COMMUNITY DETECTION
(GRAPH CLUSTERING)



COMMUNITY DETECTION

» Community detection Is equivalent to “clustering” in
unstructured data

» Clustering: unsupervised machine learning

» Find groups of elements that are similar to each other
- People based on DNA, apartments based on characteristics, etc.

» Hundreds of methods published since 1950 (k-means)
» Problem: what does “'similar to each other’ means !



MUNITY DETECTION
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COMMUNITY DETECTION

¢ S

» Community detection: »

» FIind groups of nodes that are:
- Strongly connected to each other
- Weakly connected to the rest of the network
- |deal form: each community is |)A clique, 2) A separate connected component

» No formal definition
» Hundreds of methods published since 2003



WHY COMMUNITY
P EC O

* One of the key properties of complex networks was

» High clustering coefficient
» (friends of my friends are my friends)

» Different from random networks. How to explain it ?
» Watts strogatz (spatial structure?)

* => |n real networks, presence of dense groups: communities

» Small, dense (random) networks have high density.

» Large networks could be interpreted as aggregation of smaller; denser
networks, with much fewer edges between them



DOME RISTORE

* I he graph partitioning problem was a classic problem in graph
theory

gl ocs liike this:
» How to split a network in K equal parts such that there Is a minimal number of
edges between parts.

» Variants were proposed:
- What If partitions are not exactly same size !

- What if the number of parts is not exactly k ?



DOME RISTORE

* Then in 2002, [Girvan & Newman 2002], introduction of the
problem of “community discovery'

» Observation that social networks are very often composed of groups
» The number and the size of these groups Is not known in advance
» Can we design an algorithm to discover automatically those groups ¢

Girvan, Michelle, and Mark EJ Newman. "Community structure in social and biological networks." Proceedings of the national academy of sciences 99.12 (2002): 7821-7826.



EMMUNITY STRUCTURKESS-
ReAL GRAFRS

* If you plot the graph of your facebook friends, it looks like this

cluster
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COMMUNITY STRUCTURE IN
REAL GRAPHS

« Connections In the brain ?

A

O = Occipital

O = Central

O = Frontoparietal
@ = Default mode
[] = Rich club

Deactivations




COMMUNITY STRUCTURE IN
REAL GRAPHS

* Phone call communications in Belgium ?




FIRST METHOD BY GIRVAN &
NEWMAN

» | )Compute the betweenness of all edges
BARERiioVe The edge of highest betweenness

* 3)Repeat untll all edges have been removed

» Connected components are communities

« => |t Is called a divisive method
» =>What you obtain Is a dendrogram

BEIGW TO cut this dendrogram at the best level ¢



NEWMAN

Cluster Dendrogram
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FIRST METHOD BY GIRVAN &
NEWMAN

* Introduction of the Modularity

* The modularity 1s computed for a partition of a graph

» (each node belongs to one and only one community)

* [t compares :
» The observed fraction of edges inside communities

» To the expected fraction of edges inside communities In a random network
RO cived - Expected



MODULARITY INTUITION

W

= 11




MODULARITY INTUITION

n=3 d(G) = p(u, v) . H 039
— i = — R
= 11 3 %8(8—1) 28

p(u,v) = 0.39




MODULARITY INTUITION

n=3
=1k
p(u ()30
ER random graph
Expected edges inside red (or green) A= %
(#node pairs * prob to observe an edge) D g

Modularlty_2(5 2.34) — 48



MODULARITY INTUITION
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MODULARITY INTUITION

0%

i

el

&

o

p=0.39
Q= (5-6p)+(5-6p)=10-12p=532
Q=(3-3p)+ alz = To="1
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MODULARITY INTUITION
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BODULARITY NULL MOES.

* In previous examples, we used ER as a null model

» Usual approach: configuration model as null model

» Preserves each node’s degree
k k.

4 uav o
p(u,v) 5



MODULARITY

Original formulation



MODULARITY

d(cy, Cw)

Sum over all pairs of nodes



MODULARITY

— Av'w — | ) )
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| It In same community



MODULARITY

| If there 1s an edge between them



MODULARITY

Probability of an edge In
a configuration model



MODULARITY

@ i llceihe dcliince
as a sum by community

with L; = L(H (¢;)) the number of edges inside community ¢ and
Ki =), cc, ku the sum of degrees of nodes in community <.



