RANDOM GRAPHS MODELS



WHY USING RANDOM
GRAPH MODELS

» Several good reasons:

» Study some properties In a “controlled environment”
- How does property X behaves when increasing property Y ?
» Compare an observed network with a randomized version
- |s observed property X “exceptional”, or any similar network with same property Y and Z ?
» Explain a given phenomenon
- Such simple mechanism can reproduce property X andY
» (Generate synthetic datasets
- Testing an algorithm on |00 variations of the same network



NULL MODEDS

» Using Random Graphs as Null models

» Assume some properties (X1, X2, ...) of your data are given
» And that everything else is random

- =>|s what you are observing on property Y unexpected/random/exceptional ?
» Principle of a reference point

» Obvious In non-graph data



NULL MODEDS

EERCO ) emissions 201 /:
» China: 37 000 Mt, Germany: /96 Mt, France: 338 Mt

- 5o China emit “more” than Germany and France

» Considering variable population
RS Germany: 9.6 — France: 4.6

- So Germany emit more (per person) than China, and then France

» Considering variable Trade.(consumption-based index)

» China: 6.2/ — Germany: 10.84 — France: 6.93
- So China is the lowest of the three

* What about countries 1°? Cumulated historical emissions!
Land area! Geopolitical reasons (nuclear...)?



BEASSES OF SYN THE RS
NETWORKS

Synthetic networks types

There are three main types of synthetic networks:

- Deterministic models are instances of famous graphs or, more
commonly, repeated regular patters. e.g..Caveman graph, grids, lat-
tices.

- Generative models assign to each pair of nodes a probability of hav-
INg an edge according to their properties (degree, label, etc). e.g.,
Erdos Renyi, Configuration model, etc.

- Mechanistic models create networks by following a set of rules, a
process defined by an algorithm. e.g., Preferential attachment, Forest

fire, etc.




Fundamental network
models



Central quantities in network analysis

e Degree distribution: P(k)
e Clustering coefficient: C

e Average path length: <d>

Degree
distribution

Clustering

Network coefficient

Path length

Real world
networks




Regular lattices

» Graphs where each node has the same degree %

 Translational symmetry in n directions
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Regular lattices

Clustering coefficient

C=0 C=3/6 C=1
- Clustering coefficient depends on the structure (can be large or not)
- It is constant for each node

Path length
 Average path length grows quickly with n
when Kk << n
o * In a large graph with realistic average

degrees, will be large




L

Regular lattices

Degree
distribution

Clustering

Network coefficient

Path length

Real world
networks

Regular lattices constant




The Erdos-Rényi
Random Graph

model
(ER)




Random Graphs

%

Pal Erd6s Alfréd Rényi
(1913-1996) (1921-1970)

“If we do not know anything else than the number n of nodes and the number L of

links, the simplest thing to do is to put the links at random (no correlations)”

P. Erdés and A. Rényi. On random graphs, |. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
P. Erdés and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61, 1960.



ER Random Graphs

Erdos-Rényi model: simple way to generate random graphs

+ The G(n,L) definition * The G(n,p) definition
1. Take 1 disconnected nodes 1. Take n disconnected nodes
2. Add L edges uniformly at random 2. Add an edge between any of the
nodes independently with

Alternatively: probability p

- pick uniformly randomly a graph
from the set of all graphs with n
nodes and L links




Random Graphs

In the G(n,p) variant, the number of edges
may vary

S5




ER Random Graphs

p=1/6
N=12




DESCRIBING ER RANDOM
GRAPHS
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Reminder

Binomial distribution:

Discrete probability distribution of the number of successes(X) in a
sequence of N independent experiments, with success probability p
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Binomial coefficient:

|
Number of ways, disregarding order; that k (n) — -
objects can be chosen from among n objects k kl(n —k)!




I

Reminder

Binomial distribution:

Discrete probability distribution of the number of successes(X) in a
sequence of N independent experiments, with success probability p

Properties of Binomial distribution
N
PMF P(x) = (x>px<1 -

Mean <x>=pN

variance c? = Np(1 — p)



Degree distribution - Random Graphs

* G(n.p)
For each node,
iIndependent probabillities to take each neighbor

=> Binomial distribution of degrees

P(K)

<k>

K
P(k): probability to have exactly k links among n=1 (total #
of other nodes), with p the probability to have an edge

P(k) = (” ) 1) pr(1 = p)or-Dk

Characteristics:

<k>=pn-1)

op = pn—1)(1-p)



Degree distribution - Random Graphs

For large m and small k (p,L), we can approximate the degree distribution
using a poisson distribution of parameter (mean) 4 = < k >

AKe=
Poisson distribution P(K) = -
<k >k —<k>
Distribution of degrees P(k) = k'e

standard deviation o= \/ < k>



Degree distribution - Random Graphs

standard deviation c=1/<k>
o V < k>
<k>  <k>

High confidence to have degrees close to
average degrees as degrees Increase



Degree distribution - Random Graphs
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Degree distribution - Random Graphs

Conclusion: degree distribution is hot
-Heterogeneous
-Long tall
-Scale free




Clustering - Random Graphs

L ocal clustering of a node

Reminder, clustering coefficient

__ where n; is the number of links between the neighbours of node i
\ k(k=1)
. Yy ki (ki —1)
e Fdges are independent and have tth 5
p = <k> # possible links
] btw neighbors
n_

