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Synthetic networks usages

Using synthetic networks is essential in network science for sev-
eral reasons. In particular, they allow to:

• Study someproperties in a controlledenvironment.What
happens if we increase property X , while keeping all other
properties constant?

• Compare an observed networkwith a randomized version
of it. I observed property X in my data, is it something re-
markable, or would I observe the same thing on a random
network similar to my graph?

• Explain a phenomenon. Property X seems exceptional. It
can be reproduced in random networks by simple mecha-
nism Y.

• Generate synthetic datasets, for instance to test the same
algorithm on multiples variations of the same network.

Synthetic networks types

There are three main types of synthetic networks:

• Deterministic models are instances of famous graphs or,
more commonly, repeated regular patters. e.g., Caveman
graph, grids, lattices.

• Generative models assign to each pair of nodes a proba-
bility of having an edge according to their properties (de-
gree, label, etc.). e.g., Erdős Rényi, Con�guration model, etc.

• Mechanisticmodels create networks by following a set of
rules, a process de�ned by an algorithm. e.g., Preferential
attachment, Forest �re, etc.

Regular lattices

Regular lattices are de�ned as repetition of the same pattern a
given (potentially in�nite) number of times. Nodes all have the
same degree. The pattern can be in 1, 2 or more dimensions.
The clustering coe�cient depends on the structure, it can be
large if the structure is made of triangles, for instance. It is the
same for all nodes (except potentially nodes at the boundaries).
The average distance grows quickly with n, if k � n

Erdős-Rényi (ER) model

The Erdős-Rényi (ER)model is the simplest randomgraphmodel.
Assuming that we know the number of nodes and the number of
edges, and no other information, then edges are simply put be-
tween randomly chosen pairs of nodes.
ER models can be de�ned in two ways:

• in the G(n,L) formulation, the number of edges of the
generated graph is set to exactly L, and thus L random
pairs of nodes are chosen among the set of all existing
node pairs (sharp constraint, microcanonical ensemble).

• in the G(n, p) formulation, an edge is added between any
set of node with a probability p. (soft constraint, canonical
ensemble).

Properties of both model are similar when the number of edges
(de�ned by L or p) is large.

Random version of observed graph

When one wants to compare a real network with a randomized
version of it (also called a rewired network), the usual way is not
to start from the original network and to actually rewire it edge
by edge, but instead to generate a new ER random graph keep-
ing the same number of nodes and the same number of edges
(or the same density) as the observed network. Properties of the
observed network can then be comparedwith the generated net-
work. Note that it does note make sense to compare the prop-
erties of any particular node in both networks, since nodes in the
randomgraph have no identity. Formany applications, there is not
need to actually generate a random graph: one can simply com-
pare properties of the real network with theoretical properties of
the random graph.

Soft ER
In the soft ER, the number of edges is not known in advance. The
distribution of the number of edges in the soft ER is described by
the binomial distribution B(Lmax, p)
From the known properties of the Binomial distribution, it can be
shown that:

• The expected number of edges is 〈L〉 = pLmax,

• The variance of the number of edges is σ2 = Lmaxp(1−
p)

Binomial distribution

The Binomial distribution B(Nb, pb) is a discrete distribution

modeling the number of successes x in a sequence ofNb inde-

pendent experimentswith success probability pb. For instance,

it models how many times (x) one will obtain a 6 (success) if

they throw a dice Nb times and that the probability to obtain a

6 is 1
6
. It is de�ned asP (x) =

(
Nb
x

)
px(1−pb)N−x.

(
N
x

)
is the bino-

mial coe�cient, describing the number of ways, disregarding

order, that x elements can be chosen among Nb.

ER: Degree distribution

Since each node has an independent probability to be connected
with each other node, the degree distribution of the ER model is
modeled as a binomial distribution B(N−1, p), i.e., the probability
to have a given degree knowing that we have a probability p to
have a link with each of the other nodes in the graph. From the
properties of the Binomial distribution, we know that:

• The expected average degree is 〈k〉 = p(N − 1)

• The variance of the degree is σ2
k = p(N − 1)(1− p)

We can note that the distribution becomes increas-
ingly narrow as the network size increases, i.e., we are
increasingly con�dent that the degree of a node is in
the vicinity of 〈k〉:

σk

〈k〉 =
1

(N − 1)1/2
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ER: Approximation of degree distribution
by a Poisson Distribution

When the number of nodesN is large and the average degree 〈k〉
is small, the degree distribution can be approximated by a Poisson
distributionPois(〈k〉). From theproperties of Poissondistributions,
we approximate that for a network with average degree 〈k〉:

• The variance of the degree is σ2
k ≈ 〈k〉

Poisson distribution

The PoissondistributionPois(δ) is a discrete distributionmod-

eling the probability of observing exactly x occurrences of an

event in a period of duration ∆t if this event occurs randomly

and that there are in average δ occurrences of it during a pe-

riod ∆t. Working with the Poisson distribution is convenient

because it depends only on a single parameter δ.