FIRST METHOD BY GIRVAN &
NEWMAN

* Back to the method:

» Create a dendrogram by removing edges
» Cut the dendrogram at the best level using modularity

* =>|n the end, your objective Is... to optimize the Modularity,
right ¢

* Why not optimizing it directly !



BODULARITY OP [ IMIZATCES

* From 2004 to 2008: The golden age of Modularity

» Scores of methods proposed to optimize it

» Graph spectral approaches
» Meta-heuristics approches (simulated annealing, multi-agent...)
» Local/Gloabal approaches...

» => 2008: the Louvain algorithm



LOUVAIN ALGORITHM

* SImple, greedy approach
» Easy to implement
» Fast

* Yields a hierarchical community structure

» Efficient and convenient open-source code



LOUVAIN ALGORITHM

Fach node start in its own community

B CpEatuntil convergence

» FOR each node:

- FOR each neighbor:
it adding node to its community increase modularity, do it

* When converged, create an induced network

» Fach community becomes a node

» Edge welight Is the sum of weights of edges between them

» /\: Modularrity on the induced graph Is equal to Modularity computed on the
oraph Itself, just a “trick’ to search a better optimum

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



LOUVAIN ALGORITHM

Move nodes

Level 1
Level 2
Mave nadec
T — ——————

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



RESOLUTION LIMIT

* Modularity == Definition of good communities !

» 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]
» The resolution limit of Modularity

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.



RESOLUTION LIMIT

Let's consider a ring of cliques
R OF \ o ' |
L S Cliques are as dense as possible

Single edge between them:
B =>As separated as possible

Any acceptable algorithm=>tach cligue I1s a community



RESOLUTION LIMIT

But with modularity:
Small graphs=> OK

Large graphs=>
The max of modularity obtained
by merging cliques




RESOLUTION LIMIT

» Discovery that Modularity has a “favorite scale”:

* For a graph of given density and size:

@G ramtRities eannot be smaller than a fraction of nodes

- Modularity optimization will never discover small communities
In large networks



RESOLUTION LIMIT

» Multi-resolution modularity

ieii—aiz * Ze — la?

A = Resolution parameter

Mi®kea patch than a solution. ..



APPROXIMATION

» Modularity is an exact null model for

» A multigraph
» With self-loops

» Applied to simple graphs, it Is a reasonable approximation for

» large, sparse graphs

» with large communities

» Without too many giant hubs
k k

v

=> > 1=>negate modularity on a node pair even if edge present

2m



OTHER WEAKNESSES

» Modularity has other controversial/not-inturtive properties:

» Finding communities in random graphs:

- Network without community structure: Max modularity for partitions driven by random
noise + approximation

» Global measure => a difference in one side of the network can change
communities at the other end (imagine a growing clique ring...)

» lo this day, Louvain and modularity remain most used
methods

» Results are usually “good™/useful
» [t's a “standard” tool, like k-means or linear regression
» Actually more and more challenged[ | ]

[1] Peixoto, T. P. (2023). Descriptive vs. inferential community detection in networks: Pitfalls, myths and half-truths. Cambridge University Press.



OTHER WEAKNESSES

Py K’g Tiago Peixoto

% g Otiagopeixoto

Friendly reminder that modularity maximization is not a good way of
uncovering communities in networks. It overfits and underfits massively
—vyields no information on statistical significance at all — and is heavily

biased in important ways.

skewed.de/tiago/blog/mod...
#netsci2023

ey
N

‘*‘ skewed.de

~ af: Modularity maximization considered harmful

0 \ Tiago Peixoto's blog: network science, inference, and other

9:34 AM - Jul 13, 2023 - 10.8K Views



ALTERNATIVES

» 1000+ Algorithms published, and counting

» Common saying:
» “"No algorithm s better than another; it depends on the type of network™(no
free-lunch theorem)

» " The best method depends on the objective”

» Still an open question In the field



ALTERNATIVES

» Most serious alternatives (in my opinion)

» Infomap (based on information theory —compression)
» Stochastic block models (bayesian inference)

* [hese methods have a clear definition of what are good
communities. [ heoretically gsrounded



INFOMAP



INFOMAP

* [Rosvall & Bergstrom 2009]

* Find the partition minimizing the description of any random
walk on the network

* We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.



