be used to show that the average clustering coe�cient hCi

is small too.



Fundamental network
models



Central quantities in network analysis

• Degree distribution:        P(k)

• Clustering coefficient:     C

• Average path length:      <d>

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large



Regular lattices
• Graphs where each node has the same degree k

COMPLEX NETWORKS

boundary and corner e↵ects. Here we are going to outline the main types of the frequently used
boundary conditions.

Proceed from a simple two dimensional square lattice with linear size L (Figure 3.2.a), the
simplest conventional choice is the free boundary condition, where we do not involve any kind
of link between di↵erent boundaries, but let dangling bonds on the circumference. This case
is suitable to study such problems where free edge boundaries are more realistic, like modeling
local surface e↵ects which arise on the boundaries of di↵erent matters.

a) b) c)

Figure 3.2: Two dimensional square lattice with free boundary condition (a), half periodical boundary
condition (b) and periodical boundary condition (c).

If we link two opposite boundaries of a square lattice, as we connect each last node to the
first node of a given row, it forms a cylinder (Figure 3.2.b). Here parallel with the periodical
condition, the system is homogeneous and the correlation length is maximally L/2. The name
of such a geometry is the half periodical condition. Another cylindrical structure, which is the
easiest to implement, is the helical (also called screw periodical) boundary condition, where the
nodes of the lattice sit on a one dimensional chain and wrapped around the system. Practically
in the end of the chain the very last node connected to the very first node and cause an
inhomogeneity which is only negligible in the limit of infinite size.

The d dimensional lattice which has periodical boundary condition in each d direction covers
a d + 1 dimensional torus (Figure 3.2.c). Here the system is translational invariant in each
directions, and eliminates every boundary e↵ects, however the correlation length is still reduced
by the system size so finite size e↵ects arise in the system.

Another boundary condition which reduces finite size e↵ects, and which does not need any
additional edges is the mean-field boundary condition. Here an additional external field is in-
troduced on the boundaries, which induces the mean bulk conditions on the borders, eliminates
boundary and corner e↵ects.

3.3 Geometrically disordered graphs

A spontaneously evolving network in the real world usually follows rules which are controlled
by random properties. Such self-organized systems exclude regularity and show a fairly di↵erent
structure which finds its origin in special features like dynamical growth or randomness. In the
following section we are going to overview the brief history of random networks and define
general models which belong to this segment.
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COMPLEX NETWORKS

coming from the random matrix theory [93], as ⇢(�) =
P

N

i=1
�(���i)

N
, where �i the ith biggest

eigenvalue of A [94]. This density becomes continuous if N !1 and is related directly to the
topology of the network.

3.2 Geometrically ordered graphs

3.2.1 Regular lattices

Since the atoms of a crystal are arranged in a fix periodical structure, in solid state physics
a special type of graph is used to describe such systems which is called lattice. A lattice is
defined as a symmetry group with translational symmetry in n direction, or in other words, it
is a space ordered graph with translational invariance. It is arranged by unit cells which fill
periodically the d-dimensional space. In theoretical physics many models defined on lattices
(lattice models) are exactly solvable and also easy to simulate using computational methods.

a) b)

Figure 3.1: The triangular lattice (a) and the Kagomé lattice (b) are the most studied regular structure
which can induce geometrical frustration in antiferromagnetic lattice models.

Another usually required main property of a lattice is the regularity. In graph theory a graph
is called regular if its each vertex p 2 V has the same number of neighbors, thus they have the
same degree k. We called k-regular graphs those graphs which contain vertices with degree k
only.

The geometrical properties of a crystal lattice can induce frustration in condensed matters
like in antiferromagnetic systems. The simplest regular lattices which cause such frustration
in two dimension are the triangular lattice and the Kagomé lattice (Figure 3.1), which were
intensively studied from the early 50s [95]. In these lattices a geometrical constrain arises from
the structure of the lattice which does not let the system relax to its ground state and induce
residual entropy at zero temperature. The water ice was the first example which presented such
behaviour, found in 1936 [96], but later other matters showed similar features.

3.2.2 Boundary conditions

Since it is possible to study only finite lattice systems via computer simulations, an important
question arises about the influence of the lattice boundaries. Beyond the finite size e↵ects, on
the margin of a finite lattice, all edges which link to the last nodes are hanging and change
the local free energy. However, by applying special boundary conditions we can eliminate these

31

te
l-0

04
03

92
2,

 v
er

si
on

 1
 - 

14
 J

ul
 2

00
9

1D COMPLEX NETWORKS

d)c)b)a)

Figure 3.4: The evolution of the Strogatz-Watts network. Starting from a regular ring (a), following
the rewiring process (b), it arrives to a random graph structure (c). A alternative definition (d), where
only shortcuts are added to remaining original ring.

where ¯̀= (lnL)/(lnK). In between this two phases there is a crossover regime, where ¯̀ begins
to decrease drastically (Figure 3.5). The reason of this falling is that the additional shortcuts
which appears first at p � 1/NK, decrease suddenly the geodesic distance between opposite
parts of the graph. Many attention have been focused to determine the behavior of ¯̀ in this
range, but it is still not exactly solved. A widely accepted explanation that ¯̀ satisfies a scaling
relation [111]:

¯̀⇠ ⇠g(L/⇠) and g(x) =
⇢

x if x⌧ 1
ln(x) if x� 1

where the correlation length scales as ⇠ ⇠ p�1/d [112]. Using renormalization group treatments
[113] an equivalent scaling form has been found:

¯̀⇠ L

K
f(L/⇠) (3.4)

which di↵ers only by a factor K and where ⇠ = 1/pK. According to the scaling form in Eq.3.4
the graph can pass through the transition controlled by p or L as well, since LKp is equal
to the mean number of shortcuts, which induce the topological change. Finally a mean-field
treatment [114] of the model in one dimension shows approximately that:

f(x) =
1

2
p

x2 + 2x
tanh�1 xp

x2 + 2x
and so ¯̀=

⇠

2K
p

1 + 2⇠/L
tanh�1 1

1 + 2⇠/L
(3.5)

Clustering coe�cient

The clustering coe�cient, which is large at the initial regular graph, is invariant of the system
size L at p = 0 since it depends only on the coordination number z = 2K of the lattice. If
disorder is introduced into the system by rewired edges, it remains close to C(p = 0), as long as
a large fraction of original neighbors keep connected. The probability that three vertices which
were connected at p = 0 still construct a triangle when p > 0 is (1� p)3, since there are three
edges which need to keep intact. It follows that the clustering coe�cient changes as [115]:

C(p) = C(0)(1� p)3 =
3K � 3
4K � 2

(1� p)3 (3.6)
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COMPLEX NETWORKS

boundary and corner e↵ects. Here we are going to outline the main types of the frequently used
boundary conditions.

Proceed from a simple two dimensional square lattice with linear size L (Figure 3.2.a), the
simplest conventional choice is the free boundary condition, where we do not involve any kind
of link between di↵erent boundaries, but let dangling bonds on the circumference. This case
is suitable to study such problems where free edge boundaries are more realistic, like modeling
local surface e↵ects which arise on the boundaries of di↵erent matters.

a) b) c)

Figure 3.2: Two dimensional square lattice with free boundary condition (a), half periodical boundary
condition (b) and periodical boundary condition (c).

If we link two opposite boundaries of a square lattice, as we connect each last node to the
first node of a given row, it forms a cylinder (Figure 3.2.b). Here parallel with the periodical
condition, the system is homogeneous and the correlation length is maximally L/2. The name
of such a geometry is the half periodical condition. Another cylindrical structure, which is the
easiest to implement, is the helical (also called screw periodical) boundary condition, where the
nodes of the lattice sit on a one dimensional chain and wrapped around the system. Practically
in the end of the chain the very last node connected to the very first node and cause an
inhomogeneity which is only negligible in the limit of infinite size.

The d dimensional lattice which has periodical boundary condition in each d direction covers
a d + 1 dimensional torus (Figure 3.2.c). Here the system is translational invariant in each
directions, and eliminates every boundary e↵ects, however the correlation length is still reduced
by the system size so finite size e↵ects arise in the system.

Another boundary condition which reduces finite size e↵ects, and which does not need any
additional edges is the mean-field boundary condition. Here an additional external field is in-
troduced on the boundaries, which induces the mean bulk conditions on the borders, eliminates
boundary and corner e↵ects.

3.3 Geometrically disordered graphs

A spontaneously evolving network in the real world usually follows rules which are controlled
by random properties. Such self-organized systems exclude regularity and show a fairly di↵erent
structure which finds its origin in special features like dynamical growth or randomness. In the
following section we are going to overview the brief history of random networks and define
general models which belong to this segment.
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• Translational symmetry in n directions



Regular lattices
Clustering coefficient

Path length

COMPLEX NETWORKS

d)c)b)a)

Figure 3.4: The evolution of the Strogatz-Watts network. Starting from a regular ring (a), following
the rewiring process (b), it arrives to a random graph structure (c). A alternative definition (d), where
only shortcuts are added to remaining original ring.

where ¯̀= (lnL)/(lnK). In between this two phases there is a crossover regime, where ¯̀ begins
to decrease drastically (Figure 3.5). The reason of this falling is that the additional shortcuts
which appears first at p � 1/NK, decrease suddenly the geodesic distance between opposite
parts of the graph. Many attention have been focused to determine the behavior of ¯̀ in this
range, but it is still not exactly solved. A widely accepted explanation that ¯̀ satisfies a scaling
relation [111]:

¯̀⇠ ⇠g(L/⇠) and g(x) =
⇢

x if x⌧ 1
ln(x) if x� 1

where the correlation length scales as ⇠ ⇠ p�1/d [112]. Using renormalization group treatments
[113] an equivalent scaling form has been found:

¯̀⇠ L

K
f(L/⇠) (3.4)

which di↵ers only by a factor K and where ⇠ = 1/pK. According to the scaling form in Eq.3.4
the graph can pass through the transition controlled by p or L as well, since LKp is equal
to the mean number of shortcuts, which induce the topological change. Finally a mean-field
treatment [114] of the model in one dimension shows approximately that:

f(x) =
1

2
p

x2 + 2x
tanh�1 xp

x2 + 2x
and so ¯̀=

⇠

2K
p

1 + 2⇠/L
tanh�1 1

1 + 2⇠/L
(3.5)

Clustering coe�cient

The clustering coe�cient, which is large at the initial regular graph, is invariant of the system
size L at p = 0 since it depends only on the coordination number z = 2K of the lattice. If
disorder is introduced into the system by rewired edges, it remains close to C(p = 0), as long as
a large fraction of original neighbors keep connected. The probability that three vertices which
were connected at p = 0 still construct a triangle when p > 0 is (1� p)3, since there are three
edges which need to keep intact. It follows that the clustering coe�cient changes as [115]:

C(p) = C(0)(1� p)3 =
3K � 3
4K � 2

(1� p)3 (3.6)
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C=0 C=3/6 C=1
• Clustering coefficient depends on the structure (can be large or not)
• It is constant for each node

• Average path length grows quickly with n 
when k << n

• In a large graph with realistic average 
degrees, will be large 



Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long can be large

Regular lattices



The Erdős-Rényi
Random Graph

model
(ER)



Random Graphs

“If we do not know anything else than the number n of nodes and the number L of 
links, the simplest thing to do is to put the links at random (no correlations)”

Pál Erdős
(1913-1996)

Alfréd Rényi
(1921-1970)

P. Erdős and A. Rényi. On random graphs, I. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61, 1960.



ER Random Graphs
Erdős-Rényi model: simple way to generate random graphs

• The G(n,L) definition
1. Take n disconnected nodes
2. Add L edges uniformly at random

Alternatively:
• pick uniformly randomly a graph 

from the set of all graphs with n 
nodes and L links

• The G(n,p) definition
1. Take n disconnected nodes
2. Add an edge between any of the 

nodes independently with 
probability p

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .

55R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .
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p"N #

pc"N #
→! .
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pendent of the system size. This is usually the case in
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phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph
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does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.
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The first property of random graphs to be studied by
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graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
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Random Graphs
RANDOM NETWORK MODEL 

N and p do not uniquely define the 
network– we can have many different 
realizations of it. How many? 

€ 

P(G(N, p)) = pL (1− p)
N (N −1)
2

−L

N=10  
p=1/6 

The probability to form a particular  graph G(N,p) is That is, each graph G(N,p) 
appears with probability 
 P(G(N,p)). 

Network Science: Random Graphs  2012 

In the G(n,p) variant, the number of edges
may vary

n=10
p=1/6



ER Random GraphsRANDOM NETWORK MODEL 

p=1/6 
 N=12 
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RANDOM NETWORK MODEL 

p=0.03 
 N=100 
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DESCRIBING ER RANDOM 
GRAPHS



Reminder
Binomial distribution:

Discrete probability distribution of the number of successes(x) in a 
sequence of N independent experiments, with success probability p

(n
k) =

n!
k!(n − k)!

Number of ways, disregarding order, that k 
objects can be chosen from among n objects

P(x) = (N
x ) px(1 − p)N−x

Binomial coefficient:

(PMF)



Properties of Binomial distribution

Reminder

PMF

Mean

variance

< x > = pN

σ2 = Np(1 − p)

P(x) = (N
x ) px(1 − p)N−x

Binomial distribution:
Discrete probability distribution of the number of successes(x) in a 
sequence of N independent experiments, with success probability p



Degree distribution - Random Graphs

Slide from CCNR course, A. L. Barabási (2012)

DEGREE DISTRIBUTION OF A RANDOM GRAPH 

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>. 

Select k  
nodes from N-1 probability of  

having k edges 

probability of  
missing N-1-k 
edges € 

P(k) =
N −1
k

# 

$ 
% 

& 

' 
( pk (1− p)(N −1)−k

€ 

< k >= p(N −1)

€ 

σk
2 = p(1− p)(N −1)

€ 

σk

< k >
=
1− p
p

1
(N −1)

$ 

% 
& 

' 

( 
) 

1/ 2

≈
1

(N −1)1/ 2
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For each node, 
independent probabilities to take each neighbor

=> Binomial distribution of degrees

P(k) = (n − 1
k ) pk(1 − p)(n−1)−k

P(k): probability to have exactly k links among n-1 (total # 
of other nodes), with p the probability to have an edge

< k > = p(n − 1)
σ2

k = p(n − 1)(1 − p)

Characteristics:

• G(n,p)



Degree distribution - Random Graphs

For large n and small k (p,L), we can approximate the degree distribution
using a poisson distribution of parameter (mean)  λ = < k >

P(K) =
λKe−λ

K!
Poisson distribution

Distribution of degrees P(k) =
< k >k e−<k>

k!

standard deviation σ = < k >



Degree distribution - Random Graphs

standard deviation σ = < k >

σ
< k >

=
< k >

< k >

High confidence to have degrees close to 
average degrees as degrees increase



Slide from CCNR course, A. L. Barabási (2012)

DEGREE DISTRIBUTION OF A RANDOM GRAPH 
P

(k
) 

  k 

€ 

P(k) = e−<k> < k >k

k!

Network Science: Random Graphs  2012 

Degree distribution - Random Graphs



Slide from CCNR course, A. L. Barabási (2012)

Degree distribution - Random Graphs

Conclusion: degree distribution is not
-Heterogeneous

-Long tail 
-Scale free



Clustering - Random Graphs

Since edges are independent and have the same probability p,  

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small. 
  
For fixed degree C decreases with the system size N. 

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT 

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010 

This is valid for random 
networks only, with 

arbitrary degree 
distribution 

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p
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where ni is the number of links between the neighbours of node i

• Edges are independent and have the same probability p

Since edges are independent and have the same probability p,  

C ≅ p = < k >
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ki (ki −1)
2

The clustering coefficient of random graphs is small. 
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ki (ki −1)

CLUSTERING COEFFICIENT 
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N
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arbitrary degree 
distribution 

< k2 >=< k > (1+ < k >)
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N
< k >= p
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Since edges are independent and have the same probability p,  
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N
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n-1

Ci= 2<k>
n-1

ki (ki-1)
2

1
ki (ki-1) = <k>

n-1

➡ Low clustering coefficient 
➡ It is vanishing with the system size

• For fixed average degree C is decreasing as N goes large

Local clustering of a node

= p

Reminder, clustering coefficient

# possible links
btw neighbors



Clustering - ER Random Networks
• Small clustering coefficient

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17
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Distance - ER Random Graphs - Intuition

Slide from CCNR course, A. L. Barabási (2012)

DISTANCES IN RANDOM GRAPHS 

Random graphs tend to have a tree-like topology with almost constant node degrees. 

•  nr. of first neighbors: 

•  nr. of second neighbors: 

• nr. of neighbours at distance d:  

•  estimate maximum distance: 

€ 

d =
logN
log k

€ 

N =1+ k + k 2
+ ...+ k d

=
k d +1 −1
k −1

≈ k d

kN1≅
2

2 kN≅

€ 

Nd ≅ k d
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n = < k >d ⇒ log<k> n = d ⇒ d =
log n

log < k >

N(u)1 = < k >

N(u)2 = < k >2

N(u)d = < k >d

low clustering coefficient=>

Intuition: At which distance are all nodes reached?

Diameter, avg.  distance in 𝒪(log n)



Distance - ER Random Graphs

• Logarithmically short distance

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.
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WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
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d =
log n

log⟨k⟩



Phase transition in connected components
Components in ER networks

I When hki is small, the ER
network consist of several
disjoint components.

I Because Ci = p << 1, the
components are tree-like.

I For hki large enough, a
giant connected

component (GCC) appears
I GCC occupies a finite

fraction of nodes even as
n ! 1.

I The transition from a
fragmented to a connected
phase is called a
percolation transition.

hki
0.5

0.75

1.0

1.25

1.5

<k> 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes   "     NETWORK.  

How does this transition happen?  Network Science: Random Graphs  2012 

• Network structure goes through a transition

• Question: How and when does this transition 
happen



Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-
blob/

https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/


ER Random Network - catch up

It is not capturing the properties of any real system
BUT 

it serves as a reference system for any other network model

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small



Configuration
model

More details at [http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf]

http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf


Random graphs with specified degrees
Problem

• The ER Random Graph model has a Poisson degree distribution

• Most real-world networks have heavy-tailed degree distributions

• We need to generate networks having pre-determined degrees or degree 
distribution, but maximally random otherwise

• The observed properties (clustering coefficient, etc.) might be due only to the 
difference in degree distribution



Configuration model

Random graphs with specified degrees

• Defined as              where                 is a degree sequence on n nodes, with ki 
being the degree of node i

G(n, ⃗k) ⃗k = {ki}

∑
i

ki mod 2 = 0

(even degree sum) i.e. each edge has to have ending nodes

• The degree sequence                 can be sampled from a probability distribution

• Delta/Dirac function =>  Random regular graph

• Poisson => Similar to ER for proper parameters

• Scale-free =>  Power-law random graph

• Only global condition to satisfy is:

⃗k = {ki}

Based on an observed network

Ad hoc degree distribution



Configuration model

Random graphs with specified degrees

• The model can preserve the expected degree sequence, or the exact degree sequence

• Chung-lu (appoximate)

• Molloy-reed (Exact)

How much of some observed pattern is driven by the degrees alone? 

Exact or approximate degree distribution



Chung-Lu model for configuration networks = Approximate degree 
distribution

Random graphs with specified degrees

• Probabilistic model which produce a network with degrees approximating (on 
average) the original degree

• It is a “coin-flipping” process as ER model but the probability that two nodes i 
and j are connected depends on the degree ki and kj of the ending nodes

• From the point of view of node i with degree ki, the probability that one of its 
edges will connect to j with kj:

kj /2m

pij =
kikj

2m

• This can happen via ki links, thus the probability that they are connected:

• Chung-Lu model takes each pairs of nodes and connects them with this probability

Network Analysis and Modeling, CSCI 5352
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2017

1.2.1 Simple graphs from flipping coins

The central mathematical property of all random-graph models is the probability that two vertices
i and j are connected. In the random graph models we consider here, this probability depends
only on the degrees ki and kj of that pair. Thus, from the perspective of i, the probability that
one of its edges connects to j is equal to the fraction of the m total edges we choose that point to
j. Because we have chosen j’s degree, this fraction is exactly kj/2m. And, because we have also
chosen i’s degree, this event has ki chances to occur and the probability that (i, j) exists is

pij = ki

✓
kj

2m

◆
=

kikjPn
`=1 k`

. (1)

The Chung-Lu model takes this probability as a parameter and simply flips a single coin for each
of the pairs i, j to generate a simple graph:

8i>j Aij = Aji =

⇢
1 with probability pij

0 otherwise
,

where pij is given by Eq. (1). Just as with generating Erdős-Rényi graphs, each pair is considered
only once; hence, this process produces a simple graph, with no self-loops and no multi-edges. (In
contrast, the Molloy-Reed model produces a random multigraph, which may have multi-edges and
self-loops.) This method can also be used to generate directed networks by first specifying the
in-degree and out-degree sequences, subject to the requirement that

P
i k

in
i =

P
j k

out
j . We then

choose pi!j = k
out
i k

in
j /m and drop the requirement that Aij = Aji.

As a result of this form, the degree of each vertex i under this method of generation equals the
specified value ki only in expectation (and similarly for the in- and out-degrees in the directed
version). The observed degree for node i in the Chung-Lu ensemble is a Poisson distribution with
mean ki (do you see why?). Hence, deviations from the expected value are generally small, when
the graph is sparse and the maximum degree is ⌧

p
n.

Notably, drawing random graphs from the Chung-Lu model is computationally expensive, especially
for large n, as we need to flip ⇥(n2) coins, one for each possible pair of vertices i, j 2 V . This cost
is one reason that the Molloy-Reed model is more commonly used for large empirical studies (but
see Fosdick et al. [2016]).