/

_2<k> ki(ki-1) / _ <k> _
-l 2 ki(kel)  n-l P

Ci

e For fixed average degree C is decreasing as N goes large

= | ow clustering coefficient
= |t is vanishing with the system size



Clustering - ER Random Networks

1
- Small clustering coefficient C = N <k>=p
Real-world networks
Network Size (k) / / vand C Crand Reference
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8%10"* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x10"°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3x10~* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 9.5 8.2 059 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solée, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Distance - ER Random Graphs - Intuition

low clustering coefficient=>

Random graphs tend to have a tree-like topology with almost constant node degrees.

e nr. of first neighbors: Nu), =<k>
* nr. of second neighbors: N(u), = < k >?

enr. of neighbours at distance d: N(y), = < k >¢

Inturtion: At which distance are all nodes reached?

log n
log < k >

n=<k>=log_n=d=d=

Diameter, avg. distance in O(log n)



Distance - ER Random Graphs

logn
. . . . d =
Logarithmically short distance log (k)
Real-world networks
Network Size (k) /  vand C C,and Reference
WWVW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999

Internet, domain level = 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001

Movie actors 225226 61 3.65 2.99 0.79 0.00027
LANL co-authorship 52909 9.7 59 4.79 043 1.8x10°*
MEDLINE co-authorship 1520251 18.1 4.6 4.91 0.066 1.1x107°
SPIRES co-authorship 56 627 173 4.0 212 0.726 0.003
NCSTRL co-authorship 11994 3.59 9.7 7.34 0.496  3x10~*
Math. co-authorship 70975 3.9 9.5 8.2 0.59 5.4x10°°
Neurosci. co-authorship 209 293 11.5 6 5.01 0.76  55x107°
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001
Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006
Power grid 4941 2.67 18.7 12.4 0.08 0.005
C. Elegans 282 14 2.65 2.25 0.28 0.05

Yook et al., 2001a,
Pastor-Satorras et al., 2001

Watts and Strogatz, 1998
Newman, 2001a, 2001b, 2001c
Newman, 2001a, 2001b, 2001c
Newman, 2001a, 2001b, 2001c
Newman, 2001a, 2001b, 2001c

Barabasi et al., 2001
Barabasi et al., 2001
Wagner and Fell, 2000
Wagner and Fell, 2000
Montoya and Sole, 2000
Montoya and Sole, 2000
Ferrer i Cancho and Sole, 2001
Yook et al., 2001b
Watts and Strogatz, 1998
Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)
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Phase transition in connected components

(k)
DISCONNECTED NODES NETWORK. 0.5
1 7 T
0.8 |
0.6 |- = =
0.75
0.4 | -
DG )= |
] . 1.0
<k>
1.25

e Network structure goes through a transition

e Question: How and when does this transition
happen 1.5




Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-
blob/



https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/

ER Random Network - catch up

Degree
distribution

Clustering

Network coefficient

Path length

Real world

networks broaa

Regular lattices constant

ER random
networks

Poissonian

It is not capturing the properties of any real system

BUT
it serves as a reference system for any other network model



Configuration
model

More detalls at [http://tuvalu.santafe.edu/~aaronc/courses/5352/1all201 3/csci5352 2013 LI |.pdf]



http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf

Random graphs with specified degrees

Problem

e The ER Random Graph model has a Poisson degree distribution
 Most real-world networks have heavy-tailed degree distributions

e We need to generate networks having pre-determined degrees or degree
distribution, but maximally random otherwise

 The observed properties (clustering coefficient, etc.) might be due only to the
difference in degree distribution



Random graphs with specified degrees

Configuration model

Based on an observed network

« Defined as G(n.k) where } = {k,} is adegree sequence on n nodes, with k;
being the degree of node i

Ad hoc degree distribution

* The degree sequence k = {k.} can be sampled from a probability distribution

e Delta/Dirac function == Random regular graph
e Poisson => Similar to ER for proper parameters
e Scale-free = Power-law random graph

e Only global condition to satisfy is: Z k;mod2=0

(even dégree sum) i.e. each edge has to have ending nodes



Random graphs with specified degrees

Co nfiguration model How much of some observed pattern is driven by the degrees alone?

Exact or approximate degree distribution

* The model can preserve the expected degree sequence, or the exact degree sequence
e Chung-lu (appoximate)

 Molloy-reed (Exact)



Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree
distribution

Probabilistic model which produce a network with degrees approximating (on
average) the original degree

It is a “coin-flipping” process as ER model but the probability that two nodes i
and j are connected depends on the degree k; and %; of the ending nodes

From the point of view of node i with degree k;, the probability that one of its
edges will connect to j with &;:

k/2m

This can happen via k; links, thus the probability that they are connected:

i assuming that: [max(kl-)]2 <2m
Bl

= (/\ inconsistent probability, it is rather expected

Pij
number of edges)

Chung-Lu model takes each pairs of nodes and connects them with this probability

1 with probability p;;
0 otherwise

Visj Ay = A5 = {



Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree
distribution .

i | 1 with probability p;;  where P, = —
Vi>j A { 0 otherwise :

2m

e Each pairs of nodes are considered once, thus it produces a simple graph
(without self-loops and multi edges)

e Degree of a node equals only in “expectation” to the originally assigned degree

Complexity:

e (O(n?). We need n(n-1) flips to test all node pairs

EXPENSIVE!



