
Network Science
Cheatsheet

Made by

Remy Cazabet

Dynamic Networks

Disclaimer

Dynamic network analysis as introduced here is a recent and

still not fully mature field, with a large number of contributions,

for which we cannot know yet which one will stand the test of

time. This is therefore my vision of the dynamic network field

as of today.

Ubiquity of Dynamic Networks

Most real networks are in fact dynamic: nodes and edges appear
and disappear with time. Think of friendship in social networks,
flight routes or any human interactions. Networks are often an-
alyzed as static objects because 1)it’s harder to obtain dynamic
information, 2)Taking dynamic into account makes some analysis
more difficult.
While more and more aspects of our life become linked to digital
technology, datasets with fine temporal information also become
more and more common.

Snapshots & Aggregated Networks

Dynamic networks can sometimes be represented as sequences
of static graphs. These graphs can be obtained by two processes:

• Snapshots correspond to the state of a network at a partic-
ular point in time, e.g., all follower/followees relationship
at a particular second

• Aggregated Networks are obtained by cumulating infor-
mation over a period of time, e.g., in a phone call network,
in the snapshot representing year 2020, an edge exists
between two individuals if they called each other at least
once over the year 2020.

Interactions or Relation?
Dynamic networks can be used to represent different types of real
data. In particular, they can be used to represent networks of re-
lations and networks of interactions. For instance, friendships,
acquaintances, physical wires, roads, etc. can be thought as rela-
tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspecified, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or unbounded

• If nodes have attributes, they can be constant or time-
dependent

• If edges have weights, they can be constant or time-
dependent

Vocabulary

Many different names have been used for networks changingwith
time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper defining them. Here is a list of themost popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien 2018)

• Temporal Networks, Contact Sequences and Interval
Graphs (Holme and Saramäki 2012)

• Time Varying Graphs (Casteigts et al. 2012)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical difference defining how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
fined graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period∆.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready defined on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coefficient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, fixed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new definitions.

Stream Graph (SG)- Definition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or redefining
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s define a Stream Graph

S = (T, V,W,E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes
W Vertices presence time V × T
E Edges presence time V × V × T

aLatapy, Viard, and Magnien 2018.

SG - Time-Entity designation

It is useful to work with Stream Graphs to introduce some new
notions mixing entities (nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Redefining Graph notions

Thegeneral idea of redefining static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N
The number/quantity of nodes in a stream graph is defined as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
∑
v∈V

Nv =
|W |
|T |

For instance, N = 2 if there are 4 nodes present half the time, or
two nodes present all the time.

SG - L
The number of edges is defined as the total presence of edges
divided by the total dataset duration.
More formally:

L =
∑

(u,v),u,v∈V

Luv =
|E|
|T |

For instance, L = 2 if there are 4 edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible definitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
L3
max =

∑
(u,v),u,v∈V |Tu

⋂
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The definition can naturally be extended by using the definitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien 2018), the authors use L3

max . This definition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to define the density in static networks
is d = N2, because N2 is the only way to define Lmax in static
networks, unlike in Stream Graphs.

Examples of graphs with N = 2 nodes, L = 1 link, but with
different densities, respectively 1

2
(left), 3

4
(center) and 1 (right).

SG - Clusters & Substreams
In static networks, a cluster is a set of nodes, and we have defined
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) ∈ E, (t, u), (t, v) ∈ C}.

Example of subgraph (red,left) and induced substream (right).

SG - Cliques

Having defined substreams and density, we can now naturally de-
fine a clique by analogy with static networks as a substream of
density 1. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Red and Grey are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is defined as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t ∈ E}

SG - Degree k(u)

The degree k(u) of node u is defined as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

Example, the neighborhood of node 2 is highlighted in grey.
k(c) = 5+2.5+5

10
= 1.25.