ER: Clustering Coe�cient

The Global Clustering Coe�cient of a network is de�ned as the
fraction of closed triads among all triads. Since any edge (u, v)
has a �x probability to exist p independently of the existence of
any other edge in the network, the probability of having edge
(a, c) ∈ E for a triad [a, b, c] such as (a, b), (b, c) ∈ E tends towards
p for large graphs.
Thus, the clustering coe�cient of an ER graph is Cg ≈ p. Since
we know that most real networks are sparse, p is small, thus Cg is
small. A similar reasoning can be used to show that the average
clustering coe�cient 〈C〉 is small too.

ER: Average Distance

We can intuitively estimate the order of the Average Distance of
an ER random graph as follows:
We know that the clustering coe�ent of an ER graph is small.
Therefore, we can approximate the graph as having a tree-like
structure. As a consequence, the number of nodes located at dis-
tance d of a node u increases as 〈k〉d . From this approximation, the
relation between distance and number of nodes isN = 〈k〉d hops,
thus the order of ` is log〈k〉 n = logN

log〈k〉 .
We can thus say that the order of the average distance of a sparse
ER graph relatively to its size isO(logN), and thus that: ER graphs
have a short average distance.

Order of magnitude

The notationO is used to represent the order ofmagnitude of

a value. It roughly indicates how this value is related to another

one, ignoring any constant. For instance, O(x) = O(10x) =

O(x/10). Typical orders ofmagnitude areO(log x),O(x),O(x2)

and O(2x).

ER: Largest connected component

The largest connected component of a graph is a way tomeasure
its connectivity. On random networks, the relation between the
density (or average degree) of a graph and the size of its largest
connected component is known to undergo a phase transition
phenomenon, i.e., a rapid change when a threshold is crossed.
More precisely, as long as 〈k〉 < 1, several connected compo-
nents of similar sizes exist in the network, while, when 〈k〉 > 1,
the graph has a single giant component with high probability.

An intuitive way to understand this phenomenon is to use the
same observation of the graph being tree-like as previously. Since
the number of nodes N that can be reached after d hops can be
estimated to grow as 〈k〉d, a value of 〈k〉 < 1 leads to an impossi-
bility to reach all nodes even for a large d, while 〈k〉 > 1 leads to
arbitrarily large N for long enough d. Proper demonstration and
more details can be found in the original papera .

You can explore this property using this interactive explorable:
https://www.complexity-explorables.org/explorables/the-
blob/

aErdős and Rényi 1960.

Con�guration Model (CM)

The Con�guration Model is another classic random graph model
in which the degree of each node –or the degree distribution– is
preserved. In general terms, a con�guration model is de�ned by
the number of nodes in the graph, the number (or probability) of
edges, and a distribution of degrees of nodes.
This degree distribution can either be chosen a priori, for instance
following a Poisson or a Power-law distribution, or by taking the
observed distribution of a real network we would like to obtain a
randomized-version of.
Note that in the later case, nodes can be considered to retain their
identity: one can compare the local properties of the nodeof high-
est degree between the two graphs, for instance.

Why the con�guration model

For many real graphs, nodes represent real entities, and the de-
gree of those nodes is due to an intrinsic property of those nodes,
which is known in advance and should be taken into account. For
instance, let’s consider a network representing �ight connections
between airports: each node represents an airport, and there is an
edge between two airports if a direct �ight exist between them.
JFK international airport in New-York will likely be a Hub in this
network, having a very large degree. This large degree is a con-
sequence of the properties of the city it belongs to: large popu-
lation, touristic attraction, etc. So, if connections between airports
were random, it could nevertheless be relevant to keep the degree
of this node.
Furthermore, the degree distribution itself is also a characteristic
of the network: the fact that hubs do exist in the network change
its properties, compared with a network in which such nodes do
not exist.

Approximate/Soft Con�guration model

In the approximate version of the Con�guration model, each pair
of node is connected by an edge with a given probability, which
depends on their objective degrees.
More precisely, the probability of having an edge (i, j) is de�ned
as puv = kukv

2L
. Note that this is a well de�ned probability only

if max(ku)2 < 2m, otherwise it can be higher than 1. puv should
therefore rather be understood as the expected number of edges
in a multigraph.
Intuitively, this de�nition can be understood as follows: each node
uhas ku stubs. The total number of stubs in thegraph is 2L. Know-
ing that node v has kv stubs, the probability for each stub of u to
connect to a stub of v is kv

2L
.

