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WHO AM |

» Rémy Cazabet
» Assoclate Professor (Maitre de conferences)
Elnversite Lyon |

» LIRIS, DM2L Team (Data Mining & Machine Learning)

» Computer Scientist => Network Scientist

* Member of [XX]



BESOURCES

* Website of the course:

»  http://cazabetremy.ir/ Teaching/ CN/ComplexNetworks.ntm
» Slides, Cheat sheets, notebooks, etc.

» Contact me: remy.cazabet@univ-lyon | ir



http://cazabetremy.fr/Teaching/CN/ComplexNetworks.html
mailto:remy.cazabet@univ-lyon1.fr

CLASS OVERVIEW

-->
Day Time Room Teacher Topic Resources

Thursday 8h00- = Rémy Lecture: Introduction, Describing CheatSheet_intro - CheatSheet_matrices -
Sep. 12 10h00 Cazabet Networks, Centralities CheatSheet_centralities - Slides
Thursday 10h15- Célestin : ) . .

Sep.26 12M5 F Coquidé Experiments: Gephi, networkx intro

Thursday 10h15- Rémy )

Oct.03 12h5 F e Lecture: Random Graphs

Thursday 10h15- Célestin - .

Oct. 17 12h15 F Coquidé Experiments: Random Graphs

Thursday 10h15- Rémy ) s :

Oct. 24 12h15 F Cazabet Lecture: Communities + ML classic

Thursday 10h15- F Pierre Spreading processes ; Dynamic on

Nov. 7 12h15 Borgnat networks

Thursday 10h15- Célestin . , -

Nov. 14 12h15 F Coquidé Experiments: Communities

Thursday 10h15- Pierre . .

Nov. 28 12h5 F Borgnat Graph Signal processing

Tuesday 10h15- F Pierre Representation Learning for graphs ;

Dec. 3 12h15 Borgnat embeddings

Thursday 10h15- = Rémy Lecture: Dynamic of Networks + dynamic

Dec.5 12h15 Cazabet communities

Thursday 10h15- Célestin ; _ :

Dec. 12 12h15 F Coquidé Experiments: Dynamic of networks

Tuesday 10h15- Célestin -

Dec. 17 12h5 F Coquidé Higher Order Networks



EVALUATION

* 50% Project (Mostly my part)

* 50% Final Exam (both parts)

s ioject
» In groups of 2 or 3.

» Apply class content to analyze a network of your choice
» More detalls later



e TS

* No need to write down definitions, etc.

» Slides, Cheatsheet

» Questions welcomed

Network Science
Cheatsheet

Made by
é UNIVERSITE Remy Cazabet
() DE LYoN

1 Network Basics

Networks: Graph notation

Graph notation : G = (V, E)
v

set of vertices/nodes.
E set of edges/links.
u anode.
(w,v) € B an edge.

Types of networks

simple graph: Edges can only exist or not exist between each pair of node.
Directed graph: Edges have a direction: (u, v) € V does notimply (v, u) €
v

Weighted graph: A weight is associated to every edge.

iner types of graphs (muligraphe, multpartie. e @
Network ph notatio
Graph Graph notation

G=(V.E)
V ={1,2,3,4,5,6}
E = {(0,1),(0,5), (0,4),
(1,2),(1,3),(1,4), (1,5),
(5,4),(4,4),(2,3)}

Counting nodes and edges

N/n | size: number of nodes [V/|.
L/m | number of edges |E|
Limas | Maximum number of links

Undirected network (’;) — NN -1)/2

N

Directed network: ( )

):N(Nfl)

Network descriptors 2 - Paths

£ | Diameter: maximum distance between any pair of nodes,
(6) | Average distance:

1
O=m-n %du

Node-Edge description Degree distribution

N, Neighbourhood of u, nodes sharing a link with w.

ku Degree of u, number of neighbors | N, .

Ng* Successors of u, nodes such as (u,v) € E in a directed
graph

Nt Predecessors of u, nodes such as (v, u) € E in a directed
graph

kot Out-degree of u, number of outgoing edges |N2"*|.

kin In-degree of u, number of incoming edges [N:"|

Wy Weight of edge (u, v).