INFOMAP

1111100 1100 0110 11011 10000 11011 0110 0011 10111 1001 1 101 100 101 01 0001 O 11

0011 1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1011 10 111 000 10 111 000 111 10 011 10 000 111 10 111 10

111010001 0111 11100111 11101111101 1110 0000 10100 0000 001110 000 1 1

111010001 0111 010010110 11010 10111 1001 0100 1001 10111 000110011100111 110111 1101011 111 01 101 01 0001 0 110 111
10010100 100101000011 0100 0011011011011 0110 0011 0100 01

100110111 0011 0100 0111 10001 1110 10001 0111 0100 10110 1010 010 1011 110 00 10 011 110

111111 10110 10101 11110 00011

Description

Without With communities
Communities

Random
walk

Huffman coding: short codes for frequent items
Prefix free: no code is a prefix of another one (avoid fix length/separators)




The Infomap method
Finding the optimal partition M:

- Shannon’s entropy
L(P)=H(P)=- ) pilogp;

- Minimise the expected description length of the random walk
Sum of Shannon entropies of multiple codebooks weighted by the rate of usage

probability of within modules movements

probability of between modules of a RW, i.e. the rate of usage of the

movements of a RW, i.e. the rate of
module codebook

usage of the index codebook \ - / |
LM) = g~H(2) + 2, pLH(P)

/ Pom X

Exoected decrvotion Entropy of movement between o ,
P Typ modules, i.e. the frequency weighted Entropy of mqvement inside modules, i.e. the
length of partition M frequency weighted average length of

average length of codewords :
codewords in the module codebook

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.



INFOMAP EXAMPLE
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INFOMAP

* [o sum up:

» Infomap defines a quality function for a partition different than modularity
» Any algorithm can be used to optimize it (like Modularity)

» Advantage:

» Infomap can recognize random networks (no communities)

- Impossible to compress random noise



EC HAS | 1C BLOCK MO S



e HAS 1 1C BLOCK MO S

» Stochastic Block Models (SBM) are based on statistical
oenerative models of networks

* They are In fact more general than usual communities.

* [he model Is;

» Each node belongs to | and only | community
- (Relaxed versions exist)

» [o each pair of communirties, there Is an associated density (probability of each
edge to exist)



Stochastic block models

Stochastic Block Models (SBM)

A stochastic block model is a random graph model defined by:

b

E

n X 1 vector such as b; describes the index of the
block of node 1.

k x k stochastic block matrix, such as FE;; gives
the number of edges between blocks i and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).

|

: | LU 010 010 0.10
0.10 ).5( 0.10 0.10
0.10 0.10 UELEN 0.10

-
I-II-I-
[T1



Stochastic block models

Stochastic Block Models (SBM)

A stochastic block model is a random graph model defined by:

b n X 1 vector such as b; describes the index of the
block of node 1.
15, k x k stochastic block matrix, such as FE;; gives

the number of edges between blocks i and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).

Generating networks
1. Take n disconnected nodes

2. Connect each u,v € V' nodes with probability Epq,sn)

Properties:
« Every vertices in a same module are statistically equivalent
 Vertices in a module are connected by a random graph

- Emergent degree distribution is a combination of Poisson distributions



e HAS 1 1C BLOCK MO S

» SBM can represent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

2

(5) Uniform/ Random

3

0 2 3

0 2 3 \C)
(3) Core Periphery Structure

0.05

0.3 0.05

2 3

(6) Mixed Structure

0.4 0.15

0.3 0.08

0  0.025 -®
" 0025 0
0 2 3 0 2 3 ©
(4) Hierarchical Structure (7) Nested Structure

(2) Disassortative Structure



e HAS 1 1C BLOCK MO S

» SBM can represent different things
* This is very powerful and potentially relevant

* Problem: Often hard to interpret in real srituations.