SG - Ego-network

The Ego network Gu of node u is defined as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coefficient

The clustering coefficientC(u) of node u is defined as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths
In a Stream Graph S=(T,V,W,E), a path P from node-time xα to
node-time yω is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T × V × V such that t0 ≥ α,tk ≤ ω, ((ti, ui, vi)) ∈ E.
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk − t0 .

Examples of two paths from (node 0, t=0.5) to (node 3, t=1). The
left one starts at 3, arrives at 5, has length 3 and duration 2. The
right one starts at 1, arrives at 4.5, has length 3 and duration 3.5.

SG - Shortest - Fastest - Foremost
• Shortest Paths, as in static networks, are paths ofminimal
length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving first.

Furthermore, one can combine those properties, defining for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Shortest - Fastest - Foremost

Fastest (top left), Shortest (top right), Foremost (bottom),

SG - Connected Components

Various definitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
2018) for details. Oneof the simplest one is theweakly connected
component, defined such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

Example of a Stream Graph decomposed in 3 weakly connected
components (including one composed of the singleton node 6)

RandomModels
We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. 2022), the
authors consider methods defined on sequences of snapshots
that conserve nodes and number of events, and grouped them
in 4 main families, Snapshot Shuffling, Sequence Shuffling, Link
Shuffling and Timeline Shuffling.

Snapshot Shuffling

Snapshot Shuffling keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or a degree preserving ran-
domization.

t1 t2 t3 t4

Snapshot Shuffling

t1 t2 t3 t4

Sequence Shuffling

Sequence Shuffling keeps each snapshot identical, switch ran-
domly their order.

Sequence Shuffling

t1 t2 t3 t4

t1 t2 t3 t4

Link Shuffling

Link Shuffling keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:

A

C

B

D

t={1,3,5,6}

t={5,6}

t={2,3,4} t={1,2,3,4}

Link Shuffling

A

C

B

D

t={1,3,5,6}t={5,6}

t={2,3,4}

t={1,2,3,4}

Timeline Shuffling

Timeline Shuffling keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:

A

C

B

D

t={1,2,3}

t={5,7}

t={7,8} t={1,2,3,5}

Timeline Shuffling

A

C

B

D

t={1,5}

t={2,5,8}

t={1,3,7} t={2,3,7}

More constrained Shuffling

Variants of these shufflings with additional constraints have been
proposed, for instance the Local timeline shuffling, randomizing
events time edge by edge, or the Weight constrained timeline
shuffling, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. 2022) for more.

Going Further

Book: Holme and Saramäki 2019
Stream Graph definition: Latapy, Viard, and Magnien 2018
Transforming dynamic networks into static networks: Kivelä et al.
2018
Dynamic Communities: Rossetti and Cazabet 2018

References
[1] Arnaud Casteigts et al. “Time-varying graphs and dynamic

networks”. In: International Journal of Parallel, Emergent and
Distributed Systems 27.5 (2012), pp. 387–408.

[2] Laetitia Gauvin et al. “Randomized reference models for
temporal networks”. In: SIAM Review 64.4 (Nov. 2022). DOI:
10 . 1137 / 19M1242252. URL: https : / / hal . archives -
ouvertes.fr/hal-01817633.

[3] Petter Holme and Jari Saramäki. Temporal Network Theory.
Springer, 2019.

[4] Petter Holme and Jari Saramäki. “Temporal networks”. In:
Physics reports 519.3 (2012), pp. 97–125.

[5] Mikko Kivelä et al. “Mapping temporal-network percolation
to weighted, static event graphs”. In: Scientific reports 8.1
(2018), pp. 1–9.

[6] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien.
“Stream graphs and link streams for the modeling of inter-
actions over time”. In: Social Network Analysis and Mining 8.1
(2018), p. 61.

[7] Giulio Rossetti and Rémy Cazabet. “Community discovery
in dynamic networks: a survey”. In: ACM Computing Surveys
(CSUR) 51.2 (2018), pp. 1–37.

https://doi.org/10.1137/19M1242252
https://hal.archives-ouvertes.fr/hal-01817633
https://hal.archives-ouvertes.fr/hal-01817633