Su Strength of u, sum of weights of adjacent edges, s, =
=, wuo-

Network descriptors 1 - Nodes/Edges

(k) Average degree: Real networks are sparse, ie. typically
(k) < n. Increases slowly with network size, eg.. d ~
log(m)

d/d(G)| Density: Fraction of pairs of nodes connected by an edge in
G.

d = L/Lmax

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (eg. BABACE is a valid
walk)

Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length, Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

£, .: Distance: The distance between nodes u, v is the length of the short-
est path

The degree distribution is considered an important network property. They
can follow two typical distributions:

- Bell-curved shaped (Normal/Poisson/Binomial)
- Scale-free, also called long-tail or Power-law

ABell-curved distribution has a typical scale: as human height, it is centered
on an average value. A Scale-free distribution has no typical scale: as hu-
man wealth, its average value is not representative, low values (degrees) are
the most frequent, while a few very large values can be found (hubs, large
degree nodes).
0200
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K node degree

More detals later.

Subgraphs

subgraph H(W): subset of nodes W of a graph G = (V, E) and edges
connecting them in G. i.e., subgraph H(W) = (W, E'),W C V, (u,v) €
E' < wveEWA(uv)EE

Clique: subgraph with d = 1

Triangle: clique of size 3

Connected component: a subgraph in which any two vertices are con-
nected to each other by paths, and which is connected to no additional ver-
tices in the supergraph

Strongly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which
any two vertices are connected to each other by paths if we disregard di-
rections




COMPLEX NETWORKS

(NETWORK SCIENCE)

WHAT?
WHY?
WHY NOW?
Vil A FDIR




SCIENCE

» Science: understanding how things work
» The human body, the motion/characteristics of objects, societies, etc.

» Step |: understand properties of things and rules applying to
IREm

» Fall of objects, classifications of species, etc.
» Macro-scale properties: temperature, pression



SCIENCE

- 2)Great success of the 19/20 centuries: Reductionism

» lo understand things, | need to understand what they are
made of:

» A human body: organs, vessels => cells => DNA, proteins & stuff ==
pifclcatices . ..

» Objects: Organic compounds => atoms => protons/electrons/neutrons ==
stuff

« => Now we know. And then what!



SCIENCE

» 3) Iwo situations:

» The system is homogeneous and/or has a regular structure
- =>You can explain it with equations (statistical physics...)

» The system is heterogeneous and/or has a complex structure
- => Understanding each component is not enough to understand the system
- Understanding each neuron tells you little about how the brain works.
- Understanding how each individual works/behaves tells you little about societies
Reclc.

» => [ he structure/relations/interactions/organization matters.

» Networks allow representing complex heterogeneous organization



EOMPLEX S5YS TERSS

- Complex systems: Systems composed of multiple parts
in interactions

- Complex networks model the interactions between the parts

» A common framework applicable to many systems
» =>Many networks share similar characteristics
» =>Similar processes shape the networks
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WHO /¢

* Network scientists:
» Physicists
» Computer scientists
» Mathematicians
» Sociologists
» => Work on similar problems, with converging vocabularies and references

- Applied network scientists

» Geographers, biologists, social scientists, economists, etc.
» =>Experts of I)their domain, and i)complex networks analysis



ILES | ONE PUBLICATICHSS

1998: Wiatts & Strogatz - Small-World:
» 2nd Most cited paper of the year in Nature

|999: Barabasi & Albert - scale-free networks:

» Most cited paper of the year in Science

2002: Girvan & Newman - Community detection:
»  Most cited paper of the year in PNAS

2004: Barabasi & Oltvai - Network Biology:
»  Most cited paper (ever) in Nature genetics (checked 2023)

2010: Kwak et al. - What is Twitter; a Social Network or a News Media!
»  Most cited paper (ever) of the WWW conference (checked 2023)

2016:Kipf et al. - Semi-supervised classification with graph convolutional networks

» 26000+citations

As of 207



Materials

Lecture books

A athese
@ v 9 ®
OXFORD . - .‘, N Filippo Menczer, Santo Fortunato
Dynamical Processes on A4 NETWORKS "and Clayton A. Davi
Complex Networks el . :
p e Do e CROWDS A First Course in
| P ‘
: s MARKETS
N LN .7, SCIENCE
E ‘ i ) /A, ®
Mark e DAVID EASLEY
Newman N