» SBM can be “constrained':
- we impose that intra d.>inter d.
- We impose all Inter d/intra d to be homogeneous



SBM INFERENCE

* Inturtion: We want to discover the parameters of the model
that maximize the likelihood of generating the
observed graph

o\

» b =argmax, p(A|b,E)

» Can be equivalently formulated using information theory as an
information compression problem

» Minimize the number of bits required to encode the graph, given the
model

S — — log,P(A|b,E)



INTUITION

Bl
i

Microcanonical version
(counting possible graphs/configurations)

block ¢ can generate x possible simple graphs.
Whatever the graph, its encoding cost is thus 10g,(x)

Nb. possible configurations red !

Nb. possible configurations green !
Nb. possible configurations inter ¢




INTUITION

Bl
i

RE :) — 10g2(6) 6 different configurations for 5 nodes among 6 pairs
GREEN = log,(6)
|NTER — 10g2(4 G 4) | 6 different configurations for | edge with 4 possibilities on each side

Objective: find RED and GREEN
To minimize this encoding cost




SBM INFERENCE

* Problem: trivial solution

» Each node In its own cluster
SRE—"A

- Probabllity of | to generate the observed network

B s cle solution: Tix a number of clusters k



(IN DETAILS)



OBl SIMPLE GRAFFS

» Probability to generate a given graph with a given b, E
(likelihood (A | b, E))

» Note that for a given A, b, maximizing E is trivially obtained as the fraction of
edges existing between each block parr.

» Assuming a simple graph, Bernouilli distribution

» Product of probability for each observed edge to be present and for each non
existing edge to be not present

AlbE) = l

1<j



SBM POISSON

« Different statistical models can be used

» The poisson model is a popular choice (simple computation)

» Poisson distribution of edges:

» Assume possibility of multiple edges between nodes

- But little difference in practice for sparse graphs

(Eb,.bj)A”j =

X P(Alb,E):H A ' e Ebibj
i<j y-

/1/{
_ Since Poisson PMF: P(k) = Fe"l

- With 4 the probability to observe an edge
- Here | ignore self-loops for simplicity

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical review E, 83(1), 016107.



DC-SBM

* As with modularity, we would like to preserve nodes degrees

» Else, high-degree nodes tend to end up In a same community, since they are
“densely connected” (but expected according to degree)

(Qi‘ngbibj)Aij

PA|bE0) =] e
- Al
i<j Y
» @ is a vector corresponding to nodes degree

» As E, optimal @ can be deducted from b, A:
k

0. = — with K, the sum of degrees in i's cluster
Kp. l

l

_Qi‘ngbibj

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical review E, 83(1), 016107.



SBM INFERENCE

[ ikellhood maximization:
y b = argmax, p(A | b, E, 0)

» Leads to quality functions simple to optimise.
» Poisson, with self-loops, log and without unnecessary constant:

CZAIb) = Y m,log =2

1,1

\)

B Cliiiendestee corrected
mFS
~ ZA|b) =) m,log

rs

KK

» With
- m,, :number of edges between blocks r, s
- n,:number of nodes in block r

- k.. sum of degrees on block r

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical review E, 83(1), 016107.



MDL SBM

w D u«.wlq
" skewed.de
T.' Modularity maximization considered harmful

Tlago Peixoto's blog: network science, inference, and other

{'J : 4;&’ things.

[ZO | 6 Perxoto]

Non-parametric SBM
» Bayesian inference
» Minimum Description Length (MDL) (Occam’s razor)

9:34 AM - Jul 13, 2023 - 10.8K Views

Bayesian Formulation

RE@s

P(A|b) = P(A|6.E, b)I:D(H |E, b)P(E| b)P(b:)

Peixoto, Tiago P. "Bayesian stochastic blockmodeling." arXiv preprint arXiv:1705.10225 (2017).



e HAS 1 1C BLOCK MO S

Information Theoretic Formulation
P(A,0,E,b) =27* >=S+L

= lOgZP(A ‘ 9, E, b) # bits necessary to encode the

graph knowing the model

= — lngp(Q, E, b) # bits necessary to encode the model

Objective = maximize the graph compression.