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation
Original idea:

1. Given a degree sequence k= 50 50 6 0l ]

2. Assign each node i€V with k; number of stubs

3. Select random pairs of unmatched stubs and connect them

4. Repeat 3 while there are unmatched stubs

AXKLF s > 90y

e This process will produce a configuration model with exact degree sequence

* Possible to select multiple times stubs of the same pair of nodes =  Multilinks

e Possible to select the stubs of the same node to connect =4 Self-links

The obtained graph is not simple...but the density of multi and self-links =» 0 as N = «



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation

An effective algorithm:

1. Take an array y with length 2m and fill it with exactly &; indices of each
node i€V

2. Make a random permutation of the array v
3. Read the content of the array in an order and in pairs

4. Pairs of consecutive node indices will assign links in the configuration

network
11111222233334445567 14122325123734351146
Complexity:
e O(m). Random permutation of an array CHEAP!

e O(m log m). assigning uniformly random variables to indices and quick-sort them

More details at [http://tuvalu.santafe.edu/~aaronc/courses/>5352/fall201 3/csci5352 20135 LI [.pdf]



http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf

Configuration model - mathematical properties

Expected clustering coefficient

It is the average probability that two neighbours of a vertex are connected

Start at some vertex v (with degree k > 2)

e Choose a random pair of its neighbours i and j

The probability that i and j are themselves connected is kikj/2m

* But probabilities to encounter some degrees as neighbors depends on their degree:
more complex than simply counting frequency of degrees (friendship paradox)

independent of network size

1{[(K2) — ()] |

Clustering coefficient

e [tis a vanishing quantity O(1/n) as long as the second moment is finite (not power law)

For detalls, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall201 3/csci5352_2013_L12.pdf



ER Random Network - catch up

Network Degree Path length Clustering

distribution coefficient

Real world broad
networks

Regular lattices constant

ER random
networks

Configuration

Poissonian

small

Model



Watts-Strogatz

small-world
hetworks



Small-world networks

e On of the founding papers of
Network Science...

D.J. Watts and S. Strogatz,

”"Collective dynamics of 'small-world'
networks”, Nature 393, 440—442, 1998

Contradiction: Real-world networks have

High clustering AND Short
coefficient distances



The Watts-Strogatz model

A model to capture large clustering coefficient and short
distances observed in real networks

- It interpolates between an ordered finite lattice and a random graph
3 F|Xed parameters Regular Small-world
* n - system size

« K - initial coordination number

- Variable parameters:

* p - rewiring probability p=0 > p=1

Increasing randomness

D.J. Watts and S. Strogatz, Nature (1998)

» Algorithm:

1.Start with a ring lattice with » nodes in which every node is connected to its
first K neighbours (K/2 on either side).

2.Randomly rewire each edge of the lattice with probability p such that self-
connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered (p=0) to

a completely random (p=1) structure



The Watts-Strogatz model

(Global) Clustering coefficient (Definition 2)

Regular Small-world Random

\
r‘

g . 3(K —2 IR

- p=0 - regular ring with constant clustering: C' = 4(K 1) “d \1\

-0sC =<3/ =1 g . o

= IndeDendent Of n Increasing randomness
« p>0 - we can count triangles and tuples
Global clustering coefficient

1 NK 1 K Independent of n

C = 4 (5 1 1) X — 3(K % 2) « if p—0 it recovers the ring value

INK(K —1)+ NK?p+ iNK?p? 4(K —1)+8Kp + 4Kp?

« ifp—1, small

For detalls, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall20 1 3/csci5352_2013_L12.pdf



The Watts-Strogatz model

Average path length (Definition 2)

o NO Closed form Solution Regular Small-world Random

Increasing randomness

1:l:| O 0770 |:|I D | : —
I m ]
gl C(p)/ C(0) © ]
. . . L [ ) J
* From numerical simulations: =
06| i
: % ]
0.4 2 = |
X Newman, M. E. (2000). Models of the small world. Journal of i 1
See Statistical Physics, 101(3-4), 819-841. 0.2 L L(p) / L(O) i ” i
L {
for details ; - I
0.0001 0.001 0.01 0.1 1

L =avg path length



ER Random Network - catch up

Clustering
coefficient

Network Degree distribution Path length

ACEITEL broad short large
networks

Regular lattices constant long

ER random

Poissonian
networks

Configuration
Model

Watts & Strogatz

(in SW regime) Poissonian



Scale-free
hetworks
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Scale-free networks

A network is called Scale-free when its degree distribution
follows (to some extent) a Power-law distribution

Power-law distribution:
(PDF)

1
P(k) ~ Ck™% = C—

ka a (sometimes y) called the exponent
of the distribution

Positive values

Here, defined as continuous (approximation)



I

Scale-free networks - first observations

R. Albert, H. Jeong, A-L Barabasi, Nature (1999)

Diameter of the world wide web
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Scale-free networks - other examples

The Iinternet

- Nodes: routers
- Links: Physical wires

10000 e e
: "971108.0ut" ©
: exp(7.68585) * x ** ( -2.15632) — 1
1000 -5
100 :
10 :
1 " " " " PR | " " " " P