Note that this model is de�ned such as self-loops can exist.

https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/


Rewired exact con�guration model

When the objective of a con�guration model is to obtain a ran-
domized version of an observed graph, a common approach is to
�x the exact degree of each node, and to connect stubs randomly.
An e�cient way to do so is to use the following algorithm:
1) Create a list s such as it contains ku times the index of node u
- 2) Randomize s - 3)For each i in [0, L], create an edge between
nodes of index s2i and s2i+1 .

1 2 3 4 5

1 1 1 1 2 2 3 3 4 5

1 11 12 23 3 45

1 2 3

4 5

111 12 2 33 45

1

2

3

45

Shuffling

Note that this method can create self-loops andmultiple links be-
tween the same nodes, even if the original network was a simple
graph. However, the number of multiple links and self-links de-
creases when the number of nodes increases, for sparse graphs.
The probability of an edge to exist between two nodes depends
on their degree, and is the same as in the soft CM.
For more details on con�guration models with �xed degree se-
quences, seea .

aFosdick et al. 2018.

CM: Clustering Coe�cient

The clustering coe�cient of the con�guration model can also be
studied theoretically. Its derivation is beyond the scope of this
class and can be found in the literaturea . Intuitively, we can use
the same reasoning as for the ER model: the probability of hav-
ing edge (a, c) ∈ E for a triad [a, b, c] such as (a, b), (b, c) ∈ E is
kakc
2L

. However, the probability of observing (a, b) and (b, c) and
thus to have such a triad also depends on ka, kb, kc . In the end,
the clustering coe�cient is

C =
1

L

[〈k2〉 − 〈k〉]2

〈k〉3

where 〈k2〉 correspond to the expected variance (second mo-
ment) of the degree.
Since the right part of the equation is a constant depending only
on the average degree, the order of the clustering coe�cient is
O(1/L), and thus small for large graphs. This is true as long as
〈k2〉 is de�nite, which might not be the case if the degree distri-
bution is a power law.

aM. Newman 2018.

CM: Friendship paradox

An interesting property of the Con�guration Model with hetero-
geneous degree distribution arises when we study the average
degree of random neighbors. Let’s call pk the probability to pick
a node of degree kwhenwepick a node at random. This probabil-
ity represents the degree distribution chosen for the con�guration
model. Now, if we choose one node at random, and then pick
one of its neighbors at random, what is pneighb,k , the degree dis-
tribution of random neighbors? It is di�erent, because nodes with
a higher degree have, by de�nition, a higher probability of being
chosen. More formally,

pneighb,k =
k

2m
npk =

kpk

〈k〉

because npk is the number of nodes of degree k in the graph, and
k

2m
is the probability to pick at random a stub of a particular node

of degree k among all stubs.

We can nowcompute the averagedegreeof neighbors of a node
chosen at random, as:

〈kneighb〉 =
∑
k

kpneighb,k =
〈k2〉
〈k〉

Thus if all degrees are the same (homogeneous), 〈kneighb〉 = 〈k〉,
but if it is heterogeneous, 〈kneighb〉 > 〈k〉 due to the compara-
tively larger in�uence of high degrees.

k=1

k=1

k=1

k=1 k=4

<kneigh>=1

<kneigh>=4 <kneigh>=4

<kneigh>=4
<kneigh>=4

<k>=8/5

<k2>=20/5=4

<kneigh>=<k2>/<k>=20/8=5/2

<kneigh>=(4*1+4*4)/(4+4*1)=20/8=5/2

CM: Average distance

We use the same logic as for the ER model of the graph being
locally tree-like due to the low Clustering Coe�cient to show in-
tuitively that the average distance is short. This property is veri�ed
experimentally.

Examples of di�erences in Clustering and average path length for
a few real graphs, compared with randomized versions of it.

graph N L k Cg 〈`〉 ER-Cg ER-〈`〉 CM-Cg CM-〈`〉

karate 34 77 4.53 0.26 2.42 0.14 2.42 0.14 2.55
football 115 613 10.66 0.41 2.51 0.10 2.25 0.07 2.28
wiki-science 687 6523 18.99 0.47 3.43 0.03 2.55 0.08 2.65
euroroad 1174 1417 2.41 0.03 18.40 0.00 7.66 0.00 9.55

Di�erences btw. Real & Random networks
When comparing real networks to ER and CM networks of similar
properties, we observe that they tend to disagree on one of two
key properties: on real graphs, usually, the graph has a high clus-
tering coe�cient and a short average distance (or sometimes the
opposite).
On the contrary, random networks have both a low clustering co-
e�cient and a short average distance.