JON KLEINBERG

Albert-Lasz|6 Barabasi

SCIENCE

Cavsxinoe

available free online available free online

Reviews

! . o . Physics Reports 486 (2010) 75-174
SIAM REVIEW (©) 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 167-256

Contents lists available at ScienceDirect

Contents lists available at ScienceDirect

Physics Reports

The Structure and Function of Physics Reports
Complex Networks* ER journal homepage: www.elsevier.com/locate/physrep

journal homepage: www.elsevier.com/locate/physrep

3 ,
SR Community detection in graphs Spatial networks

Santo Fortunato * Marc Barthélemy *

Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I, Italy

REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002

Contents lists available at ScienceDirect
Statistical mechanics of complex networks

Physics Reports 519 (2012) 97-125

Physics Reports
Réka Albert* and Albert-LaszI6 Barabasi

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/physrep

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The structure and dynamics of multilayer networks
Characterization and Modeling of weighted

sa,bx : 9@ s de i~ figh
Temporal networks S. Boccaletti*>*, G. iBlancom R Cdneado , Cl del Gen}lg) . 7
networks J. Gomez-Gardefies', M. Romance ¢, I. Sendifia-Nadal’¢, Z. Wang ",
Petter Holme #P<*, Jari Saramiki 4 M. Zanin ™"
2 IceLab, Department of Physics, Umea University, 901 87 Umed, Sweden
b Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
© Department of Sociology, Stockholm University, 106 91 Stockholm, Sweden
7 . 9 Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, 00076 Aalto, Espoo, Finland
Marc Barthélemy!, Alain Barrat?, Romualdo Pastor-Satorras®,

and Alessandro Vespignani?

...and many more...all of them on arXiv.org!


http://arXiv.org

Materials

Pop-science books

"Actpssibla and angaging A good introduction to the topic ” —Nature

DEGREES

THE $CIENCEOF
A-CONNECTED AGE

WITH ATNEW,CHAPTER

DUNCAN Jy WATTS

Guido Caldarelii & Michele Catar

NETWORKS

A Very Short Introduction

SMALL WORLDS and the
Groundbreaking
SCIENCE OF NETWORKS

NICHOLAS A. CHRISTAKIS, MD. PhD
ano JAMES H. FOVILER, PhD

’;
o P
“<r>

Connecdted

The Surprising Power of Our Social Networks

and How They Shape Our Lives

[ The'New Science

of Nétworks \ it

Albert-Laszlo Barabasi

+
THE

Formula

THE UNIVERSAL
LAWS OF SUCCESS

I have a copy I can lend



Materials

Specialized Journals

Volume 1 Number2 December 2013 ISSN 2051-1310 (PRINT)
ISSN 2051-1329 (ONLIINE)

— ourmacl of
Complex Networks
b,

VOL. 1 « 2013 « NO. 1

lAppHed
Network

€10z Joquieoag gz JequinN | SWn|oA

JINIIDSE NYOMIIN

A
WEE
7]

Science

Editors-in-Chief:
Hocine Cherifi- Ronaldo Menezes

SHUOMIBN XSIAUIOD) JO [PUINOP

L ¥ B
| | |

@I0IXO0

UNIVERSITY PRESS

ol N Xt CAMBRIDGE . \ :
www.comnet.oxfordjournals.org OXFORD . 7 L : ? UNIVERSITY PRESS ".H @_ SPrlngerOpen

NNIAEERILX HDEKE22

Peer Community In

Network F dt t int and postprint
\ . ree and transparent preprint and postprin
SCIGI’]CG recommendations in Network Science




INTERNSHIPS

* If you are interested In doing an internship in this domain, feel
liE=tteo contact me

* 'l officially propose some internships later

* One funded Ph.D:

» Building a complex systems model of volcanic plumbing systems
- Computer Science/Earth Science
- Lyon, France / Prague, Czech Republic



GRAPHS & NETWORKS



GRAPHS & NETWORKS

Network often refers to real systems
" WWW,

»social network

* metabolic network.

- Language: (Network, node, link)

Graph is the mathematical
representation of a network
*Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

N

person | friendship

neuron | synapse
Website | hyperlink
company jownership
ogene | regulation



GRAPH
REPRESENTATION



NETWORK REPRESEN TATIONS

Networks: Graph notation

Graph notation: G = (V, F)
Vv set of vertices/nodes.
E set of edges/links.
u eV a node.
(u,v) € E an edge.