1 10 100

(a) Int-11-97

Faloutsos, Faloutsos and Faloutsos (1999)
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Scale-free networks - other examples

a E _“JDEH .
= s E : Guimera et.al. (2004)
Airline route map network 2 | ;
g 107 3
* Nodes: airports 2 | :
+ Links: airplane connections S 107
; i :
F10°F
E : Note: the cumulative distribution of a
O 10'140.1 B 5 .P,{eﬂ e gy 1:31 _— power law is also a line on a log-log plot

Scaled degree, k/z




Scale-free networks - other examples

Liljeros et.al. (2001)

Sexual-interaction networks

- Nodes: individuals
- Links: sexual incursion

o
E
»
»
>
»

10_1 3

10_2 3

Bearman et.al. (2004) 108 - 1

Cumulative distribution, P(ktgt)

The Structure of Romantic and Sexual Relations at "JefTerson High School" ©) Females A
2o A Males ]
\ ( ‘ , — M ' B A | 1 [T I I | 1 R N |
ST NS ey, ; / 2 100 10° 102 103
R 3
ot ¥ Y, ﬁ" el . \L Total number of partners, k,
¢ 2 AT TN et e "N*®
-"\)3 |\1 .;_.r*k’ /
-‘*" -O~+ » e
> F R Y 4 9
R Y
o BT 3 o™ ,:'_._ -l
¢ PR -
56y °% 2y
»

———O 1
Y A
¥ X N

—l ® Male

Femals

7N
>
|
|

Fach circle represents a student and lines connecting students represent romantic relations occuring within the 6 months
preceding the interview, Numbers under the figure count the number of times that pattern was observed (i.e. we found 63
pairs unconnected to anyone ¢lse)
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Scale-free networks - other examples

Scientific collaborations

Nodes: scientists (here geo-localised)

Links: common papers

Map of scientific collaborations from 2005 to 2009

Computed by Olivier H. Beauchesne @ Science-Metrix, Inc.

Data from Scopus, using books, trade journals and peer-reviewed journals
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Scale-free networks - other examples

Online social networks

- Nodes: individuals
- Links: online interactions

Social network of Steam
http://85.25.226.110/mapper
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http://85.25.226.110/mapper

Scale-free distribution

What does it mean?

Bell Curve

=

Number of nodes with % links

Most nodes have
the same number of links

No highly

connected nodes

Number of nodes with & links

Power Law Distribution

A
:
)
X Very many nodes
» with only a few links
"
.

A few hubs with
large number of links

AL. Barabasi, Linked (2002)

Degree fluctuations have no characteristic scale (scale invariant)



Scale-free networks

|dea of scale free

AL Barabasi, Network Science Book (2013)
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Scale-free distribution

Proper definition

1

- |, kadk

min

= (a — Dk}

min

P(k) ~ Ck™ ¢

P = (@ — D=1 N

—_
<
w

E O Females A;

—a L A Males f
— 1 k —4 P | P T | P R
a , 10 100 101 102 103
P(k) — Total number of partners,
k 1n

kmin m

Cumulative distribution, P(ktot) o
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Scale-free networks

Power law plotted with a linear scale, for k<=10
(100 000 samples)

Distribution
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Scale-free networks

Power law plotted with a linear scale, for k100000
(100 000 samples)

Distribution
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Scale-free networks

Power law plotted with a log-log scale, for k<100000
(100 000 samples)

- power-law y =2

——  power-law y =3

107 1

11111




Scale-free networks

Comparing a poisson distribution and a power law

Nre=4
k!
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Scale-free networks

Comparing a poisson distribution and a power law
/1k€_/1
k!

10° - Distribution
- power-law y=2.5
poissen A =3
—— poisson A =2
- poisson A=1
- poisson A =0.5
107 - poisson A =0.1
10-2 g
=
a
10-3 g
107%
L

10° 10? 10?2 10° 10% 10°
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Scale-free networks

Comparing a poisson distribution and a power law
/1k€_/1
k!

10° - Distribution
- power-law y=2.5
poissen A =3

——  poisson A =2
- poisson A=1
- poisson A =0.5

] - poisson A =0.1

10-2 p

= [ ]
: [ he “long tail”
10-3 ] — e 2 g
“ = \\\\
77
' \\§‘>
l N
107% 1 \
L
T - ~—a T T
1 - __ 3 ) ,
10 10 M - 777: P 10¢ 10
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Scale-free networks

Comparing an exponential distribution and a power law

le ™ k>0,
0 k <O.
Distribution
107 5 —— power-lawy=2.5
exponential A=3
- exponential A =2
- exponential A=1
- exponential A =05
1071 — exponential A=0.1
1072
=
B \
1073 4 \
A
\
\
\l'
107 1 Ml
l
L
)
l ,L‘
| |
107 A U L
10° 101 107 10° 104 10°
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Scale-free distribution

Moments
Distribution: P(k) = (a — D& k™
Moments: (k™) = [ k" p(k)dk
Ko

With:

(k') Average
(k) Variance (converge like)

(k’y  Skewness (converge like)
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Scale-free distribution

Moments
Distribution: P(k) = (a — DkZ k™
Moments: (k™) = [ k" p(k)dk
kmin
(k") = (a — 1) /

Defined fora > m + 1, (k™) = k™
Otherwise diverge (+inf) min

1
Ix”dx =—x""+e,n#-1
n+1

http://tuvalu.santafe.edu/~aaronc/courses//000/csci/000-00 1 _201 | _L2.pdf
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Scale-free distribution

Moments:

=> Mean:

Moments

<km> — M a—1 Defined fora > m + 1,
mn\ - _1—m Otherwise diverge (+inf)

-1
(k) = - koo (But diverges for a < 2)
a—2
—1
(kz) = 2 3 kﬁlin (But diverges for a < 3)
a —
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Scale-free distribution

Moments

What does divergence means in practice !