-Too many communities: over-complexifying the model

-Too few communities: More costly to encode the graph, since the model provides few
useful information

Occam’s razor

Peixoto, Tiago P. "Bayesian stochastic blockmodeling." arXiv preprint arXiv:1705.10225 (2017).



e HAS 1 1C BLOCK MO S

e sumi Lp:

SBM have a convincing definition of communities
Have a richer expression power

Can also say If there i1s no community

And also suffer from a form of resolution limrt

v

v

v

v

» Gain popularity since works by Peixoto.

» Variants:
- Overlapping (Mixed membership, Fuzzy)
- Hierarchical



EVALUATION OF
COMMUNITY STRUCTURE



EVALUATION

* lwo main approaches:

» Intrinsic/Internal evaluation
- Partrtion quality function
- Individual Community quality function
» Comparison of observed communities and expected communities

- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION



INTRINSIC EVALUATION

» Partition quality function
» Already defined: Modularity, graph compression, etc.

» Quality function for individual community

» Internal Clustering Coefficient

PE
t
, Conductance: =
|E0ut|+|Ein| FE. | S
- Fraction of external edges # of links to nodes inside

(respectively, outside) the
community



COMPARISON WITH
GROUND TRUTH



SYNTHETIC NETWORKS

« Planted Partition models:

» Another name for SBM with manually chosen parameters
- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

» Problem: how to choose parameters!?

- Erther oversimplifying (all nodes same degrees, all communities same #nodes, all intern
densities equals...)

- Or ad-hoc process (sample values from distributions)



SYNTHETIC NETWORKS




SYNTHETIC NETWORKS

* LFR Benchmark [Lancichinetti 2008]

» High level parameters:
- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of external edges of each node
» Varying the mixing parameter makes community more or less well defined

» Currently the most popular



SYNTHETIC NETWORKS

LFR Benchmark Networks with 200 Nodes

p=0.1 1=0.3
#Edges= 2206 #Edges=2628 #Edges= 2462

1 — T ——==———



SYNTHETIC NETWORKS

* Pros of synthetic generators:

» We know for sure the communities we should find
» We can control finely the parameters to check robustness of methods

- For instance, resolution limit. ..

M@ ons:

» Generated networks are not realistic: simpler than real networks
- LFR:High CC, scale free, but all nodes have the same mixing coefficient, no overlap, ...

- SBM: depend a lot on parameters, random generation might lead to unexpected ground
truth (it Is possible to have a node with no connections to other nodes of its own
community...)



REAL NETWORKS WITH GT

* In some networks, ground truth communities are known:

» Social networks, people belong to groups (Facebook, Friendsters, Orkut,
students In classes...)

» Products, belonging to categories (Amazon, music...)

» Other resources with defined groups (Wikipedia articles, Political groups for
vote data...)

» Some websites have collected such datasets, e.g.
» http://snap.stanford.edu/data/index.ntml|



http://snap.stanford.edu/data/index.html

REAL NETWORKS WITH GT

e Pros of GT communities:

» Retain the full complexity of networks and communities

RE GRS

» No guarantee that communities are topological communities.

» In fact, they are not: some GT communities are not even a single connected
component...

» Currently, controversial topic

» Some authors say It Is non-sense to use them for validation
» Some others consider It necessary



REAL NETWORKS WITH GT

* Example: the most famous of all networks: Zackary Karate
Club

) (@)
(L
SN )
oZAloN\wdo
§ 7/ \\'G It your algorithm find the right
Q"ng@," ® 0" communities,

“i‘ 24D W Then it is wrong...
e X ®
— N




MEASURING PARTITION
SIMILARITTES

@ inietc or Gl we get:

» Reference communities
» Communities found by algorithms

* How to measure their similarity?

» Same as for the clustering task in unsupervised machine learning
» NMI => AM|

» AR



MEASURING PARTITION
SIMILARITTES

H(X)

 NMI: Normalized Mutual Information

» Classic notion of Information Theory: Mutual Information

» How much knowing one variable reduces uncertainty about the other
» Or how much in common between the two variables

-5 g (2

VoY 2o X z) p(y)

* Normalized version: NM|
» O: iIndependent, |: identical

MI(U,V) - E{MI(U, V)}

2 Adjusted fOI” chance: aNMI s max {H(U), H(V)} — E{MI(U,V))

H(Y



ALGORITHMS COMPARATIVE
ANALYSIS

Rank | Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gee 32

All methods Overlapping only

Coscia, Michele. "Discovering Communities of Community Discovery." arXiv preprint arXiv:1907.02277 (2019).