Network - Graph notation

Graph Graph notation

G=(V,E)
V =1{1,2,3,4,5,6}
E={(1,2),(1,6),
(1,5),(2,4),(2,3),(2,5),
(2,6),(6,5), (5,5), (4,3)}




NETWORK REPRESEN TATIONS

G — (V. L)

» Often encoded as edge list or adjacency list

« Software: custom data structure and p— —

manipulation
» add_nodes([1,]]), add_edsge(i,)), ...

3 2 4
44444
4 68

* Libraries in many languages
» Networkx (python)
» igraph (python, C, R)
» Graph-tools (python, C)




Types of
Networks



Undirected networks

Opte project

G=(V E)
(uv) EE=(Hu €L

* The directions of edges do
not matter

* Interactions are possible
between connected entities
In both directions

&
\

The Internet: Nodes - routers, Links - physical wires



Directed networks

Moritz Stefaner, eigenfactor.com

G=(V E)
(u,v) EE =z (vu) €EE

* The directions of
edges matter

* [Interactions are
possible between
connected entities
only in specified
directions

\ Citation network: Nodes - publications, Links - references



http://eigenfactor.com

Weighted networks

Onnela et.al. New Journal of Physics 9, 179 (2007).

G=(V E, w)
w: (uv) EE=R

- Strength of
Interactions are
assigned by the
weight of links

Social interaction network: Nodes - individuals
Links - social interactions




Bipartite network

® O

Disease
Gene
Up-reg.
Dn-reg.

<

P AP o 0

2881

. Emﬂh 62

Genes (mostly up-regulated) by
SLE, FSGS, and MGN

Genes (mostly down-regulated) by
SLE, FSGS, MGN, and IgAN

" |gAN /
=2 /AN SN
Bhavnani et.al. BMC Bioinformatics 2009, 10(Suppl 9):S3

Gene-desease network:
Nodes - Desease (7)&Genes (747)
G=(U, V. E) Links - gene-desease relationship

ey =
Vuv)EE, ucUandveV



Multiplex and multilayer networks

G=(V E), i=1..M

* Nodes can be present in
multiple networks
simultaneously

* These networks are
connected (can influence
each other) via the
common nodes

[Mendez-Bermudez et al. 2017]

Gomes et.al. Phys. Rev. Lett. 110, 028701 (2013)



Temporal and evolving networks
=V, £y, (uv,td) € E;

t - time of interaction (u,v)
d - duration of interaction (u,v,t)

» Temporal links encode time varying interactions

G=(Vs, Er)
v(t) €V
(M,V,O EEt

» Dynamical nodes and
links encode the
evolution of the

b r=6.5 =

OC. C
network N Q,(,Cg > o b

vvvvvvvvvvvvvvv

Mobile communication network
Nodes - individuals
Links - calls and SMS



GRAPH REPRESENTATION

Node-Edge description

Neighbourhood of u, nodes sharing a link with w.

Degree of u, number of neighbors | N, |.

Successors of u, nodes such as (u,v) € FE in a directed
graph

Predecessors of u, nodes such as (v, u) € FE in a directed
graph

Out-degree of u, number of outgoing edges | N2**|.
In-degree of u, number of incoming edges | N" |

Weight of edge (u, v).

Strength of u, sum of weights of adjacent edges, s, =

D oy Wl




Node degree

Number of connections of a node
 Undirected network

* Directed network

2 0
1 \
In degree

1 1

1
. N,
Out degree




Weighted degree: strength




BESCRIP T ION OF GRAFEES



BESCRIP ION OF GRAFES

* When confronted with a graph, how to describe it/
* How to compare graphs?

* What can we say about a graph!?



3 Vi

Counting nodes and edges

size: number of nodes |V |.
number of edges | E|
Maximum number of links

N
2

Undirected network: (

— N(N —1)/2
)

Directed network: (




DENSITY

Network descriptors - Nodes/Edges

Average degree: Real networks are sparse, IL.e., typ-
ically (k) < n. Increases slowly with network size,
e.g., (k) ~ log(m)“

Density: Fraction of pairs of hodes connected by an
edge in G.

d = L/Lmax

9Leskovec, Kleinberg, and Faloutsos 2005.