We can always compute the mean and variance, given samples of a
distribution (e.g., an observe degree distribution)

=>The value computed depends on the size of the sample, it is not a
characteristic of the distribution.

Moments are dominated by elements in the long tall. Some events are
rare, but they have so large values, that if observed, they are strong
enough to modify substantially the corresponding moment. And they
appear frequently enough so that the mean will continue to shift when
increasing the sample size
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Scale-free distribution

0 <2 2<a<3 a>3
. Mean well defined, Mean and variance
Mean diverge . .
Variance diverge defined

10 o \ \ 10° \ \ \ \ 10 \ \ \ \
108 ° Sample mean | o°® ,_q 7 10%1|- - -Population mean a=2_05i 1081~ - -Population variance| ;-3 01
10’} ° Sample variance 10t , 10’1 ,
100 0, o 107 ° oeo 107)
104 >o 104 0 % °°°o o° 104
106 o | 10} © e ° 10 |
1O2> ° AU o °o°°o°°°°’ 102> o % o° % o o0 102'
1075°° °° o o% o % °F° 100 o o ° 107 """t TTmmmmoommees

" oo 000 30000 5 e do000,35503000550035595 '| o 6° 95000,°°6000%0000000
::80 ° ‘ ‘ ‘ ‘ 18“? g ° o?oo ° o? ° ‘ ‘ ? 180 090898988909809989800980090009900900992

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Size of sample, n Size of sample, n Size of sample, n

=> Even when well defined, moments converge very slowly

More detalls at [http://tuvalu.santafe.edu/~aaronc/courses/5352/1all201 3/csci5352 2013 L1 [.pdf]



http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf
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Computing the exponent of an observed network

Method 1:{ind the slope of the line of the log-log plot

Problem: most of data is on first values, so we overfit based on a
few values in the long tall

Analysis of fitting methods for vibrating sandpiles dataset

empirical |

Better approach
Maximum Likelihood Estimation (MLE)
Find the parameters of the distribution maximizing g
the probability to generate observations 20

Iog:bins ; E

10° 10°
number of references

[Frtting to the Power-Law Distribution, Goldstein et al.]
https://arxiv.org/vc/cond-mat/papers/0402/0402322v | .pdf
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Scale-free networks

Exponent
Network Size (k) K Your Yin _ _
— o o e « Average values are not reliable since
WWW 1107 ; 528 g the convergence is very slow
www 2x10° 75 4000 272 21 - Furthermore, average values are
WWW, site. 260000 1.94 meaningless since the fluctuations are
Internet, domain* 3015-4389 3.42-3.76 30-40 2.1-2.2 2.1-2.2 e s . . .
Internet, router® 3888 257 30 248 248 infinitely large (diverging variance)
Internet, router™ 150 000 2.66 60 2.4 2.4
Movie actors® 212250 28.78 900 2.3 2.3
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1
Co-authors, math.™ 70975 3.9 120 2.5 2.5
Sexual contacts™ 2810 3.4 34
Metabolic, E. coli 778 7.4 110 2.2 2.2
Protein, S. cerev.™ 1870 2.39 2.4 2.4
Ythan estuary™ 134 8.7 35 1.05 1.05
Silwood Park* 154 4.75 27 1.13 1.13
Citation 783 339 8.57 3
Phone call 53%x10° 3.16 2.1 2.1
Words, co-occurrence™ 460902 70.13 2.7 2.7
Words, synonyms™ 22311 13.48 2.8 2.8

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are usually between 2 and 3
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Scale-free networks

Why do most of the real networks have
degree exponent between 2 and 37

- If the exponent is smaller than 2, the distribution is so skewed that we expect to
find nodes with a degree larger than the size of the network => not possible in finite
networks
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Scale-free networks

Why do most of the real networks have
degree exponent between 2 and 37

 To detect a scale-free network its degree distribution needs to span through several
(at least 2-3) orders of magnitude = Ku~103

- If the exponent is large (>3), large degrees become so rare that the size of the

sample (i.e., size of observed network) must be enormous to indeed observe such
a node

- Example: let’s choose y=5, Kuin=1 and Kpu~103

1
K. =K_ N
i We need to observe 102 nodes to observe a

(K )“ o node of degree 1000 for exponent=5
N = | —max ~ 102

=> Forget about (single planet) social networks...
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Scale-free networks

- Are real networks really Scale Free ?