I HER MESO-5CALR
ORGANIZATIONS



MESO-SCALE

* MACRO properties of networks:

» degree distribution, density, average shortest path...

* MICRO properties of networks:

» Centralities

« MESO-scale: what Is In-between

» Community structure

» Overlapping Community Structure
» Core-Periphery

» Spatial Organization



CORE-PERIPHERY

Figure 4 -~ Core/Periphery Network

P — T—

Core-periphery structure in networks  adjacency matrix
core periphery

core

@ inner core :,:-..'...t.;.'.;:' — L

@ outer core I i o " i

® periphery RN ” B,
——————————

—— edge (source colour)

....-----_7 T




OVERLAPPING COMMUNITIES

* In real networks, communities are often overlapping

» Some of your High-School friends might be also University Friends
» A colleague might be a member of your family

ARSI

» Overlapping community detection is considered much harder

» And Is not well defined



OVERLAPPING COMMUNITIES

» Many algorithms

» Adaptations of modularity, random walks, label propagations, SBM. ..
» Original methods

» Many local methods (local criterium), unlike global optimization for non-
overlapping methods.



OVERLAPPING COMMUNITIES

« Motif-based definitions:

» Cliques
= Of a given size

- Maximal cligues
» N-cliques
- Set of nodes such as there is at least a path of length <=N between them
- Generalization of cliques for N> |
- Computationally expensive



K-CLIQUE PERCOLATION

* (Other name: CPM, C-finder)
* Parameter: size k of atomic cliques
* | )Find all cliques of size k

» 2)merge Iteratively all cliques having k-1 nodes iIn common



K-CLIQUE PERCOLATION

9
10

2 5 7 Cliques for k=3:
1 {1,2,3},{1, 3,4},{2, 5, 6}
{5,6,7},15,6,8},{6, 7,8}

{5,7,8},{5, 7,9}

3 4 6 8
k-clique Communities: {2,5.6} {1.2,3}
{1, 2, 3, 4}
{2, 5,6,7,8, 9} {5,6,7}_ {5,6,8}

(57.9) (1.34)

(5,7,8} {6,7,8}




K-CLIQUE PERCOLATION

* Weakness: communities can be very far from random

networks

T S




HIERARCHICAL
COMMUNITIES

Lancichinetti, Andrea, et al. "Finding statistically significant communities in networks." PloS one 6.4 (2011): e18961.



Link clustering - overlapping communities
Link graphs

- Links are replaced by nodes which are connected if the original
links share a node

N o

=

8 M o
B %

- Community detection on link graphs allows for overlapping
communities
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LINK PREDICTION

* Do you know why Facebook “People you may know'' Is so
accurate!

* How youtube/Spotify/amazon recommend you the right item?

» =>Link prediction
» More generally, recommendation, but link prediction is a popular way to do it

9



LINK PREDICTION

« Observed network: current state

* Link prediction: What edge

» Might appear Iin the future (future link prediction)
» Might have been missed (missing link prediction)

0



LINK PREDICTION

« Overview:

- Link prediction based on network structure:

» Local: High clustering (friends of my friends will become my friends)
» Global: Two unrelated hubs more likely to have links that unrelated small nodes

» Meso-scale organisation: different edge probability for nodes in different
communities/blocks

» Link prediction can also be based on node properties

» €.8, age, revenue, gender, etc.
» Combining with usual machine learning, outside of the scope of this class
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HEURISTICS

 Network science experts can design heuristics to predict
where new edge might appear/be missing

* Principle: design a score based on network topology f(vI,v2)
which, given two nodes, express their likeliness of being

connected (if they aren't already)

» Common neighbors
» Jaccard coefficient
Hub promoted
Adamic Adar
Ressource allocation
Community based

v

v

v

v

Zhou, T., LU, L., & Zhang, Y. C. (2009). Predicting missing links via Iocalcjgormation. The European Physical Journal B, 71(4), 623-630.



COMMON NEIGHBORS

* “Friends of my friends are my friends”
* High clustering in most networks

* =>The more friends In common, the highest probabllity to
become friends

CN(z,y) = [I'(x) N I'(y)

S

['(x) = Neighbors of x i



PREDICTION

* How to predict links based on Common Neighbors (CN)?