1.2.2 Multigraphs from random matchings

The standard method for generating a Molloy-Reed random multigraph is to choose a uniformly
random matching on the degree “stubs” (half edges) of the specified degree sequence. Unlike in
the Chung-Lu model described above, which only generates simple graphs by design, this “stub
matching” method will typically produce some number of self-loops and multi-edges. In practice,

3

assuming that:

(/!\ inconsistent probability, it is rather expected

number of edges)

[max(ki)]2 < 2m



Random graphs with specified degrees

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

1.2.1 Simple graphs from flipping coins

The central mathematical property of all random-graph models is the probability that two vertices
i and j are connected. In the random graph models we consider here, this probability depends
only on the degrees ki and kj of that pair. Thus, from the perspective of i, the probability that
one of its edges connects to j is equal to the fraction of the m total edges we choose that point to
j. Because we have chosen j’s degree, this fraction is exactly kj/2m. And, because we have also
chosen i’s degree, this event has ki chances to occur and the probability that (i, j) exists is

pij = ki

✓
kj

2m

◆
=

kikjPn
`=1 k`

. (1)

The Chung-Lu model takes this probability as a parameter and simply flips a single coin for each
of the pairs i, j to generate a simple graph:

8i>j Aij = Aji =

⇢
1 with probability pij

0 otherwise
,

where pij is given by Eq. (1). Just as with generating Erdős-Rényi graphs, each pair is considered
only once; hence, this process produces a simple graph, with no self-loops and no multi-edges. (In
contrast, the Molloy-Reed model produces a random multigraph, which may have multi-edges and
self-loops.) This method can also be used to generate directed networks by first specifying the
in-degree and out-degree sequences, subject to the requirement that

P
i k

in
i =

P
j k

out
j . We then

choose pi!j = k
out
i k

in
j /m and drop the requirement that Aij = Aji.

As a result of this form, the degree of each vertex i under this method of generation equals the
specified value ki only in expectation (and similarly for the in- and out-degrees in the directed
version). The observed degree for node i in the Chung-Lu ensemble is a Poisson distribution with
mean ki (do you see why?). Hence, deviations from the expected value are generally small, when
the graph is sparse and the maximum degree is ⌧

p
n.

Notably, drawing random graphs from the Chung-Lu model is computationally expensive, especially
for large n, as we need to flip ⇥(n2) coins, one for each possible pair of vertices i, j 2 V . This cost
is one reason that the Molloy-Reed model is more commonly used for large empirical studies (but
see Fosdick et al. [2016]).

1.2.2 Multigraphs from random matchings

The standard method for generating a Molloy-Reed random multigraph is to choose a uniformly
random matching on the degree “stubs” (half edges) of the specified degree sequence. Unlike in
the Chung-Lu model described above, which only generates simple graphs by design, this “stub
matching” method will typically produce some number of self-loops and multi-edges. In practice,

3

where

• Each pairs of nodes are considered once, thus it produces a simple graph 
(without self-loops and multi edges)

• Degree of a node equals only in “expectation” to the originally assigned degree

Complexity:

•  O(n2): We need n(n-1) flips to test all node pairs

EXPENSIVE!

pij =
kikj

2m

Chung-Lu model for configuration networks = Approximate degree 
distribution



Molloy-Reed model for configuration networks = exact degree 
preservation
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Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

Original idea:
1. Given a degree sequence 
2. Assign each node i∈V with ki number of stubs
3. Select random pairs of unmatched stubs and connect them
4. Repeat 3 while there are unmatched stubs
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these deviations from a simple graph represent an asymptotically small fraction of all edges, and
we can “simplify” the network by discarding self-loops and collapsing multi-edges, and potentially
also discarding disconnected components.2

Given a degree sequence ~k = {k1, k2, . . . , kn}, we say that each vertex i has a number of “stubs”
equal to its degree. Every matching on these stubs, in which we repeatedly choose an unmatched
stub on some vertex i and connect it with some unmatched stub on vertex j, represents a network.
Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
result in a triangle. The following figure shows the distinct labelings, and hence distinct matchings,
that form a triangle. In the configuration model, we choose each of these with equal probability.
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However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.

a b ab a b

c

d

c d

e

f e f

d f c e

In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.

4
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Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

• This process will produce a configuration model with exact degree sequence

• Possible to select multiple times stubs of the same pair of nodes

• Possible to select the stubs of the same node to connect

Multilinks

Self-links

The obtained graph is not simple…but the density of multi and self-links ➜ 0  as N ➜ ∞
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Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

An effective algorithm:
1. Take an array      with length 2m and fill it with exactly ki indices of each 

node i∈V

2. Make a random permutation of the array
3. Read the content of the array in an order and in pairs
4. Pairs of consecutive node indices will assign links in the configuration 

network

⃗v

⃗v

Complexity:
• O(m): Random permutation of an array

• O(m log m): assigning uniformly random variables to indices and quick-sort them

CHEAP!

Molloy-Reed model for configuration networks = exact degree 
preservation

More details at [http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf]

http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf


Configuration model - mathematical properties
Expected clustering coefficient

It is the average probability that two neighbours of a vertex are connected

• Start at some vertex v (with degree k ≥ 2)

• Choose a random pair of its neighbours i and j

• The probability that i and j are themselves connected is kikj/2m 

• But probabilities to encounter some degrees as neighbors depends on their degree: 
more complex than simply counting frequency of degrees (friendship paradox)

v

i j

Clustering coefficient
C = . . . =

1
n

[⟨k2⟩ − ⟨k⟩]2

⟨k⟩3

• It is a vanishing quantity O(1/n) as long as the second moment is finite (not power law)

For details, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L12.pdf

independent of network size



ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient
Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

Configuration 
Model

Custom, can be 
broad short small



Watts-Strogatz
model of

small-world 
networks



Small-world networks

• On of the founding papers of
       Network Science…

D.J. Watts and S. Strogatz,

”Collective dynamics of 'small-world' 
networks”, Nature 393, 440–442, 1998

Contradiction: Real-world networks have

High clustering 
coefficient AND Short 

distances



The Watts-Strogatz model
A model to capture large clustering coefficient and short 
distances observed in real networks
• It interpolates between an ordered finite lattice and a random graph
• Fixed parameters:

• n - system size
• K - initial coordination number

• Variable parameters:
• p - rewiring probability

• Algorithm:
1.Start with a ring lattice with n nodes in which every node is connected to its 

first K neighbours (K/2 on either side).
2.Randomly rewire each edge of the lattice with probability p such that self-

connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered (p=0) to
a completely random (p=1) structure

D.J. Watts and S. Strogatz, Nature (1998)

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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The Watts-Strogatz model
(Global) Clustering coefficient (Definition 2)

• p=0 - regular ring with constant clustering:

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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C =
3(K � 2)

4(K � 1)- 0 ≤ C ≤ 3/4
- Independent of n

• p>0 - we can count triangles and tuples

Global clustering coefficient

C =
1
4NK( 12K � 1)⇥ 3

1
2NK(K � 1) +NK2p+ 1

2NK2p2
=

3(K � 2)

4(K � 1) + 8Kp+ 4Kp2

• Independent of n

• if p→0 it recovers the ring value

• if p→1 , small

For details, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L12.pdf



The Watts-Strogatz model
Average path length (Definition 2)

• No closed form solution

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p

W
at

ts
 &

 S
tr

og
at

z, 
N

at
ur

e 
3

9
3

, 4
40

–4
42

, 1
99

8

Monday, February 1, 2010

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
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• From numerical simulations:

• See
for details 

Newman, M. E. (2000). Models of the small world. Journal of 
Statistical Physics, 101(3-4), 819-841.

Nature © Macmillan Publishers Ltd 1998
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Small-world 
regime

L=avg path length
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Scale-free networks

A network is called Scale-free when its degree distribution 
follows (to some extent) a Power-law distribution

Power-law distribution:

P(k) ∼ Ck−α = C
1
kα  (sometimes ) called the exponent 

of the distribution
α γ

Positive values

Here, defined as continuous (approximation)
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ki!1 outgoing (or incoming) links is less
than NPout(ki!1) (or NPin(ki!1)).

A particularly important quantity in a
search process is the shortest path between
two documents, d, defined as the smallest
number of URL links that must be followed
to navigate from one document to the
other. We find that the average of d over all
pairs of vertices is "d#$0.35!2.06log(N)
(Fig. 1c), indicating that the web forms a
small-world network5,7, which characterizes
social or biological systems. For N$8%108,
"dweb#$18.59; that is, two randomly chosen
documents on the web are on average 19
clicks away from each other.

For a given N, d follows a gaussian distri-
bution so "d# can be interpreted as the diam-
eter of the web, a measure of the shortest
distance between any two points in the sys-
tem. Despite its huge size, our results indi-
cate that the web is a highly connected graph
with an average diameter of only 19 links.
The logarithmic dependence of "d# on N is
important to the future potential of the web:
we find that the expected 1,000% increase in
the size of the web over the next few years
will change "d# very little, from 19 to only 21.

The relatively small value of "d# indicates
that an intelligent agent, who can interpret
the links and follow only the relevant one,
can find the desired information quickly by
navigating the web. But this is not the case
for a robot that locates the information
based on matching strings. We find that
such a robot, aiming to identify a docu-
ment at distance "d#, needs to search
M("d#)&0.53×N 0.92 documents, which,
with N$8%108, leads to M$8%107, or
10% of the whole web. This indicates that
robots cannot benefit from the highly con-
nected nature of the web, their only success-
ful strategy being to index as much of the
web as possible.

The scale-free nature of the link distrib-
utions indicates that collective phenomena
play a previously unsuspected role in the
development of the web8, forcing us to look
beyond the traditional random graph mod-
els3–5,7. A better understanding of the web’s
topology, aided by modelling efforts, is cru-
cial in developing search algorithms or
designing strategies for making information
widely accessible on the World-Wide Web.
Fortunately, the surprisingly small diameter
of the web means that all that information
is just a few clicks away.
Réka Albert, Hawoong Jeong, 
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Department of Physics, University of Notre Dame,
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incoming links, the probability of finding
very popular addresses, to which a large
number of other documents point, is non-
negligible, an indication of the flocking
nature of the web. Furthermore, while the
owner of each web page has complete free-
dom in choosing the number of links on a
document and the addresses to which they
point, the overall system obeys scaling laws
characteristic only of highly interactive self-
organized systems and critical phenomena6.

To investigate the connectivity and the
large-scale topological properties of the
web, we constructed a directed random
graph consisting of N vertices, assigning to
each vertex k outgoing (or incoming) links,
such that k is drawn from the power-law
distribution of Fig. 1a,b. To achieve this, we
randomly selected a vertex i and increased
its outgoing (or incoming) connectivity to
ki!1 if the total number of vertices with

Internet

Diameter of the 
World-Wide Web
Despite its increasing role in communica-
tion, the World-Wide Web remains uncon-
trolled: any individual or institution can
create a website with any number of docu-
ments and links. This unregulated growth
leads to a huge and complex web, which
becomes a large directed graph whose ver-
tices are documents and whose edges are
links (URLs) that point from one docu-
ment to another. The topology of this
graph determines the web’s connectivity
and consequently how effectively we can
locate information on it. But its enormous
size (estimated to be at least 8%108 docu-
ments1) and the continual changing of docu-
ments and links make it impossible to
catalogue all the vertices and edges.