 In most real networks, the scale free stands only for a range of degrees, i.e.,
between a minimum degree and maximum degree different than those observed
(cut-offs)

- Some other distributions, in particular log-normal distributions, might “look like”
power-law

Albertl3s718 Barabdsi Aakere

Emergence of scaling in random networks (1999)

Feset

Scale-free networks are rare (2018)
Love is All You Need - Clauset's fruitless search for scale-free networks (2018)

Rare and everywhere: Perspectives on scale-free networks (2019)

Petter Ho
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Scale-free networks

Comparing a log-normal distribution and a power law

Log-normal distribution = Probability distribution of a random variable whose logarithm is normally distributed

2
1 (Ink — p) —Q
ko 2x o [_ 20° ] k

10° 1

Distribution
- power-lawy=2.5
—— lognormal u=0.01,0=1
— lognormal u=0.01,0=3
— lognormal u=0.01,0=6
10-? - — lognormal u=0.1,0=1
— lognormal u=0.1,0=3
—— lognormal u=0.1,0=6
- lognormal u=1,0=1
lognormal u=1,0=3
10-2 — lognormalu=1,0=6
4
10-3 -
10-‘ -
10-5 -
10° 10* 10? 10° 10¢ 10°

//t Mean, std of the log of the variable

0



Scale-free networks

a" Albert-Laszl6 Barabasi

@barabasi

@aaronclauset Every 5 years someone is shocked to re-
discover that a pure power law does not fit many
networks. True: Real networks have predictable
deviations. Hence forcing a pure power law on these is

like...fitting a sphere to the cow. Sooner or later the hoof
will stick out.

+rward proces
rocess
1000

weli-known f' ,d Network Science, Chapter 4, pg 159

aa L

s @

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
Replying to @barabasi

Chapter 6 in Network Science networksciencebook.com/chapter/6
discusses what you should be fitting to the degree distribution of *real*
scale-free networks. You are right: Pure power laws are predictably rare.
Scale-free networks are not.

O 1 21 Q 45 g
Aaron Clauset @aaronclauset - Jan 15, 2018 v
Replying to @barabasi

Yes, science is hard and real data often messy. But it is worrying how
criticisms of harsh statistical evaluations can be interpreted as a belief
that "disagreement with data" (as Feynman would put it) should not be
held against a favored theory or model.

Q 3 s QO 18 N

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
We are on the same page. The question is, what you test and what you
conclude. There are multiple processes that contribute to the degree
distribution that modify the power law. Hence testing for power laws only
you are ignoring them all, leading to misleading takeway message.

Q 2 0 4 Q 10 &

Aaron Clauset @aaronclauset - Jan 15, 2018 v
Perhaps. | feel good about the accuracy of our conclusions: we used
rigorous statistical methods, tested 5 distributions, considered 5 levels of
evidence, across nearly 1000 network datasets. The goal was to be
thorough and to treat the SF hypothesis as falsifiable.

O 1 1 3 ¥ 14 &

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
The effort is amazing. The conclusions are less so. The feather falls
slower than the rock, yet gravitation is not wrong. We add friction. You
need to fit for each system the Pk that is right for it. That is hard, | know.
Otherwise you ignore 20 year of work by hundreds.

Q 2 1 4 O 6 o

Aaron Clauset @aaronclauset - Jan 15, 2018 v
It seems easy to get confused here: an empirical power-law degree
distribution is evidence for SF structure, but no deviation from the power
law can be evidence against SF structure? It is reasonable to believe a
fundamental phenomena would require less customized detective work.



Scale-free networks

=

o -

» -
Aaron ClaUset

-Rigorous statistical tests show -Networks are real objects, not
that observed degree distributions are mathematical abstraction,
not compatible with a power law therefore they are sensible to
distribution (high p-values) noise (real life imits...)
-Compared with different -Power law is a good, simple model of
distributions, in particular log-normal, degree distributions of a class of networks

most degree distributions are more
ikely to be generated by something

else than power laws 20 years of fruitful research based on this
model

A whole scientific article dedicated to the controversy:

Jacomy, M. (2020). Epistemic clashes in network science: Mapping the tensions
between idiographic and nomothetic subcultures. Big Data & Society, 7(2),
2053951720949577.



The Barabasi-Albert
model

of scale-free
hetworks
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Emergence of hubs

What did we miss with the earlier network models?

1. Networks are evolving

* Networks are not static but growing in time as new
nodes are entering the system

2. Preferential attachement

- Nodes are not connected randomly but
tends to link to more attractive nodes

AL Barabasi, Network Science Book (2013)



The Barabasi-Albert model

1. Start with my connected nodes / /]

2. At each timestep we add a new node with
m (< my) links that connect the new node to
m nodes already in the network.

3. The probability z(k) that one of the links of
the new node connects to node i depends
on the degree k; of node i as

k. 10° p
H(k@) — ’ 10'1;- .
=ik
- The emerging network will be scale-free with e eokon e
degree exponent y=3 independently from the
choice of mo and m =8 W,

108
10% 10l 102 103

AL Barabasi, Network Science Book (2013)



ER Random Network - catch up

Degree
distribution

Clustering

Network coefficient

Path length

L e broad short large
networks

Regular lattices constant long

ER random

Poissonian
networks

WS small-world

exponential
networks P

BA scale-free

Rather small
networks



(some)
Other random
models




Other scale-free models

The vertex-copying model 1. copy a vertex
* Motivation: ,:: //,2
. Citations network or WWW where links VN
are often copied @,
 Local explanation to preferential 2. rewire edges with p
attachement N

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4.  With probability p, move each edge of the - Asymptotically scale-free with
copy to point to a random vertex exponent y>3

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices



Other scale-free models

The HOIme'K|m mOdel 1.prefere\ntia|\attachment

* Motivation: more realistic
clustering coefficient

probability p ! \ probability 1-p
1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to 2A. connect to 2B. preferential
their degree £ (just like BA) neighbour attachment

(implicit preferential
attachment)

4.  With probability p, connect the next edge to
a random neighbour of the vertex of step 3., 1
otherwise do 3. again C (k/’) X =

K

for large N, ie clustering more
realistic! This type of clustering is found
iIn many real-world networks.