DENSITY

#nodes | #edges | Density |
Wikipedia  1.5x105 30

.........................................................................................................................................................................

Twitter 2015 O 6 416

.........................................................................................................................................................................

Facebook | | 5 - | 570

Brain c. | 46

.........................................................................................................................................................................

Roads Calif. . - D7

.........................................................................................................................................................................

Airport | 21

Beware: density hard to compare between
oraphs of different sizes




DEGREE DISTRIBUTION

Normal Distribution Power Law Distribution

>

P(V) (humber of observations of value V)
P(V) (number of observations of value V)

V (value of observation) V (value of observation)

PDF (Probability Distribution Function)



DEGREE DISTRIBUTION

* In a fully random graph (Erdos-Renyi), degree distribution is
(close to) a normal distribution centered on the average
degree

* In real graphs, In general, it Is not the case:

» A high majority of small degree nodes
» A small minority of nodes with very high degree (Hubs)

- Often modeled by a power law
» More detalls later in the course



SUBGRAPHS

Subgraphs

Subgraph H (W) (induced subgraph): subset of nodes W of a graph
G = (V, E) and edges connecting them in G, i.e, subgraph H(W) =
(W,E",W C V,(u,v) € B/ < u,ve WA (u,v) €E

Clique: subgraph withd =1

Triangle: clique of size 3
Connected component. a subgraph in which any two vertices are con- @
nected to each other by paths, and which is connected to no additional ver-

tices in the supergraph @
Strongly Connected component: In directed networks, a subgraph in which

any two vertices are connected to each other by paths

Weakly Connected component: In directed networks, a subgraph in which Figure after Newman, 2010
any two vertices are connected to each other by paths if we disregard di-

rections

/O
SRS @ Nodes/Edges
O—0 ‘ __ | Inthe subgraph

.

original graph

not an induced subgraph

After “A. DZY Loves Physics”



EEUS | ERING COERRICIERNSS

* Clustering coefficient or triadic closure

* Iriangles are considered important in real networks

» Think of social networks: friends of friends are my friends
» # triangles Is a big difference between real and random networks



EEUS | ERING COERRICIERNSS

Triangles counting

9., - triads of u: number of triangles containing node u
A - number of triangles in the graph total number of triangles in the graph,

A = % D uey Ou

Each triangle in the graph is counted as a triad once by each of its nodes.

6, - - triads potential of u: maximum number of triangles that could exist

around node u, given its degree: §,'** = 7(u) = (kg)

A™** - triangles potential of G: maximum number of triangles that could
exist in the graph, given its degree distribution: A™#* = £ 3~ . §™%*(u)




EEUS | ERING COERRICIERNSS

Cw - Node clustering coefficient: density of the subgraph in-

duced by the neighborhood of u, C,, = d(H(Ny)). Also inter-
Oy

preted as the fraction of all possible triangles in V,, that exist, -4

O
O Triangles=2
4
Possible triangles= (2> =6
Edges: 2 C,=2/6=1/3

Max edges: 4*3/2=6
C,=2/6=1/3




EEUS | ERING COERFICIERSS

(C') - Average clusterlng coefficient: Average clustering coefficient of all
nodes in the graph, C = = > uecv C

Be careful when interpreting this value, since all hodes con-
tributes equally, irrespectively of their degree, and that low
degree nodes tend to be much more frequent than hubs,
and their C value is very sensitive, L.e,, for a node u of de-
gree 2, Cy, € 0,1, while nodes of higher degrees tend to
have more contrasted scores.

C'9 - Global clustering coefficient: Fraction of all possible triangles in the

graph that do exist, C'9 = ABTAaX



EEUS | ERING COERRICIERNSS

Global CC = Transrtivity

Transitivity vs. Average Clustering Coefficient

Both measure the tendency for edges to form triangles.
Transitivity weights nodes with large degree higher.