Original Graph Heuristic

(e.g., Common Neighbors) Node pairs sorted

by score
(D,C) A More likely

Q’Q :> (D,C)=2 :>
‘ (D,E)=0 (A.E)
e e (A,E)=1 (D,E) Less likely
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C CARD COEFFICIERSS

» Used In many applications:
» Measure of similarity of sets of different sizes

I(x) N ()
I() UT ()|

JC(z,y) =
 Inturtion:

» Two people who know only the same 3 people
- =>high probabllity

» Two people who know 000 people, only 3 in commons
- =>Lower probability

101



ADAMIC ADAR

turtion:

-or previous scores: all common nodes are worth the same

For AA:

- A common node with ONLY them in common Is worth the most
- A common node connected to everyone Is worth the less
- The higher the size of its neighborhood, the lesser its value

1
AA _
@)= 2 e
zel'(x)NI'(y)

102



BREFEREIN [ AL Al TACHMENSS

* Preferential attachment:

» BEvery time a node join the network, it creates a link with nodes with probability
broportional to their degrees

» In fact, closer to the definition of the configuration model

» Score not based on common neighbors
» =>Assign different scores to nodes at network distance >2

* Inturtion: Two nodes with many neighbors more likely to have
new ones than nodes with few neighbors




DT HER SCORES

Examples of other scores proposed

Sorenson Index Salton Cosine Similarity
oy @) N T) N I'(z )ﬂf’(y)l
> 9) ()| + [1'(y)] S0l ) = VIT(@)|- |1 (y)
Hub Depressead Leicht-Holme-Nerman
HD(z.g) — 7@ O TW) LHN(z,y) — I'(z) N 1'(y)]

maz (| (z)|, T (y)|) '(x)| - |1 (y)

—— —
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EOMMUNITY S TRUCTFUSS

* (General Idea:

» | )Compute community structure on the whole graph
» 2)Assign high score for 2 nodes in a same community, a low score otherwise

* How to choose the score!

105



EOMMUNITY S TRUCTFUSS

* For methods based on a quality function optimization
(Modularity, Infomap’s information compression, etc.)

» Assign a score to each pair proportional to the change in quality function
assoclated with adding an edge between them

* For Instance, Louvain optimize Modularity.
» Each edge added between communities:

- Decrease in the Modularity
» Edge added inside community:

- Increase in Modularity, depends on properties of the community and nodes

Ghasemian, A., Hosseinmardi, H., & Clauset, A. (2019). Evaluating overfit and underfit in models of network community structure. IEEE
Transactions on Knowledge and Data Engineering.
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DT HER SCORES

* Distance based:

» Length of the shortest path
» Probability to reach a node from another on a random-walk of distance k

- See next classes on embeddings

» Number of paths of length d between the nodes

* Problem: computational complexity

107



ML APPROACH TO LINK PREDICTION:

SIMILARITY SCOHRE
SUPERVISED




SUPERVISED MACHINE
L EARNING

* Use Machine Learning algorithms to learn how to combine
heuristics for optimizing predictions

@iliVo steps:

» Training: show features + value to predict
» Using/Validating: try to predict value from features

109



SUPERVISED MACHINE
L EARNING

REEIeattres: similarty indices (CN, AA, FA, )

» One (limited interest) or; obviously, several
» Nodes attributes can be added of avallable (age, salary, etc.)

* Our label/value to predict: Link(l) or No link(0) (2 classes)

* [ hese types of ML algorithms are called classifiers

» Logistic Classifier

» Decision Tree Classifier

» Neural networks Classifier
>
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SUPERVISED MACHINE

L EARNING

ML training

Training set

and Examples

With

Edge
D,C 0

0
1
1

ML Algorithm
Logistic,
Classification Tree,
Neural Networks,
etc.