The extent of the challenge in obtaining
a complete topological map of the web is
illustrated by the limitations of the com-
mercial search engines: Northern Light, the
search engine with the largest coverage, is
estimated to index only 38% of the web1.
Although much work has been done to
map and characterize the Internet’s infra-
structure2, little is known about what really
matters in the search for information —
the topology of the web. Here we take a step
towards filling this gap: we have used local
connectivity measurements to construct a
topological model of the World-Wide Web,
which has enabled us to explore and char-
acterize its large-scale properties.

To determine the local connectivity of
the web, we constructed a robot that adds to
its database all URLs found on a document
and recursively follows these to retrieve the
related documents and URLs. We used the
data collected to determine the probabilities
Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively.
We find that both Pout(k) and Pin(k) follow a
power law over several orders of magnitude,
remarkably different not only from the
Poisson distribution predicted by the classi-
cal theory of random graphs3,4, but also
from the bounded distribution found in
models of random networks5.

The power-law tail indicates that the
probability of finding documents with a
large number of links is significant, as the
network connectivity is dominated by
highly connected web pages. Similarly, for
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Figure 1 Distribution of links on the World-Wide Web. a, Outgoing

links (URLs found on an HTML document); b, incoming links (URLs

pointing to a certain HTML document). Data were obtained from

the complete map of the nd.edu domain, which contains 325,729

documents and 1,469,680 links. Dotted lines represent analytical

fits used as input distributions in constructing the topological

model of the web; the tail of the distributions follows P(k)&k'(,

with (out$2.45 and (in$2.1. c, Average of the shortest path

between two documents as a function of system size, as predicted

by the model. To check the validity of our predictions, we deter-

mined d for documents in the domain nd.edu. The measured

"dnd.edu#$11.2 agrees well with the prediction "d3%105#$11.6

obtained from our model. To show that the power-law tail of P(k) is

a universal feature of the web, the inset shows Pout(k) obtained by

starting from whitehouse.gov (squares), yahoo.com (triangles) and

snu.ac.kr (inverted triangles). The slope of the dashed line is

(out$2.45, as obtained from nd.edu in a.

R. Albert, H. Jeong, A-L Barabási, Nature (1999)
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Scale-free networks - other examples
The internet

• Nodes: routers
• Links: Physical wires
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Scale-free networks - other examples
Airline route map network

• Nodes: airports
• Links: airplane connections

Guimera et.al. (2004)

where ! ! 0.9 " 0.1 is the power law exponent, g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ‘‘Are the most connected cities
also the most central?’’ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value, ! ! 1.5 " 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2 b and c). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and São Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. (a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. (a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We define a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we find there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). (b) The 25 most connected cities in the
world. (c) The 25 most central cities in the world.

7796 ! www.pnas.org"cgi"doi"10.1073"pnas.0407994102 Guimerà et al.

Note: the cumulative distribution of a 
power law is also a line on a log-log plot 



Scale-free networks - other examples
Sexual-interaction networks

• Nodes: individuals
• Links: sexual incursion

Liljeros et.al. (2001)

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the

brief communications
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The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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Scale-free networks - other examples
Scientific collaborations

• Nodes: scientists (here geo-localised)
• Links: common papers

Newman (2001)

how small it is. The hundreds strong megacollaborations of
CERN and Fermilab are sufficiently diluted by theoretical
and smaller experimental groups that the number is only 9,
and not 100.!
Distributions of numbers of authors per paper are shown

in Fig. 2, and appear to have power-law tails with widely
varying exponents of !6.2(3) "Medline!, !3.34(5) "Los
Alamos Archive!, !4.6(1) "NCSTRL!, and !2.18(7)
"SPIRES!. The SPIRES data, which are again shown in a
separate inset, also display a pronounced peak in the distri-
bution around 200–500 authors. This peak presumably cor-
responds to the large experimental collaborations that domi-
nate the upper end of this histogram.
The largest number of authors on a single paper was 1681

"in high-energy physics, of course!.

D. Numbers of collaborators per author

The differences between the various disciplines repre-
sented in the databases are emphasized still more by the
numbers of collaborators that a scientist has, the total num-
ber of people with whom a scientist wrote papers during the
five year period. The average number of collaborators is
markedly lower in the purely theoretical disciplines (3.87 in
high-energy theory, 3.59 in computer science! than in the
wholly or partly experimental ones (18.1 in biomedicine,
15.1 in astrophysics!. But the SPIRES high-energy physics
database takes the prize once again, with scientists having an
impressive 173 collaborators, on average, over a five year
period. This clearly begs the question whether the high-
energy coauthorship network can be considered an accurate
representation of the high-energy physics community at all;
it seems unlikely that many authors would know 173 col-
leagues well.
The distributions of numbers of collaborators are shown

in Fig. 3. In all cases they appear to have long tails, but only
the SPIRES data "inset! fit a power-law distribution well,
with a low measured exponent of !1.20. Note also the small

peak in the SPIRES data around 700—presumably again a
result of the presence of large collaborations.
For the other three databases, the distributions show some

curvature. This may, as we have previously suggested #50$,
be the signature of an exponential cutoff, produced once
again by the finite time window of the study. Redner #57$ has
suggested an alternative origin for the cutoff using growth
models of networks—see Ref. #10$. Another possibility has
been put forward by Barabási #58$, based on models of the
collaboration process. In one such model #51$, the distribu-
tion of the number of collaborators of an author follows a
power law with slope !2 initially, changing to slope !3 in
the tail, the position of the crossover depending on the length
of time for which the collaboration network has been evolv-
ing. We show slopes !2 and !3 as dotted lines on the
figure, and the agreement with the curvature seen in the data
is moderately good, particularly for the Medline data. "For
the Los Alamos and NCSTRL databases, the slope in the tail
seems to be somewhat steeper than !3.!

E. Size of the giant component

In the theory of random graphs #24,59–61$ it is known
that there is a continuous phase transition with increasing
density of edges in a graph at which a ‘‘giant component’’
forms, i.e., a connected subset of vertices whose size scales
extensively. Well above this transition, in the region where
the giant component exists, the giant component fills a large
portion of the graph, and all other components "i.e., con-
nected subsets of vertices! are small, with average size inde-
pendent of the number n of vertices in the graph. We see a
situation reminiscent of this in all of the graphs studied here:
a single large component of connected vertices that fills the
majority of the volume of the graph, and a number of much
smaller components filling the rest. In Table I we show the
size of the giant component for each of our databases, both
as total number of vertices and as a fraction of system size.

FIG. 2. Histograms of the number of authors on papers in Med-
line, the Los Alamos Archive, and NCSTRL. The dotted lines are
the best fit power-law forms. Inset: the equivalent histogram for the
SPIRES database, showing a clear peak in the 200 to 500 author
range.

FIG. 3. Histograms of the number of collaborators of authors in
Medline, the Los Alamos Archive, and NCSTRL. The dotted lines
show how power-law distributions with exponents !2 and !3
would look on the same axes. Inset: the equivalent histogram for the
SPIRES database, which is well fitted by a single power law "dotted
line!.
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Scale-free networks - other examples
Online social networks

• Nodes: individuals
• Links: online interactions

Social network of Steam
http://85.25.226.110/mapper

http://85.25.226.110/mapper


Scale-free distribution

AL. Barabási, Linked (2002)

What does it mean?

Degree fluctuations have no characteristic scale (scale invariant)

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks



Scale-free networks

THE SCALE-FREE PROPERTY INTRODUCTION4

A visualization of the web sample that led to 
the discovery of the scale-free property. The 
sequence of images shows an increasingly 
magnified local region of the network. The 
first panel displays all 325,725 nodes, offer-
ing a global view of the full dataset. Nodes 
with more than 50 links are shown in red and 
nodes with more than 500 links in purple. The 
increasingly magnified closeups reveal the 
presence of a few highly connected nodes, 
called hubs, that accompany scale-free net-
works (Image by M. Martino).

Figure 4.1
The topology of the WWW

In contrast in Fig. 4.1 numerous small-degree nodes coexist with a few 
hubs, nodes with an exceptionally large number of links. The purpose of 
this chapter is to show that these hubs are not unique to the Web, but we 
encounter them in many real networks. They represent a signature of a 
deeper organizing principle that we call the scale-free property.

AL Barabási, Network Science Book (2013)

Idea of scale free



Scale-free distribution

Proper definition 

P(k) =
α − 1
kmin ( k

kmin )
−α

C =
1

∫ ∞
kmin

k−αdk
= (α − 1)kα−1

minP(k) ∼ Ck−α

P(k) = (α − 1)kα−1
min k−α

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the

brief communications

NATURE | VOL 411 | 21 JUNE 2001 | www.nature.com 907

The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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Scale-free networks

Power law plotted with a linear scale, for k<=10
(100 000 samples)



Scale-free networks

Power law plotted with a linear scale, for k<100000
(100 000 samples)



Scale-free networks

Power law plotted with a log-log scale, for k<100000
(100 000 samples)



Scale-free networks

Comparing a poisson distribution and a power law
λke−λ

k!



Scale-free networks

Comparing a poisson distribution and a power law
λke−λ

k!



Scale-free networks

Comparing a poisson distribution and a power law

The “long tail”

λke−λ

k!



Scale-free networks
Comparing an exponential distribution and a power law

{λe−λk k ≥ 0,
0 k < 0.



Scale-free distribution

Moments 

Distribution: 

Moments: 

With: 

⟨km⟩ = ∫
∞

kmin

kmp(k)dk

⟨k1⟩ Average
⟨k2⟩ Variance (converge like)
⟨k3⟩ Skewness (converge like)
…

P(k) = (α − 1)kα−1
min k−α



Scale-free distribution

Moments 

Distribution: 

⟨km⟩ = ∫
∞

kmin

kmp(k)dk

⟨km⟩ = (α − 1)kα−1
min ∫

∞

kmin

k−α+mdk

⟨km⟩ = km
min ( α − 1

α − 1 − m )Defined for ,
Otherwise diverge (+inf)

α > m + 1

P(k) = (α − 1)kα−1
min k−α

http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001_2011_L2.pdf

Common Derivatives and Integrals 

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins 

Integrals 
Basic Properties/Formulas/Rules 
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Moments: 



Scale-free distribution

Moments 

⟨km⟩ = km
min ( α − 1

α − 1 − m ) Defined for ,
Otherwise diverge (+inf)

α > m + 1

=> Mean: ⟨k⟩ =
α − 1
α − 2

kmin (But diverges for )α ≤ 2

⟨k2⟩ =
α − 1
α − 3

k2
min (But diverges for )α ≤ 3

Moments: 



Scale-free distribution

Moments 

What does divergence means in practice ?

We can always compute the mean and variance, given samples of a 
distribution (e.g., an observe degree distribution)

=>The value computed depends on the size of the sample, it is not a 
characteristic of the distribution.