* Most nodes have

- \ /
AN  Most nodes have | ,
/Q % high LCC . ﬁ\ —  lowlCC
R

* The high degree High degree node
\4 Vl node has low LCC

have high LCC
—

Ave. clustering coeff. = 0.93 Ave. clustering coeff. = 0.25
Transitivity = 0.23 Transitivity = 0.86

https:// pyh_e—t_vvo rk.readthedocs.io/en/latest/connectivity.html



US| ERING COERFICIERSS

» Global CC:

» In random networks, GCC = density
- =>very small for large graphs

Network Size (k) C C Reference
WWW, site level, undir. 5327 35.21 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 ).18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 205206 61 07 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 043 1.8X10°* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 0.066 1.1x107> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 0.496 3%X10°* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 (115 ORG-S Barabasi et al., 2001
Neurosci. co-authorship 209 293 THIES) U Sl Barabasi er al., 2001
E. coli, substrate graph 282 oD 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph Bl 28.3 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 0.22 0.06 Montoya and Solé, 2000
Silwood Park food web 154 4.75 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 10 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 22311 13.48 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



1 RELATED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk)
Path: a walk in which each node is distinct.

Path length: number of edges encountered in a path

Weighted Path length: Sum of the weights of edges on a path

Shortest path: The shortest path between nodes u, v is a path of minimal
path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length.

¢, .- Distance: The distance between nodes u, v is the length of the short-
est path




B RELATED SCORES

Network descriptors 2 - Paths

Diameter. maximum distance between any pair of nodes.
Average distance:

1
= n(n — 1) ;dij




AVERAGE PATH LENGITH

* [ he famous 6 degrees of separation (Milgram experiment)
» (More on that next slide)

* Not too sensible to noise

» Tells you If the network Is “'stretched” or “hairball” like



SIDE-STORY: MILGRAM
EXPERIMEN T

R Orld experiment (60's) | RS \

' ' . North Dakota y
» Give a (physical) mail to random people T

» Ask them to send to someone they don't know =
- They know his city, job

» They send to their most relevant contact

» Results: In average, 6 hops to arrive

Texas




SIDE-STORY: MILGRAM
EXPERIMEN T

» Many criticism on the experiment rtself:

» Some mails did not arrive
» Small sample

» Checked on “real” complete graphs (giant component):

» MSN messenger
» Facebook
» [he world wide web



SIDE-STORY: MILGRAM
EXPERIMEN T

125' |
|
. Mean = 3.57
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SMALL WORLD

Small World Network

A network is said to have the small world property when it has some struc-
tural properties. The notion is not quantitatively defined, but two properties
are required:

+ Average distance must be short, i.e., (£) =~ log(N)

- Clustering coefficient must be high, i.e.,, much larger than in a ran-
dom network , e.g., C? > d, with d the network density

More on this during the random network class



NETWORK DESCRIPTORS

* Many other network descriptors exist:

» Modularrty (later in community detection class)

» Centralization (comparing the centrality scores between most central and less
central, see later)

» Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf
random network class

» Motif profiles (how often do specific subgraphs appear)
» Network Resilience (see practicals)
beelc.



PAPHEE T

2-nod i}

gm‘f)%]& 3-node graphlets 4-node graphlets
0 1
G, & @6 6 G

3- node graphlets
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AD|ACENCY MATRIX

The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is defined as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from 1to NV, and there is an
edge between nodes ¢ and j if the corresponding position of the matrix A; ;
is not 0.

- A value on the diagonal means that the corresponding node has a
self-loop

- the graph is undirected, the matrix is symmetric: A;; = A;; forany
i,7.
-+ In an unweighted network, and edge is represented by the value 1.

- In a weighted network, the value A;; represents the weight of the
edge (4, j)

A - Adjacency Mat.

(O 1 0 0 1 1\
1 0 1 1 1 1
O 1 0 1 0 O
0O 1 1 0 0 O
1 1 0 0 1 1
\1 1 0 0 1 O/




ADJACENCY MATRIX

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

Multiplying A by itself allows to know the number of walks of a given length
that exist between any pair of nodes: Afj corresponds to the number of

walks of length 2 from node i to node j, Afj to the number of walks of
length 3, etc.

Graph

A - Adjacency Mat.

0O 1 0 0 1 1

1 0 1 1 1 1

0O 1 0 1 0 O

0O 1 1 0 0 O

1 1 0 0 1 1

1 1 0 0 1 0
A2
3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
221133/



LAPLACIAN

Graph Laplacian

The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Ad-
jacency matrix, often used in Graph theory and Spectral Graph Theory.