Watts-Strogatz (WS) Model

TheWatts-Strogatzmodel was introduceda to show how a simple
phenomenon could create networks having both a large cluster-
ing coe�cient and a short average distance.
The model has 3 parameters:

• N : number of nodes

• K : initial number of neighbors

• p: rewiring probability

The network is created following a 2-stepprocesses: �rstN nodes
are disposed on a ring, and each node is connected to itsK clos-
est neighbors. Then each edge is replaced by a random edge
with probability p. It can be interpreted as a network combining
the properties of a (1-dimentional) regular lattice and of an ER
network.

aWatts and Strogatz 1998.

WS - Illustration
From left to right: WS graphs when increasing the probability of

rewiring. N = 20,K = 4

(a) p = 0
Regular

(b) p = 0.3
Small world

(c) p = 1
Random



WS - Small World Regime

If p is small, the network has properties similar to a regular lattice,
and if p is large, properties of an ER graph.
We can observe this transition by comparing how the Clustering
(C) and average distance (d) change when varying p, compared
with the network when p = 0, i.e., a regular lattice.

Example with N = 200,K = 6.

WS - Clustering

Properties of the WS model are not as simple to study theoret-
ically as previous random graphs, so most details are not pre-
sented here. It can be shown however, that the global clustering
coe�cient can be approximated by:

Cg =
3(K − 2)

4(K − 1) + 8Kp+ 4Kp2

which is independent ofN, thus canbe large even for largegraphs.

WS - Average Path length

The average path length of the WS model has been studied
through approximations and numerical simulationsa and can be
shown to become small quickly with the increase in p.

aM. E. Newman 2000.

WS - Degree distribution

Without entering into details, it can be shown the the degree dis-
tribution range froma �xeddegree for all nodes to a Poisson distri-
bution, since each rewired edge is decreasing the degree of some
nodes and increasing the degree of some others in a randomway.

Barabási-Albert (BA) Model
The Barabási-Albert model of random graphs was introduceda

to illustrate how a simple mechanism could explain a common
property of real graphs, the power-law degree distribution. This
mechanism is though to somewhat mimic what is happening in
real life, at least for some networks. It is often called preferential
attachment, and mimic the rich get richer phenomena: nodes
that already have a large degree are more attractive, and thus are
more likely to become connected with other nodes creating links.

aBarabási and Albert 1999.

BA - Preferential attachment
The preferential attachment process has two parameters, the
number of edges to create at each stepm and the initial number
of nodesm0, withm ≤ m0 . It is de�ned by the following iterative
process:

• Start with a connected graph withm0 nodes

• At each step, add a new node andm links connecting it to
m other nodes chosen randomly proportionnaly to their
degree, i.e., with probability pi =

ki∑
j kj

BA - Degree distribution

The degree distribution created by the preferential attachment
mechanism is a power law of exponent α = 3. The exponent of
the distribution does not depend on parameters m and m0 . The
degree exponent is stationary in time, i.e., it stays the same while
we add new nodes and edges.

Nodes degree increase with time: the earlier a node was added,
the larger its degree tends to be.

BA - Average Path Length

Networks generated by the BA process have a power-law degree
distribution of exponent α = 3. It is known that such networks
have a short average path length, more formally:

〈`〉 =
lnN

ln lnN

BA - Clustering Coe�cient

Although the demonstration is beyond the scope of this classa, it
can be shown that the clustering coe�cient of BA graphs is:

C =
L

4

(lnN)2

N

This is more than for a random network, but still decreases with
the network size, and tends toward 0 for large graphs. It is thus
considered a small clustering coe�cient.

aBarabási and Albert 1999.

Other random graph models

Many other graph models have been proposed in the literature,
either mechanistic models to mimic common properties of some
graphs, as with BA andWSmodels, or statistical models to gener-
ate randomgraphswith imposed constraints, as the Con�guration
model does with degree distributions.
Some examples of mechanistic models:

• Vertex copying model (J. M. Kleinberg et al. 1999)

• Tunable-clustering scale-free model (Holme and Kim
2002)

• Forest �re model (Leskovec, J. Kleinberg, and Faloutsos
2005)

Some examples of statistical models:

• Exponential Random Graphs (Robins et al. 2007)

• Stochastic Block Models (Peixoto 2019)

• A survey on the topic (Orbanz and Roy 2014)
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