Moments are dominated by elements in the long tail. Some events are 
rare, but they have so large values, that if observed, they are strong 
enough to modify substantially the corresponding moment. And they 
appear frequently enough so that the mean will continue to shift when 
increasing the sample size



Scale-free distribution

Moments 
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Figure 2: The sample mean and variance for power-law distributions with α = {1.7, 2.05, 3.01}, for
a wide range of sample sizes n. For each value of n, the mean and variance estimates are for the
same set of synthetic observations. See Section 2 for Matlab code for these figures.

1.3 Scale invariance

Another interesting property of power-law distributions is “scale invariance.” If we compare the
densities at p(x) and at some p(c x), where c is some constant, they’re always proportional. That is,
p(c x) ∝ p(x). This behavior shows that the relative likelihood between small and large events is the
same, no matter what choice of “small” we make. That is, the density “scales.” Mathematically:

p(c x) = (α− 1)xα−1
min (c x)

−α

= c−α
[

(α− 1)xα−1
min x

−α
]

∝ p(x) .

Further, it can be shown6 that a power law form is the only function that has this property.

Here’s another way of seeing this behavior. If we take the logarithm of both sides of Eq. (1), we
get an expression for ln p(x) that’s linear in lnx. That is,

ln p(x) = ln
[

(α− 1)xα−1
min (x)

−α
]

= lnC − α lnx .

That is, rescaling x → c x simply shifts the power law up or down on a logarithmic scale. This
shows another of the more well-known properties of a power-law distribution: it’s a straight line on a
log-log plot. This is in contrast to the strongly curved behavior of, say, an exponential distribution,
as in Fig. 1.

6An exercise left to the reader.

4

Mean diverge
α < 2 Mean well defined, 

Variance diverge

2 < α < 3
Mean and variance 

defined

α > 3

=> Even when well defined, moments converge very slowly

More details at [http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf]

http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf


Computing the exponent of an observed network

[Fitting to the Power-Law Distribution, Goldstein et al.] 
https://arxiv.org/vc/cond-mat/papers/0402/0402322v1.pdf

Method 1: find the slope of the line of the log-log plot 

Problem: most of data is on first values, so we overfit based on a
few values in the long tail

Better approach
Maximum Likelihood Estimation (MLE)

Find the parameters of the distribution maximizing 
the probability to generate observations



Albert, R. et.al. Rev. Mod. Phy. (2002)

• Average values are not reliable since 
the convergence is very slow

• Furthermore, average values are 
meaningless since the fluctuations are 
infinitely large (diverging variance)

1). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size !k" # $out $ in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4!107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2!108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53!106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).

51R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Exponent

Scale-free networks

Exponents of real-world networks are usually between 2 and 3



Scale-free networks
Why do most of the real networks have 
degree exponent between 2 and 3?

• If the exponent is smaller than 2, the distribution is so skewed that we expect to 
find nodes with a degree larger than the size of the network => not possible in finite 
networks



Scale-free networks
Why do most of the real networks have 
degree exponent between 2 and 3?

• To detect a scale-free network its degree distribution needs to span through several 
(at least 2-3) orders of magnitude ⇒ Kmax~103 

• If the exponent is large (>3), large degrees become so rare that the size of the 
sample (i.e., size of observed network) must be enormous to indeed observe such 
a node

• Example: let’s choose γ=5,  Kmin=1  and  Kmax~103

€ 

Kmax = KminN
1
γ −1

In order to document a scale-free networks, we need 2-3 orders of magnitude scaling. 
That is, Kmax~ 103 
 

However, that constrains on the system size we require to document it.  
For example, to measure an exponent γ=5,we need to maximum degree a system size of 
the order of 

€ 

N =
Kmax

Kmin

" 

# 
$ 

% 

& 
' 

γ −1

≈1012

Onella et al. PNAS 2007 

N=4.6x106 

γ=8.4 

 

Mobile Call 
Network 

Why don’t we see networks with exponents in the range of γ=4,5,6,  etc?  

Network Science: Scale-Free Property 2012 

We need to observe  nodes to observe a 
node of degree 1000 for exponent=5
=> Forget about (single planet) social networks…

1012



Scale-free networks
• Are real networks really Scale Free ? 
• In most real networks, the scale free stands only for a range of degrees, i.e., 

between a minimum degree and maximum degree different than those observed 
(cut-offs)

• Some other distributions, in particular log-normal distributions, might “look like” 
power-law

Aaron ClausetAlbert-László Barabási
Emergence of scaling in random networks (1999)

Scale-free networks are rare (2018)
Love is All You Need -  Clauset's fruitless search for scale-free networks (2018)

Rare and everywhere: Perspectives on scale-free networks (2019)

Petter Holme



Scale-free networks

Comparing a log-normal distribution and a power law
1

kσ 2π
exp − (ln k − μ)2

2σ2 k−α

Log-normal distribution = Probability distribution of a random variable whose logarithm is normally distributed

μ
σMean, std of the log of the variable

Small σ

large σ



Scale-free networks



Scale-free networks

Aaron Clauset Albert-László Barabási

-Power law is a good, simple model of 
degree distributions of a class of networks 

-20 years of fruitful research based on this 
model

-Rigorous statistical tests show 
that observed degree distributions are 

not compatible with a power law 
distribution (high p-values)

-Networks are real objects, not 
mathematical abstraction, 

therefore they are sensible to 
noise (real life limits…)

-Compared with different 
distributions, in particular log-normal, 
most degree distributions are more 
likely to be generated by something 

else than power laws

A whole scientific article dedicated to the controversy: 
Jacomy, M. (2020). Epistemic clashes in network science: Mapping the tensions 
between idiographic and nomothetic subcultures. Big Data & Society, 7(2), 
2053951720949577.



The Barabási-Albert 
model 

of scale-free 
networks



Emergence of hubs
What did we miss with the earlier network models?

1. Networks are evolving
• Networks are not static but growing in time as new 

nodes are entering the system

AL Barabási, Network Science Book (2013)

• Pólya urn model (1923)
• Yule process (1925)
• Zipf’s law (1941)
• Cumulative advantage (1968)
• Preferential attachement (1999)
• Pareto’s law - 80/20 rule
• The rich get richer phenomena
• etc.

2. Preferential attachement
• Nodes are not connected randomly but 

tends to link to more attractive nodes



The Barabási-Albert model

1. Start with m0 connected nodes

2. At each timestep we add a new node with 
m (≤ m0) links that connect the new node to 
m  nodes already in the network.

3. The probability π(k) that one of the links of 
the new node connects to node i depends 
on the degree ki of node i as

THE BARABÁSI-ALBERT
MODEL

SECTION 5.2

The recognition that growth and preferential attachment coexist in 
real networks has lead to the introduction of a minimal model capable of 
generating networks with power-law degree distribution [1]. The model is 
defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, 
as long as each node has at least one link. The network develops following 
two steps Fig. 5.3:

(A) GROWTH

At each timestep we add a new node with m (≤ m0) links that connect 
the new node to m nodes already in the network.

(B)  PREFERENTIAL ATTACHMENT

The probability ʌ(k) that one of the links of the new node connects to 
node i depends on the degree ki of node i as

Preferential attachment is a probabilistic rule: a new node is free to 
connect to any node in the network, whether it is a hub or has a single 
link. Eq. 5.1 implies, however, that if a new node has a choice between a de-
gree-two and a degree-four node, it is twice as likely that it connects to 
the degree-four node. The model defined by steps (A) and (B) is called the 
Barabási-Albert model after the authors of the paper that introduced it in 
1999 [1]. One may also encounter it in the literature as the BA model or the 
scale-free model. After t timesteps the Barabási-Albert model generates a 
network with N = t + m0 nodes and m0 + mt links.  As Fig. 5.4 shows, the net-
work generated by the model has a power-law degree distribution, a with a 
degree exponent ਠ=3. 

As Fig. 5.3 indicates, while most nodes in the network have only a few 
links, a few gradually turn into hubs. The hubs are the result of a rich-gets-

THE BARABÁSI-ALBERT MODEL 8

Figure 5.3 
Time evolution of the Barabási-Albert model

The sequence of images shows the gradual 
emergence of a few highly connected nodes, 
or hubs, through growth and preferential at-
tachment. White circles mark the newly add-
ed node to the network, which decides where 
to connect its two links (m=2) through prefer-
ential attachment Eq. 5.1. After [9].

(5.1)
k k

k
( ) .i

i

j
j∑

Π =

⇧(ki) =
kiP
j kj

• The emerging network will be scale-free with 
degree exponent γ=3 independently from the 
choice of m0 and m

The degree distribution of a network gen-
erated by the Barabási-Albert model. The 
plot shows pk for a single network of size 
N=100,000 and m=3. It shows both the lin-
early-binned (red symbols) as well as the 
log-binned version (green symbols) of pk. The 
straight line is added to guide the eye and has 
slope ਠ=3, corresponding to the resulting net-
work’s degree distribution.

Figure 5.4
The degree distribution

richer phenomenon: due to preferential attachment new nodes are more 
likely to connect to the more connected nodes than to the smaller degree 
nodes. Hence, the more connected nodes will acquire links at the expense 
of the less connected nodes, eventually turning into hubs.

In summary, the Barabási-Albert model indicates that two simple 
mechanisms, growth and preferential attachment, are responsible for the 
emergence of networks with a power-law degree distribution. The origin 
of the power law and the associated hubs is a rich-gets-richer phenomena 
induced by the coexistence of these two ingredients. Yet, to understand the 
model’s behavior and to quantify the emergence of the scale-free proper-
ty, we need to describe the model’s mathematical properties, which is the 
subject of the next section.

9THE BARABÁSI-ALBERT MODEL THE BARABÁSI-ALBERT MODEL

AL Barabási, Network Science Book (2013)



ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

WS small-world 
networks exponential short large

BA scale-free 
networks power-law short Rather small
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Other scale-free models
The vertex-copying model

• Motivation:
• Citations network or WWW where links 

are often copied

• Local explanation to preferential 
attachement

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p

other scale-free network models: 
vertex copying

Tuesday, November 6, 12

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p

other scale-free network models: 
vertex copying

Tuesday, November 6, 12

• Asymptotically scale-free with 
exponent γ≥3



Other scale-free models
The Holme-Kim model

• Motivation: more realistic 
clustering coefficient

other scale-free network models: 
Holme-Kim

• the Holme-Kim Model
– motivation: to get realistic

clustering

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

probability p probability 1-p

1. preferential attachment

2A. connect to
neighbour
(implicit preferential 
attachment)

2B. preferential
attachment

for large N, ie clustering more 
realistic! This type of clustering is found
in many real-world networks.