Original Graph

Trained Model
f(H1,H2)->p(1)

Node pairs for prediction

> -

Pair | H1 | H2
AE|1]3
BE|1]3

2 ) Prediction

Pair | H1 | H2 | Edge
| > AE|1|3]031
B.E| 1|3 |024

Node pairs sorted

by score
More likely
i> (AD)
(B’ E) Less likely



SUPERVISED MACHINE
L EARNING

» Scores of methods, very different Iin their mechanisms, but
same Input and output

#lm = linear_model.LinearRegression()

#lm = linear_model.ElasticNet()

#lm = linear_model.ElasticNet()

#lm = ensemble.GradientBoostingRegressor()
#1lm = ensemble.RandomForestRegressor()

lm = MLPRegressor(hidden_layer_sizes=(3,3,3)

Wm.fit(X_train,y_train)|

O — R

Let's see 2 simple examples: Logistic classification,
Dedsion licces

112




https://en.wikipedia.org/wiki/Logistic_regression

EOGIS | 1C CLASSIFICATICHS

» Value to predict y, /
» 0 (no edge) 0.
» | (edge) /

* | Inear relations between variables °
= L e R ol V6 P

SO, Dy, - - . that minimizes y, — V;

|13



DECISION TREES

» Measure of heterogeneity (Gini, entropy. . .)

» Split recursively data in 2 to maximize homogenerty in child
nodes

petal length (cm) <= 2.45
gini = 0.6667
samples = 150
value =[50, 50, 50]

class = setosa

True N:allse

petal width (cm) <= 1.75
gini=0.5
samples = 100
value = [0, 50, 50]

class = versicolor

petal length (cm) <= 4.95
gini =0.168
samples = 54

value = [0, 49, 5]
class = versicolor

gini = 0.0408 gini = 0.4444 gini = 0.4444
samples = 48 samples = 6 samples =3
value = [0, 47, 1] value = [0, 2, 4] value = [0, 1, 2]
class = versicolor class = virginica class = virginica

L —

| 4 https://en.wikipedia.org/wiki/Decision_tree



DECISION TREES

* Example of possible outcomes with a decision tree:

RN |

» |[F PA>1000 => Predict |
=i E=— Predict O

e
» IF PA > 10000 => Predict |
: [ESE
Slg. " |0 == Predict |
- o) =

s @ 0.0 == Predict 0

iz



NODE CLASSIFICATICHS

Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in soc]:irfxlénetworks. In Social network data analytics (pp. 115-148). Springer, Boston, MA.



NODE CLASSIFICATION

* For the node classification task, we want to predict the class/
category (or numerical value) of some nodes

» Missing values In a dataset

» Learn to predict, in a social network/platform(Netflix...) individuals':
- Political position, opinion on a given topic, possible security threat, ...
- Interests, tastes, etc.
- Age, gender, sexual orientation, language spoken, salary, etc.
- Fake accounts, spammers, bots, malicious accounts, etc.

» Wikipedia article category, types of road in an urban network; etc.

|17



NODE CLASSIFICATION

Single vs.
In Relationship

Parents together at 21
Smokes Cigarettes

Drinks Alcohol

Example of risks

Uses drugs

Caucasian vs.
African American

Christianity vs. Islam

Democrat vs.
Republican

Jernigan, C., & Mistree, B. F. (2009). Gaydar: Facebook friendships expose sexual
orientation. First Monday, 14(10).

Gay

Lesbian

Gender

I 1 1 1 1
0.00 0.25 0.50 0.75 1.00

Area Under Curve

~ Fig. 2. Prediction accuracy of classification for dichotomous/dichotomized
~ attributes expressed by the AUC.
——

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are plr?§ctable from digital records of human behavior. Proceedings of the National Academy of
Sciences, 110(15), 5802-5805.




NODE FEATURES

 Non-network approach: Use a classification algorithm based
on features of the node Itself (age, salary, etc.)

* [ he network structure can be integrated using node
centralities: Degree, clustering coefficient, betweenness, etc.

« But we can do much better:

» “Tell me who your friends are, and | will tell you who you are”
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NEIGHBORHOOD BASED
CLASSIFICATION

« Classification based on the distribution of features in the
nelighborhood

* For each node, compute the distribution of labels In its
neighborhood (vectors of length m, with m the set of all
possible labels)

» Pick the most frequent
- e.g, political opinions
» Train a classifier on this distribution

- e.g, distribution of age, language In the neighborhoods to recognize bots (unexpectedly
random)
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