9. Repeat 2.-4. until the network
has grown to desired size
of N vertices



ER Random Network - catch up

Degree
distribution

Real world broad
networks

Clustering

Network . .
coefficient

Path length

short large

Regular lattices constant long

ER random
networks

WS small-world
networks

BA scale-free
networks

Poissonian
exponential

Rather small

Other models



HE T EROGENEOUS NODES

* Presented models assume that nodes are interchangeable
olobally

» Other models preserve some node properties

» Spatial models: nodes have a fix position in space. Edge probability depends on
node distance

» Block models: nodes belong to a node group (block). Edge probability depends
on blocks belonging

- More during Community detection class




SPATIAL NETWORK MODELS
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Spatial networks

A network is said spatial if the distance between nodes affect the
probability of observing edges between them

Distance

 Physical distance
« Economical distance
« Social distance

- Difference in professional
categories

(L1L02) '|e1e |esIen
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Literature

Physics Reports 499 (2011) 1-101

Contents lists available at ScienceDirect Nt o

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Spatial networks

Marc Barthélemy *

Institut de Physique Théorique, CEA, IPhT CNRS, URA 2306, F-91191 Gif-sur-Yvette, France
Centre d’Analyse et de Mathématique Sociales (CAMS, UMR 8557 CNRS-EHESS), Ecole des Hautes Etudes en Sciences Sociales, 54 bd. Raspail,
F-75270 Paris Cedex 06, France

ARTICLE INFO ABSTRACT

Article history: Complex systems are very often organized under the form of networks where nodes and
Accepted 8 November 2010 edges are embedded in space. Transportation and mobility networks, Internet, mobile
Available online 23 November 2010 phone networks, power grids, social and contact networks, and neural networks, are all

editor: H. Orland examples where space is relevant and where topology alone does not contain all the

information. Characterizing and understanding the structure and the evolution of spatial
networks is thus crucial for manv different fields. ranging from urbanism to enidemiologv.

Keywords:

89



Spatial networks

. 3 '} g o .;-}(»‘ e

ypes of spatial networks “\\ =
» Transportation networks gy X ——_/ﬁ{“\/l
* Airline networks Yo NS

- Bus, subway, railway, and commuters
» Cargo ship networks

Infrastructure networks )
- Road and street networks EENS \ SIS

» Power grids and water distribution
networks

* The internet
Neural networks
Protein networks
Mobility networks
Social networks
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Spatial networks

Examples of 1D spaces

The watts-Strogatz random graph is defined on a (circular)
1D space: each node is (initially) connected to its k closest
nodes in this space.

In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on 1D space. The same is true about political opin-
lons, if we consider a Left-Right spectrum.

o
(\! —
e —  Age 20
—  Age 30
o)
Watts-Strogatz Lattice Watts-Strogate - — ﬁgegg
(N =20 nodes, K =4) Small-World Network Random Network e ge
c = Age 60
- A~ L o === Random edge
2\ PAT S o
“r ¢ R £
/f ) S W 0
/) /./ % ;{ 8 -
) \'—’-J Faec=7)
NS SIS S _|
NE . e [ | | [ [
—() pP=U.19
= : P 20 40 60 80 100
Neighbor’s age
O — S

91
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Spatial networks

Examples of 3+D spaces

- If we consider altitude, geographical networks are 3D
spaces

- If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to define the distance between nodes, which can
be tricky to define if dimensions are of different natures.

- Methods such as graph embedding assign locations in ar-
bitrary large dimensions to nodes that summarize some of
the network properties (see later class).

92



J

Spatial networks

Distances

The distance between each pair of nodes can be computed in
different ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

- Euclidean distance, or L?distance is the usual, straight
line distance

- Great-Circle distance is used to measure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

- Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

- Manhattan distance, or Lldistance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply defined as the sum of differences in each of
the dimensions.)

- Observed distance can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or traffic, the time distance between dots might be only
loosely proportional to geographical distance.

93



Simple models

spatial networks
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Random geometric graphs

General definition:
 Take a space and distribute nodes randomly
* Nodes are small spheres with radius r

- Two nodes are connected if their spheres overlap — separated with
distance smaller than 2r

- Also called: disk-percolation

Degree distribution — Poisson distribution

Clustering coefficient (d=dimensions)

s [2 (3 T
(Cq) ﬁ(i)

Independent of N contrary to random networks

Jesper Dall and Michael Christensen. "Random geometric
graphs”. In: Physical review E 66.1 (2002), p. 016121. 95




Soft RGG

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphs?, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f, i.e,
a function defining how distance affects the probability of observ-
INg edges between nodes.

