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Network Science - Introduction

Networks: Graph notation

Graph notation: G = (V, E)

\% set of vertices/nodes.
E set of edges/links.
ueV a node.

(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V =1{1,2,3,4,5,6}
E={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5), (5,5),(4,3)}

Types of networks

Simple graph: Edges can only exist or not exist between each
pair of node, and there are no self-loops, i.e., an edge connecting
a node to itself.

Directed graph: Edges have a direction: (u, v) € V does notimply
(v,u) eV

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced later

Counting nodes and edges

N,n | size: number of nodes |V|.
L,m | number of edges |E|
Lmaz| Maximum number of links

Undirected network: (

v 2

) = N(N —1)/2

N

Directed network: ( ) =N(N-1)

Node-Edge description

Ny, Neighbourhood of u, nodes sharing a link with w.

ku Degree of u, number of neighbors | N |.

Nouwt Successors of u, nodes such as (u,v) € E in a di-
rected graph

Nir Predecessors of u, nodes such as (v,u) € Ein a di-
rected graph

oKl Out-degree of u, number of outgoing edges | N2%|.

ki In-degree of u, number of incoming edges | N:?|

Wan Weight of edge (u, v).

Su Strength of u, sum of weights of adjacent edges,
Su =Y, Wuy.

Network descriptors - Nodes/Edges

(k) Average degree: Real networks are sparse, i.e., typ-
ically (k) < n. Increases slowly with network size,
eg. (k) ~ log(n)ff

d,d(G) Density: Fraction of pairs of nodes connected by an
edge in G.

d = L/Lmax

“Leskovec, Kleinberg, and Faloutsos 2005

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a
valid walk)

Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of
minimal path length. Not necessarily unique.

Weighted Shortest path: path of minimal weighted path length.
L.+ Distance: The distance between nodes u, v is the length of
the shortest path

Network descriptors - Paths

Imax | Diameter: maximum distance between any pair of
nodes.
£) Average distance:

Degree distribution

The degree distribution is considered an important network prop-
erty. They can follow two typical distributions:

-+ Bell-curved shaped (Normal/Poisson/Binomial)
- Scale-free, also called Power-law

A Bell-curved distribution has a typical scale: as human height,
it is centered on an average value. A Scale-free distribution has
no typical scale: as human wealth, its average value is not repre-
sentative, low values (degrees) are the most frequent, while a few
very large values can be found (hubs, large degree nodes). It has
a long tail, meaning that rare (large) values are not as rare as in a
bell-curved distribution.
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—— Power Law, a=15

(022 Poisson, A =20

k, node degree

More details later.




Subgraphs

Subgraph H (W) (induced subgraph): subset of nodes W of a
graph G = (V, E) and edges connecting themin G, i.e., subgraph
H(W)=(W,E"),W CV,(u,v) € E' <= u,v € WA (u,v) €FE
Clique: subgraph withd =1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are
connected to each other by paths, and which is connected to no
additional vertex in the supergraph

Strongly Connected component: In directed networks, a sub-
graph in which any two vertices are connected to each other by
paths

Weakly Connected component: In directed networks, a sub-
graph in which any two vertices are connected to each other by
paths if we disregard directions
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Triangles counting

6y, - Triads of u: number of triangles containing node
A - Number of triangles in the graph total number of triangles in
the graph, A = 2 3y bu.

[ Each triangle in the graph is counted as a triad once by each of its nodes. ]

e - Triad potential of u: maximum number of triangles that
could exist around node wu, given its degree: §ax = (’“2")

Amax _ Triangle potential of G: maximum number of triangles
that could exist in the graph, given its degree distribution: A™a* =
3 Xuey 07 (u)

Clustering Coefficents - Triadic closure

The clustering coefficient is a measure of the triadic closure of a
network or of a node neighborhood. The triadic closure is a no-
tion coming from social network analysis, often summarized by
the aphorism The friends of my friends are my friends.

C. - Node clustering coefficient: density of the subgraph in-
duced by the neighborhood of u, C,, = d(H (N,). Also interpreted

as the fraction of all possible triangles in IV,, that exist, 53.‘;;(

(C) - Average clustering coefficient: Average clusterinug coeffi-
cient of all nodes in the graph, C' = % Y uev Cu

( )
Be careful when interpreting this value, since all nodes contributes equally, ir-

respectively of their degree, and that low degree nodes tend to be much more
frequent than hubs, and their C value is very sensitive, i.e., for a node u of de-
gree 2, Cy, € {0, 1}, while nodes of higher degrees tend to have more con-

trasted scores.
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C9 - Global clustering coefficient: Fraction of all possible trian-
gles in the graph that do exist, C9 = Aﬁax

. J

Small World Network

A network is said to have the small world property when it has
some structural propertiesﬂ The notion is usually not quantita-
tively defined, but two properties are required:

- Average distance must be short, i.e., (£) = log(V)

- Clustering coefficient must be high, i.e., much larger than
in a random network , eg., C9 > d, with d the network
density

This property is considered characteristic of real networks, as op-
posed to random networks. It is believed to be associated to par-
ticular properties (robustness to failures, efficient information flow,
etc.), and to be the consequence of emergent mechanisms typi-
cal of complex systems.

Be careful: in some contexts, small world network can be used for
a network that has a small Average distance, without considering
its Clustering Coefficient.

“\¥atts and Strogatz 1998

Cores and Shells

Many real networks are known to have a core-periphery struc-
ture, i.e., there is a densely connected core at its center and a more
peripheral zone in which nodes are loosely connected between
them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest
subgraph H(C) such as all nodes have at least a degree k, ie.,
Yu € C, kX > k, with kX the degree of node u in subgraph H.
coreness: A vertex u has coreness k if it belongs to the k-core but
not to the k£ + 1-core.

c-shell: all vertices whose coreness is exactly c.

1-core

2-core
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Vocabulary

Singleton: node with a degree k = 0
Hub: node u with k,, > (k)

Bridge: Edge which, when removed, split a connected compo-
nent in two.

Self-loop: Edge which connects a node to itself.

Stub: A stub is an half edge, i.e., edge (u, v) has a stub connected
to w and another connected to v.

Complete network: L = Lyax
Sparse network: d < 1, L < Lmax
Connected Graph: Graph composed of a single connected com-

ponent
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Going Further

Books about network science as a whole:
+ Barabasi et al.[2016/(free)
+ Coscial2021l(free)
+ Zinoviev[2018|
+ Menczer, Fortunato, and Davis[2020|
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