Tuesday, November 6, 12

other scale-free network models: 
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• the Holme-Kim Model
– motivation: to get realistic
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their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

probability p probability 1-p

1. preferential attachment

2A. connect to
neighbour
(implicit preferential 
attachment)

2B. preferential
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for large N, ie clustering more 
realistic! This type of clustering is found
in many real-world networks.
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ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient
Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

WS small-world 
networks exponential short large

BA scale-free 
networks power-law short Rather small

Other models power-law short Large 



HETEROGENEOUS NODES

• Presented models assume that nodes are interchangeable 
globally

• Other models preserve some node properties
‣ Spatial models: nodes have a fix position in space. Edge probability depends on 

node distance
‣ Block models: nodes belong to a node group (block). Edge probability depends 

on blocks belonging
- More during Community detection class



SPATIAL NETWORK MODELS
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Spatial networks

A network is said spatial if the distance between nodes affect the 
probability of observing edges between them

G
eisel et.al. (2011)

Distance
• Physical distance
• Economical distance
• Social distance
• Difference in professional 

categories
• …
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Spatial networks
Types of spatial networks

• Transportation networks
• Airline networks
• Bus, subway, railway, and commuters 
• Cargo ship networks

• Infrastructure networks
• Road and street networks
• Power grids and water distribution 

networks
• The internet

• Neural networks
• Protein networks
• Mobility networks
• Social networks
• …
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Spatial networks

Network Science

Cheatsheet

Made by
Remy Cazabet

Spatial Networks

De�nition

A spatial network is a network in which �)Nodes are associated to
positions, �) The probability to observe edges between a pair of
nodes depend on their distance.
In most cases, the probability of being connected tends to de-
crease with distance, but this is not a necessary requirement.

Position of nodes - Dimension

The position of each node is described by a vector, i.e., a list of
values. The number of values in the vector is the dimension(d) of
the space in which nodes are located. The most common space
is geographical space: nodes are located by a pair (latitude, lon-
gitude). It is therefore considered a �D space (even though earth
is a sphere). But spatial networks can exist in spaces with more or
less dimensions, as long as the distance between nodes positions
is meaningful.

Examples of �D spaces

• The watts-Strogatz random graph is de�ned on a (circular)
�D space: each node is (initially) connected to its k closest
nodes in this space.

• In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on �D space. The same is true about political opin-
ions, if we consider a Left-Right spectrum.

Examples of �+D spaces

• If we consider altitude, geographical networks are �D
spaces

• If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.,
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to de�ne the distance between nodes, which can
be tricky to de�ne if dimensions are of di�erent natures.

• Methods such as graph embedding assign locations in ar-
bitrary large dimensions to nodes that summarize some of
the network properties (see later class).

Distances

The distance between each pair of nodes can be computed in
di�erent ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

• Euclidean distance, or L2distance is the usual, straight
line distance

• Great-Circle distance is used tomeasure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

• Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

• Manhattan distance, orL1distance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply de�ned as the sum of di�erences in each of
the dimensions.)

• Observed distance can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or tra�c, the time distance between dots might be only
loosely proportional to geographical distance.

Metric Space

In most cases, we can consider that a spatial network is embed-
ded in ametric space, a space associatedwith ametricwith prop-
erties of indiscernibility, symmetry and triangle inequality. However,
this is not always the case, in particular in directed networks, in
which it can be useful to consider di�erent distances for links (a, b)
and (b, a) (asymmetry).

Notation

�uv Metric distance between u and v (Euclidean, Man-
hattan, etc.)

`uv Route distance between u and v, i.e., sum of Metric
distances between nodes on the shortest path be-
tween u and v

s�u Distance strength, cumulative distance from a node
to its neighbors. s�u =

P
v2N(u) �uv . The relation

between ku and s�u can be studied, for instance to
see if larger nodes tend to connect at longer dis-
tance.

Route factor - Accessibility

Route Factor, also called the detour index, measures how e�-

ciently the networks allow to go from a node to another, it is de-
�ned as the ratio between the metric distance and the route dis-
tance:
Q(u, v) RouteFactor, also called thedetour index,measures

how e�ciently the networks allow to go from a node
to another, it is de�ned as the ratio between themet-
ric distance and the route distance:

Q(u, v) =
�uv

`uv

hQ(u)i Node Accessibility: Average route index from a
node to all others:

hQ(u)i =
1

N � 1

X

v

Q(u, v)

hQ(u)i Accessibility: Average route index for thewhole net-
work:

hQi =
1

N(N � 1)

X

u 6=v

Q(u, v)
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Spatial Networks

De�nition

A spatial network is a network in which �)Nodes are associated to
positions, �) The probability to observe edges between a pair of
nodes depend on their distance.
In most cases, the probability of being connected tends to de-
crease with distance, but this is not a necessary requirement.

Position of nodes - Dimension

The position of each node is described by a vector, i.e., a list of
values. The number of values in the vector is the dimension(d) of
the space in which nodes are located. The most common space
is geographical space: nodes are located by a pair (latitude, lon-
gitude). It is therefore considered a �D space (even though earth
is a sphere). But spatial networks can exist in spaces with more or
less dimensions, as long as the distance between nodes positions
is meaningful.

Examples of �D spaces

• The watts-Strogatz random graph is de�ned on a (circular)
�D space: each node is (initially) connected to its k closest
nodes in this space.

• In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on �D space. The same is true about political opin-
ions, if we consider a Left-Right spectrum.

Examples of �+D spaces

• If we consider altitude, geographical networks are �D
spaces

• If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.,
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to de�ne the distance between nodes, which can
be tricky to de�ne if dimensions are of di�erent natures.

• Methods such as graph embedding assign locations in ar-
bitrary large dimensions to nodes that summarize some of
the network properties (see later class).

Distances

The distance between each pair of nodes can be computed in
di�erent ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

• Euclidean distance, or L2distance is the usual, straight
line distance

• Great-Circle distance is used tomeasure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

• Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

• Manhattan distance, orL1distance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply de�ned as the sum of di�erences in each of
the dimensions.)

• Observed distance can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or tra�c, the time distance between dots might be only
loosely proportional to geographical distance.

Metric Space

In most cases, we can consider that a spatial network is embed-
ded in ametric space, a space associatedwith ametricwith prop-
erties of indiscernibility, symmetry and triangle inequality. However,
this is not always the case, in particular in directed networks, in
which it can be useful to consider di�erent distances for links (a, b)
and (b, a) (asymmetry).

Notation

�uv Metric distance between u and v (Euclidean, Man-
hattan, etc.)

`uv Route distance between u and v, i.e., sum of Metric
distances between nodes on the shortest path be-
tween u and v

s�u Distance strength, cumulative distance from a node
to its neighbors. s�u =

P
v2N(u) �uv . The relation

between ku and s�u can be studied, for instance to
see if larger nodes tend to connect at longer dis-
tance.

Route factor - Accessibility

Route Factor, also called the detour index, measures how e�-

ciently the networks allow to go from a node to another, it is de-
�ned as the ratio between the metric distance and the route dis-
tance:
Q(u, v) RouteFactor, also called thedetour index,measures

how e�ciently the networks allow to go from a node
to another, it is de�ned as the ratio between themet-
ric distance and the route distance:

Q(u, v) =
�uv

`uv

hQ(u)i Node Accessibility: Average route index from a
node to all others:

hQ(u)i =
1

N � 1

X

v

Q(u, v)

hQ(u)i Accessibility: Average route index for thewhole net-
work:
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1

N(N � 1)

X

u 6=v

Q(u, v)
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Spatial Networks

De�nition

A spatial network is a network in which �)Nodes are associated to
positions, �) The probability to observe edges between a pair of
nodes depend on their distance.
In most cases, the probability of being connected tends to de-
crease with distance, but this is not a necessary requirement.

Position of nodes - Dimension

The position of each node is described by a vector, i.e., a list of
values. The number of values in the vector is the dimension(d) of
the space in which nodes are located. The most common space
is geographical space: nodes are located by a pair (latitude, lon-
gitude). It is therefore considered a �D space (even though earth
is a sphere). But spatial networks can exist in spaces with more or
less dimensions, as long as the distance between nodes positions
is meaningful.

Examples of �D spaces

• The watts-Strogatz random graph is de�ned on a (circular)
�D space: each node is (initially) connected to its k closest
nodes in this space.

• In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on �D space. The same is true about political opin-
ions, if we consider a Left-Right spectrum.

Examples of �+D spaces

• If we consider altitude, geographical networks are �D
spaces

• If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.,
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to de�ne the distance between nodes, which can
be tricky to de�ne if dimensions are of di�erent natures.

• Methods such as graph embedding assign locations in ar-
bitrary large dimensions to nodes that summarize some of
the network properties (see later class).

Distances

The distance between each pair of nodes can be computed in
di�erent ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

• Euclidean distance, or L2distance is the usual, straight
line distance

• Great-Circle distance is used tomeasure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

• Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

• Manhattan distance, orL1distance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply de�ned as the sum of di�erences in each of
the dimensions.)

• Observed distance can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or tra�c, the time distance between dots might be only
loosely proportional to geographical distance.

Metric Space

In most cases, we can consider that a spatial network is embed-
ded in ametric space, a space associatedwith ametricwith prop-
erties of indiscernibility, symmetry and triangle inequality. However,
this is not always the case, in particular in directed networks, in
which it can be useful to consider di�erent distances for links (a, b)
and (b, a) (asymmetry).

Notation

�uv Metric distance between u and v (Euclidean, Man-
hattan, etc.)

`uv Route distance between u and v, i.e., sum of Metric
distances between nodes on the shortest path be-
tween u and v

s�u Distance strength, cumulative distance from a node
to its neighbors. s�u =

P
v2N(u) �uv . The relation

between ku and s�u can be studied, for instance to
see if larger nodes tend to connect at longer dis-
tance.

Route factor - Accessibility

Route Factor, also called the detour index, measures how e�-

ciently the networks allow to go from a node to another, it is de-
�ned as the ratio between the metric distance and the route dis-
tance:
Q(u, v) RouteFactor, also called thedetour index,measures

how e�ciently the networks allow to go from a node
to another, it is de�ned as the ratio between themet-
ric distance and the route distance:

Q(u, v) =
�uv

`uv

hQ(u)i Node Accessibility: Average route index from a
node to all others:

hQ(u)i =
1

N � 1

X

v

Q(u, v)

hQ(u)i Accessibility: Average route index for thewhole net-
work:

hQi =
1

N(N � 1)

X

u 6=v

Q(u, v)

93



Simple models 
of

spatial networks
94



Random geometric graphs
General definition:

• Take a space and distribute nodes randomly
• Nodes are small spheres with radius r
• Two nodes are connected if their spheres overlap — separated with 

distance smaller than 2r
• Also called: disk-percolation
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Degree distribution — Poisson distribution

Clustering coefficient (d=dimensions)

M. Barthélemy / Physics Reports 499 (2011) 1–101 43

In the context of continuum percolation this quantity is the excluded volume Ve ⌘ p. The average degree is then given by
hki = Np and we can then express R as a function of hki

R = 1p
⇡

 hki
N

�

✓
d + 2
2

◆�1/d

(95)

which shows that for a given average degree hki the nodes (spheres) have to become smaller when more nodes are added.
Similarly to the usual ER random graph, there is a critical average degree above which there is a non empty giant

component. The authors of [186] computed this critical value hkic numerically for different dimensions and proposed the
scaling hkic = 1+bd�� with b = 11.78(5) and � = 1.74(2). This relation also states that in infinite dimensions the random
geometric graph behaves like a ER graph with hkic = 1.