The Soft RGG can model an ER random graph if f is constant func-
tion, f(A) = p. It can model a classic RGG if f is a threshold func-

tion with:
1 A<r
d) = —
f( ) {O A >r

“\W¥axman 1988.
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Deterrence function

Deterrence function

A deterrence function defines how the distance affects the prob-
ability of observing an edge. It can be a probability (bounded on
0, 1)), or define a change ratio.

1. ltcanbe defined a priori, usually as a classic monotonically
decreasing function, e.g., Negative exponential(f(A) =

e~ %) or Negative power (f(A) = A~9), with o a param-
eter. A typical example of negative power in geographi-
cal data is when the probability of observing an edge de-

creases as the square of the distance, i.e., f(A) = ﬁ

. It can also be learned from data, either by fitting parame-
ters of a predefined function (e.g., the o parameter above),
or by using an Ad-Hoc deterrence function.
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The gravity
law
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Formal description

Origin-destination matrix
» Describe flow of individuals between locations
- Used since decades by geographers
« Definition:
- divide the area of interest into zones (cells) labelled by i=/..N
- count the number of individuals going from location i to location j

. 0/D Matrix

- directed T T T
» weighted A| 0|0 5 00|50
. Beware: N B o ofe[o]w]a
T(ij)=|c|[o[o|[o]2]o]
» strongly depends on the zone D | 20| 0|8 | 0|20 |12
definition E| 0| o9 1][o0 |10
T | 20 | o [280] 40 [ 50 |39

07

§==0
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The gravity law

Number of trips from location i to location j is scaling as

P;P;
T = K—
- 4y
- where dj = de(i,)) is the distance between i and j
Py isthe population size at location |(j)

* ¢ a parameter chosen or learned from data

oo
T

Inter-city phone communication (Krings et.al.)

- mobile call communication intensity between Belgian
cities

®»

AN
- |
.

N

Observed intensity (log scale)

| | | |

2 4 6 8
Intensity estimated by gravity model (log scale)
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The gravity law

Number of trips from location i to location j is scaling as

- where d; = dg(i,j) is the distance between i and;

Piy s the population size at location i(j)

» In a general form: Ty ~ PiPif (d(i, j))

- where  f(d(i,))) Is the deterrence function describing the effect of space

101



Ad-hoc deterrence function

Agnostic deterrence function

- The influence of distance might be more complex than a power-law or an exponential. In particular, it is
often non-monotonic (first increasing, then decreasing. Think of airplanes, bicycles, public transports...
unlikely to use for short distances)

- A deterrence function can be learned from data

- Computed by comparing the number of trips observed at a given distance with the number of trip
expected if distance has no effect (a configuration model)

— {Dist3

f@ -

0 2000 4000 6000 8000 10000 12000 14000
X

Distance d
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The gravity law - as a network null model

Usage as a network null model
‘Consider a spatial network (e.g., phone calls, trips, etc.)

‘Fit a gravity model best explaining the observed network. If the
population is unknown or not relevant, the degrees of nodes (in/out
degrees in directed networks) can be used as a “population”

-=>Random model with a given edge probability for each pair of node

‘The obtained network is a null model to which the observed network
can be compared
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The radiation
law




The radiation law

Limitations of the gravity law
1. Requires previous data to fit

2. The number of travelers between destinations
depends only on their populations and distances.
In reality, this value depends probably of other
opportunities




The radiation law

Intuition: Model how people move for jobs

1.Individuals look for job in all cities
2.Each city has a number of job opportunities
- Each job has a value of interest, considered random

3. What is the probability for a job-seeker to choose a job in city ¢
located at distance d?

« Depends only on how many jobs offered in cities at a
distance equal or lower than d (probability to find a better job

closer)

The model is parameter-free!
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The radiation law

The model can be formulated in terms of radiation and absorption

- take locations i and j with populations (in-degree) m; and n; and at distance r;;

- denote s;; the total population in the circle with radius 7; centered at i
(excluding the source and destination population)

P is the power of attraction, |l.e., without other data, the degree.

Radiation Law of Spatial Interactions

The Radiation Law“ is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from ¢ to j depends
on Pout, P;” and the sum of all P}™ for A, < A, i.e., other op-

portunities accessible at a shorter distance. More formally:

out pin
Pout p?

Rij — kiOUt out out mn
(PP + i) (PP + PI™ + si5)

With s;; = > P!™ the sum of opportunities at a shorter
ueV, Ay <Ajj

distance than the target.

9Simini et al. 2012.
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Radiation Law of Spatial Interactions

Illustration of the zone s;; in which opportunities decrease the
probability of interactions between ¢ and j.




The radiation law

Comparison with census data and the

gravity law predictions

Simini. et.al, Nature 2010

Radiation
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Radiation Law VS Gravity Law

+ Radiation:

* No parameters

- Two nodes of same degrees at similar distance can have
different edge probability based on their location

+ Gravity:

- Customizable deterrence function... The real world is complex !
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End notes

- “All models are wrong, but some are useful”

- ER models, Configuration models, Gravity models are
used as reference models in a large number of
applications

- WS, BA models are more “making a point” type models:
simple processes can explain some non-trivial properties
of networks, unfound in random networks.

» Correlation is not causation. Are these simple processes
the “cause” ? Maybe, maybe not, sometimes...