In [189], the authors analytically compute the degree distribution for these random geometric graphs. If we assume
that the points are distributed according to a distribution p(x) and the condition for connecting to nodes i and j located at
positions xi and xj, respectively, is dE(i, j)  R, we can then estimate the degree distribution. If we denote by BR(x) the ball
of radius R centered at x, the probability qR(x) that a given node is located in BR(x) is

qR(x) =
Z

BR(x)
dx0p(x0). (96)

The degree distribution for a node located at x is thus given by the binomial distribution

P(k; x, R) =
✓
N � 1

k

◆
qR(x)k[1 � qR(x)]N�1�k. (97)

In the limit N ! 1 and R ! 0, the degree distribution for a node located at x is Poissonian and reads

P(k; x, ↵) = 1
k!↵

kp(x)ke�↵p(x) (98)

where ↵ = hki/
R
dxp2(x) fixes the scale of the average degree. For example, this expression gives for a uniform density

p(x) = p0 a degree distribution of the form

P(k) ⇠ (↵p0)k

k!kd (99)

which decays very rapidly with k. In contrast, if the density decays slowly from a point as p(r) ⇠ r�� , we then obtain
P(k) ⇠ k�d/� , showing that large density fluctuations can lead to spatial scale-free networks [189].

The average clustering coefficient can also be calculated analytically. The argument [186] is the following. If two vertices
i and j are connected to a vertex k it means that they are both in the excluded volume of k. Now, these vertices i and j are
connected only if j is in the excluded volume of i. Putting all the pieces together, the probability to have two connected
neighbors (ij) of a node k is given by the fraction of the excluded volume of i which lies within the excluded volume of k.
By averaging over all points i in the excluded volume of k we then obtain the average clustering coefficient. We thus have
to compute the volume overlap ⇢d of two spheres, which for spherical symmetry reasons depends only on the distance
between the two spheres. In terms of this function, the clustering coefficient is given by

hCdi = 1
Ve

Z

Ve
⇢d(r)dV . (100)

For d = 1, we have

⇢1(r) = (2R � r)/2R = 1 � r/2R (101)

and we obtain

hC1i = 3/4. (102)

For d = 2, we have to determine the area overlapping in Fig. 40, which gives

⇢2(r) = (✓(r) � sin(✓(r)))/⇡ (103)

with ✓(r) = 2 arccos(r/2R) and leads to

hC2i = 1 � 3
p
3/4⇡ ⇡ 0.58650. (104)

Similarly an expression can be derived in d dimensions [186] which for large d reduces to

hCdi ⇠ 3

r
2

⇡d

✓
3
4

◆ d+1
2

. (105)

Independent of N contrary to random networks

Radiation Law of Spatial Interactions

The Radiation Lawa is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from i to j depends
on P out

i , P in
j , and the sum of all P in

k for�ik < �ik , i.e., other op-
portunities accessible at a shorter distance. More formally:

Rij = kouti
kouti kini

(kouti + sij)(kouti + kini + sij)

With sij =
P

u2V,�iu<�ij

kinu the sum of opportunities at a shorter

distance than the target.

aSimini et al. ����.

Radiation Law of Spatial Interactions

Illustration of the zone sij in which opportunities decrease the
probability of interactions between i and j .

i
j

Sij

Radiation Law VS Gravity Law

The advantage of the radiation law compared with the gravity law
is that two nodes located at the same distance and of similar de-
grees can have di�erent edge probabilities depending on their
surroundings. Intuitively, the expected relation between two small
scale cities at distance l is di�erent if both cities are far from any
other large town, or if a Metropolies lies between them.
On the contrary, the weakness of the Radiation Law comes from
its simplicity: without deterrence function, it is impossible to take
into account non-linear and non-monotonic in�uence of the dis-
tance.

Space-Corrected Community Detection

Community detection applied to spatial networks tends to yield
communities corresponding to a spatial partition of space, even if
there is actually no boundary between those regions. Amethod as
been proposeda to remove the in�uence of space, and thus dis-
cover communities corresponding to non-spatial(social, etc.) ef-
fects, usually hidden behind the in�uence of spatial constraints.
The principle is to use a Modularity-maximization algorithm, in
which the null-model used byModularity (usually, a Con�guration
Model) is replaced by a spatial model (usually, a Gravity Model)

Map of Belgium. Black Line: communities without spatial
correction(geographic partitions). Colors: Space-corrected

partition(linguistic partition).

aExpert et al. ����.

Going further

Spatial Networks: Barthélemy ����
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Soft RGG

Random Geometric Graphs (RGG)

Random Geometric graphs(RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes are distance less than a parameter
r

Propertiesa are: Degree distribution: Poissionan, as ER random

graphs. Clustering coe�cient(in large graphs): C = 3
q

2
⇡d (

3
4

d+1
2 .

It does not depends on the number of nodes, unlike random
graphs, thus is not vanishing with network size for �xed average
degree.

aDall and Christensen ����.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG canmodel an ER randomgraph if f is constant func-
tion, f(�) = p. It can model a classic RGG if f is a threshold func-
tion with:

f(d) =

(
1 �  r

0 � > r

aWaxman ����.

Deterrence function

A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

�. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(�) =
e�↵) or Negative power(f(�) = ��↵), with↵ a parameter.
A typical example of negative power in geographical data
is when the probability of observing an edge decreases as
the square of the distance, i.e., f(�) = 1

�2

�. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the ↵ parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function

When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, ���km, etc., or using
bins of exponentially growing size, e.g., [�,�],[�,�],[�,�],[�,��],[��,��].
More formally, the deterrence function is de�ned as:

f(d) =

P
i,j|�ij=d Aij

P
i,j|�ij=d Mij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, 8i,j ,Mij = d.

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the functions start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the re-
lation between two places (countries, cities, etc.) is proportional to
they power of attraction and to the inverse of their distance. More
formally, the expected strength of interaction Gij between loca-
tions i and j is:

Gij = K
P out
i P in

j

�2
ij

Common examples would be a model of a job market between
cities, with P in

i the number of jobs in city i and P out
i the number

of job seeker in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P out
i P in

j f(�ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

P
i,j|dij=d Aij

P
i,j|dij=d

kikj

2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen ����.
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Random Geometric Graphs (RGG)

Random Geometric graphs (RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes at distance less than a parameter
r

Propertiesa are:
Degree distribution: Poissionan, as ER random graphs.

Clustering coe�cient (in large graphs): C = 3
q

2
⇡d (

3
4 )

d+1
2 . It

does not depends on the number of nodes, unlike randomgraphs,
thus is not vanishing with network size for �xed average degree.

aDall and Christensen ����.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG can model an ER random graph if f is a constant
function, f(�) = p. It can model a classic RGG if f is a threshold
function with:

f(d) =

(
1 �  r

0 � > r

aWaxman ����.

Deterrence function

A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

�. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(�) =
e�↵�) or Negative power (f(�) = ��↵), with ↵ a param-
eter. A typical example of negative power in geographi-
cal data is when the probability of observing an edge de-
creases as the square of the distance, i.e., f(�) = 1

�2

�. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the ↵ parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function

When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, ���km, etc., or using
bins of exponentially growing size, e.g., [�,�],[�,�],[�,�],[�,��],[��,��].
More formally, the deterrence function is de�ned as:

f(�) =

P
i,j|�ij=� Aij

P
i,j|�ij=� Mij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, 8i,j ,Mij = d (with d the network den-
sity).

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the function start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the
relation between two places (countries, cities, etc.) is proportional
to they power of attraction P and to the inverse of their distance.
More formally, the expected strength of interaction Gij between
locations i and j is:

Gij = K
P out
i P in

j

�2
ij

Common examples would be a model of a job market between
cities, with P in

i the number of jobs o�ered in city i and P out
i the

number of job seekers in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P out
i P in

j f(�ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

P
i,j|dij=d Aij

P
i,j|dij=d

kikj

2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen ����.
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Formal description
Origin-destination matrix

• Describe flow of individuals between locations
• Used since decades by geographers
• Definition:

• divide the area of interest into zones (cells) labelled by    i=1…N 
• count the number of individuals going from location i to location j

• directed
• weighted
• Beware:

• strongly depends on the zone 
definition

T(i,j)=
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The gravity law
Number of trips from location i to location j is scaling as

• where                         is the distance between i and j 
•                  is the population size at location I(j) 
•  a parameter chosen or learned from dataσ
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Fig. 33. Distribution of total length of daily trips. The exponential fits gives a slope L0 ' 25 km.
Source: From [157].
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Fig. 34. Ride distance distribution. (a) Plot of the histogram of distances for observed rides. This distribution can be fitted by a negative binomial law
with parameters r = 2.61 and p = 0.0273, corresponding to a mean µ = 9.28 km and standard deviation � = 5.83 km. This distribution is not a broad
law (such as a Levy flight for example), in contrast with previous findings using indirect measures of movements [152,154]. (b) Ride distance propensity.
Propensity of achieving a ride at a given distance with respect to a null-model of randomized rides.
Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).

3.3.3. The gravity law
The origin–destination matrix contains a large amount of information and allows one to test some ideas about the

structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
that the number of trips from location i to location j follows the ‘Gravity’ law

Tij = K
PiPj
d�
ij

(64)

where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as
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Inter-city phone communication (Krings et.al.)
• mobile call communication intensity between Belgian 

cities

Urban Gravity: a Model for Intercity Telecommunication Flows 4

Brussels

AntwerpBruges

Liège

Charleroi

Namur

Ghent

(a) (b)

Figure 2. (a) Illustration of the macroscopic communication network (only the top
30% of the links (having the strongest intensity) are represented). Colors indicate the
intensity of communication between the cities: bright colors indicate a strong intensity.
(b) Intensity distribution of the macroscopic network, self edges are not considered.
The red curve shows the lognormal best fit, with parameters µ = 3.93 and � = 1.03

lognormal intensity distribution is sharply di↵erent from what is typically observed in

social networks but is consistent with observations in other macroscopic networks, such

as the intensity of trade between countries, obtained by aggregating the individual trades

made by agents [21].

Many studies have been made on human-to-human communications but few

analyses are available on how these communications, once aggregated at the city level,

are reliant on the properties of that city. In the following, we model the communication

intensity between cities as a function of the population sizes and of the distance between

them.

First, we analyze how communication flowing into and out of cities, scale with population

size. For doing this, for each of the 571 cities we compare the total incoming (L⇤A) and

outgoing (LA⇤) communication intensities, as defined below, to the population sizes of

these cities.

L⇤A =
X

i /2A,j2A

lij, LA⇤ =
X

i2A,j /2A

lij.

As shown on Figure 3 (a), both incoming and outgoing inter-city communication

intensities scale linearly with city size (LA⇤, L⇤A = kP �
A, � = 0.96, confidence interval:

[0.93 0.99], R2 = 0.87). Also, incoming and outgoing communications are strongly

symmetric (LA⇤ ⇡ L⇤A, 8A), that is, calls in one direction always find a match in the

opposite direction.

Another parameter that influences communication intensity between cities is distance.

Urban Gravity: a Model for Intercity Telecommunication Flows 6

Figure 4. Communication intensity between pairs of cities versus the ratio PAPB

d2
AB

.
The black line shows the gravitational law.

the intensity of communication between any pair of Belgian cities, based on population,

distance and duration of the considered period. Let us finally observe that this gravity

model is consistent with the results presented in [14] that described the probability of

connection between customers based on their distance. One can check that the intensity

of communication between two customers that make a link does not vary much with the

distance between them (see Figure 5), so, the distance decay observed in Figure 3 (b),

does not result from a weaker intensity of communication between customers, but from

a smaller fraction of customers communicating with each other.

The gravity model for inter-city communication intensity is analogous to other models

Figure 5. Average intensity of communication between pairs of nodes, if they make
a link, versus the distance separating them.

of economic and transportation networks, but has to be considered cautiously as it

might be biased by the nature of the data. First of all, Belgium is a small country with

a specific demography and two main language communities. Secondly, we note that our

study relies on the definition of census areas, as defined by the Belgian National Institute
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The gravity law

Number of trips from location i to location j is scaling as

• where                         is the distance between i and j 
•                  is the population size at location i(j)

• In a general form:
• where                         is the deterrence function describing the effect of space
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Fig. 34. Ride distance distribution. (a) Plot of the histogram of distances for observed rides. This distribution can be fitted by a negative binomial law
with parameters r = 2.61 and p = 0.0273, corresponding to a mean µ = 9.28 km and standard deviation � = 5.83 km. This distribution is not a broad
law (such as a Levy flight for example), in contrast with previous findings using indirect measures of movements [152,154]. (b) Ride distance propensity.
Propensity of achieving a ride at a given distance with respect to a null-model of randomized rides.
Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).
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structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
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where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as
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individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).
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Fig. 35. Traffic flow between i and j as a function of the variable PiPj/d2ij . The line has a slope equal to 1.02.
Source: From [161].

the important case in economics of international trade [159,160]. In this case, the volume of trade between two countries is
given in terms of their economical activity and their distance.

More generally the gravity law (see the theoretical discussion in the Section 3.3.3.5) is written in the form

Tij ⇠ PiPjf (d(i, j)) (65)

where the deterrence function f describes the effect of space.
In the next sections, wewill focus on themost recent measures concerning highways [161], commuters [162], cargo ship

movements [104], and phone communications [134]. We then end this chapter with a theoretical discussion on the gravity
law.

3.3.3.1. Worldwide commuters. Balcan et al. [162] recently studied flows of commuters on the global scale. They studied
more than 104 commuting flows worldwide between subpopulations defined by a Voronoi decomposition and found that
the best fit is obtained by a gravity law of the form

Tij = CP↵
i P

�
j e

�dij/ (66)

where C is a proportionality constant, andwhere the exponents are: for d  300 km, (↵, � ) ' (0.46, 0.64),  = 82 km, and
for d > 300 km: (↵, � ) ' (0.35, 0.37), and  not available. We note an asymmetry in the exponent at small scales which
probably reflects the difference between homes and offices, and which does not hold at large scale where homogenization
seems to prevail.

At this granularity level, there is then a dependence of the traffic on populations and distances with specific exponents
andwith exponentially decreasing deterrence function. At a smaller scale, different results for US commuters were obtained
in [163], and as suggested in [162] the observed differencesmight have originated in the different granularities used in these
studies (a problem known as the ‘modifiable areal unit problem’ in geography). Indeed, in [162], the granularity is defined
by a Voronoi decomposition, while in [163], counties are used which are administrative boundaries, not necessarily well
consistent spatially with gravity centers of mobility processes.

3.3.3.2. Korean highways. In [161], Jung et al. studied the traffic on the Korean highway system for the year 2005. The system
consists of 24 routes and 238 exits, and the total length of the system is about 3000 km. The highway network is described by
a symmetrizedweightmatrix Tij, which represents the traffic flow between i and j. The in- and out-traffic are well correlated
with population, as already seen in the worldwide airline network [143], where the population Pi of city i scales with the
strength si as

Pi ⇠ s↵i (67)

with ↵ ⇡ 0.5, while it is close to one in [98,161]. For 30 cities with population larger than 200,000, Jung et al. study the
traffic flow Tij as a function of the population of the two cities Pi and Pj, with the distance dij between i and j, and used the
original formulation of the gravity law

wij ⇠ PiPj
d�
ij

(68)

with � = 2 (see Fig. 35).
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Ad-hoc deterrence function

Agnostic deterrence function
• The influence of distance might be more complex than a power-law or an exponential. In particular, it is 

often non-monotonic (first increasing, then decreasing. Think of airplanes, bicycles, public transports… 
unlikely to use for short distances)

• A deterrence function can be learned from data
• Computed by comparing the number of trips observed at a given distance with the number of trip  

expected if distance has no effect (a configuration model)

Distance d

f(d)
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The gravity law - as a network null model
Usage as a network null model
•Consider a spatial network (e.g., phone calls, trips, etc.)

•Fit a gravity model best explaining the observed network. If the 
population is unknown or not relevant, the degrees of nodes (in/out 
degrees in directed networks) can be used as a “population”

•=>Random model with a given edge probability for each pair of node

•The obtained network is a null model to which the observed network 
can be compared

103



The radiation
law
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The radiation law
Limitations of the gravity law

1.  Requires previous data to fit

2.  The number of travelers between destinations 
depends only on their populations and distances. 
In reality, this value depends probably of other 
opportunities
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The radiation law

Intuition: Model how people move for jobs
1.Individuals look for job in all cities 

2.Each city has a number of job opportunities

• Each job has a value of interest, considered random

3. What is the probability for a job-seeker to choose a job in city c 
located at distance d?

• Depends only on how many jobs offered in cities at a 
distance equal or lower than d (probability to find a better job 
closer)

The model is parameter-free!
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The radiation law

The model can be formulated in terms of radiation and absorption
• take locations i and j with populations (in-degree) mi and nj and at distance rij 

• denote sij the total population in the circle with radius rij centered at i 
(excluding the source and destination population)

• P is the power of attraction, I.e., without other data, the degree.

Radiation Law of Spatial Interactions

The Radiation Lawa is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from i to j depends
on P out

i , P in
j , and the sum of all P in

k for�ik < �ik , i.e., other op-
portunities accessible at a shorter distance. More formally:

Rij = kouti
kouti kini

(kouti + sij)(kouti + kini + sij)

With sij =
P

u2V,�iu<�ij

kinu the sum of opportunities at a shorter

distance than the target.

aSimini et al. ����.

Radiation Law of Spatial Interactions

Illustration of the zone sij in which opportunities decrease the
probability of interactions between i and j .

i
j

Sij

Radiation Law VS Gravity Law

The advantage of the radiation law compared with the gravity law
is that two nodes located at the same distance and of similar de-
grees can have di�erent edge probabilities depending on their
surroundings. Intuitively, the expected relation between two small
scale cities at distance l is di�erent if both cities are far from any
other large town, or if a Metropolies lies between them.
On the contrary, the weakness of the Radiation Law comes from
its simplicity: without deterrence function, it is impossible to take
into account non-linear and non-monotonic in�uence of the dis-
tance.

Space-Corrected Community Detection

Community detection applied to spatial networks tends to yield
communities corresponding to a spatial partition of space, even if
there is actually no boundary between those regions. Amethod as
been proposeda to remove the in�uence of space, and thus dis-
cover communities corresponding to non-spatial(social, etc.) ef-
fects, usually hidden behind the in�uence of spatial constraints.
The principle is to use a Modularity-maximization algorithm, in
which the null-model used byModularity (usually, a Con�guration
Model) is replaced by a spatial model (usually, a Gravity Model)

Map of Belgium. Black Line: communities without spatial
correction(geographic partitions). Colors: Space-corrected

partition(linguistic partition).

aExpert et al. ����.

Going further

Spatial Networks: Barthélemy ����
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Radiation Law of Spatial Interactions

The Radiation Lawa is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from i to j depends
on P out

i , P in
j , and the sum of all P in

k for�ik < �ik , i.e., other op-
portunities accessible at a shorter distance. More formally:

Rij = kouti

P out
i P in

j

(P out
i + sij)(P out

i + P in
j + sij)

With sij =
P

u2V,�iu<�ij

P in
u the sum of opportunities at a shorter

distance than the target.

aSimini et al. ����.

Radiation Law of Spatial Interactions

Illustration of the zone sij in which opportunities decrease the
probability of interactions between i and j .
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Radiation Law VS Gravity Law

The advantage of the radiation law compared with the gravity law
is that two nodes located at the same distance and of similar de-
grees can have di�erent edge probabilities depending on their
surroundings. Intuitively, the expected relation between two small
scale cities at distance l is di�erent if both cities are far from any
other large town, or if a Metropolis lies between them.
On the contrary, the weakness of the Radiation Law comes from
its simplicity: without deterrence function, it is impossible to take
into account non-linear and non-monotonic in�uence of the dis-
tance.

Space-Corrected Community Detection

Community detection applied to spatial networks tends to yield
communities corresponding to a spatial partition of space, even if
there is actually no boundary between those regions. A method
as been proposeda to remove the in�uence of space, and thus
discover communities corresponding to non-spatial (social, etc.)
e�ects, usually hidden behind the in�uence of spatial constraints.
The principle is to use a Modularity-maximization algorithm, in
which the null-model used byModularity (usually, a Con�guration
Model) is replaced by a spatial model (usually, a Gravity Model)

Map of Belgium. Black Line: communities without spatial
correction(geographic partitions). Colors: Space-corrected

partition (linguistic partition).

aExpert et al. ����.

Going further

Spatial Networks: (Barthélemy ����)

References

[�] Marc Barthélemy. “Spatial networks”. In: Physics Reports

���.�-� (����), pp. �–���.

[�] Remy Cazabet, Pierre Borgnat, and Pablo Jensen. “Enhanc-
ing space-aware community detection using degree con-
strained spatial null model”. In: International Workshop on

Complex Networks. Springer. ����, pp. ��–��.

[�] Jesper Dall and Michael Christensen. “Random geometric
graphs”. In: Physical review E ��.� (����), p. ������.

[�] Paul Expert et al. “Uncovering space-independent commu-
nities in spatial networks”. In: Proceedings of the National

Academy of Sciences ���.�� (����), pp. ����–����.

[�] Filippo Simini et al. “A universal model for mobility and mi-
gration patterns”. In: Nature ���.���� (����), pp. ��–���.

[�] Bernard MWaxman. “Routing of multipoint connections”. In:
IEEE journal on selected areas in communications �.� (����),
pp. ����–����.



The radiation law
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Comparison with census data and the 
gravity law predictions
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Simini. et.al, Nature 2010
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Radiation Law VS Gravity Law

+ Radiation:
• No parameters

• Two nodes of same degrees at similar distance can have 
different edge probability based on their location

+ Gravity:
• Customizable deterrence function… The real world is complex !
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End notes

• “All models are wrong, but some are useful”

• ER models, Configuration models, Gravity models are 
used as reference models in a large number of 
applications

• WS, BA models are more “making a point” type models: 
simple processes can explain some non-trivial properties 
of networks, unfound in random networks.

• Correlation is not causation. Are these simple processes 
the “cause” ? Maybe, maybe not, sometimes…