It is defined as D — A, with D the Degree matrix of the graph, defined as a
N x N matrix with D;; = k; and zeros everywhere else.

Graph A - Adjacency Mat. D - Degree Matrix L - Laplacian
01 0 0 1 1 30 0 0 0 0 /3 —1 0 0 —1 —1\
1 0 1 1 1 1 0 5 0 0 0 0 —1-1-1-1
01 0 1 0 0 0 0 2 0 0 0 0 —1 2 -10 0
0 1 1 0 0 0 0 0 0 2 0 0 0 -1-12 0 0
T 0 0 00 5 0 ~1-10 0 4 —1
DL \0 0 0 0 0 3 \=1-10 0 —1 3




BEEC | RAL GRAPH | RECHSS

Spectral properties of L

Eigenvalues of the Laplacian have many applications, such as spectral clsu-
tering, graph matching, embedding, etc. Assuming G undirected with eigen-
values A\g < A1 < Ay < ...\, here are some interesting properties:

- The smallest eigenvalue \; equals O

- The number of O eigenvalues gives the number of connected com-
ponents

More with Plerre Borgnat



RANDOM WALK
MATRIX

Random Walk matrix

Another useful matrix of a graph is the Random Walk Transition Matrix R.

It is the column normalized version of the adjacency matrix. R;; can be un-
derstood as the probability for a random walker located on node 7 to move
to 3.

Graph A - Adjacency Mat. Random W. mat.
1 1 1
01 0 0 1 1 (05 9 9 1 3)
1 0 1 1 1 1 Il gll11

0 1 0 1 0 0 1,1
0 1 1 0 0 0 5 02 00
\1 1 0 0 1 1) 0 £ 5000

1 1. 0 0 1 0

L1004
\!Loo0 o



EAEMPLE Or GRAEH
ANALYSIS

» Source: [ The Anatomy of the Facebook Social Graph, Ugander
st 2l I0HEE

» The Facebook friendship network in 201 |



EAEMPLE Or GRAEH
ANALYSIS

» /21 M users (nodes) (active In the last 28 days)
* 63B edges
» Average degree: |90 (average # friends)

B dldnrdesree: 99

B inccied component: 99.9 17



EAEMPLE Or GRAEH
ANALYSIS

|

|

|

l

Fract
1e-07 1e-05 1e-03 1e-01

Degree distribution



Fraction
0.00 0.05 0.10 0.15 0.20

EAEMPLE Or GRAEH
ANALYSIS

- Age 20
w—  Age 30

Age 40
w—  Age 50
== Age 60
== Random edge

Age homophily

(More next class)

20 40 60 80 100
Neighbor’s age




EAEMPLE Or GRAEH
ANALYSIS

|

800 1000
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Neighbor’s average degree
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CENTRALITIES

Characterizing/Discovering important nodes



CENTRALITE

- We can measure nodes importance using so-called
centrality.

* Poor terminology: nothing to do with being central in general

Riicaoe:
» Some centralities have straightforward interpretation

» Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)



NODE DEGREE

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

i

* But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

S



FERINESS, CLOSENESS
HARMONIC CENTRALITY



PARINESS, CLOSENESS

* How close the node Is to all other nodes

» Parallel with the center of a figure:

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighted




PARINESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

Farness(u):N T Z Cou,v



EEOSENESS CEN TRALHES

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =

| e |l 11
C.(i) = =— =0.55

Bx1+7%x2+1x%x3) 20



EEOSENESS CENTRALHESS

Closeness: Inverse of the farness, i.e., how close the node is to all other

nodes in term of shortest paths. AmsterdamPart_CLS_nolimit

Closeness
I 0.000000
N —1
ClOSGI’]eSS(u) = [ 0,000001 - 0,000000
Zv eViu lu U 0,000001 - 0,000000

0,000001 - 0,000000
\ 0,000001 - 0,000000
W Ve I 0.000001 - 0,007673
= I 0007674 - 0034569

=l nodes are at distance one

Kilometers




Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of
the inverse of distance to all other nodes (Harmonic mean). Well defined
on disconnected network with é = 0. Its interpretation is the same as the

closeness.
1

1
Harmonic(u) = —— D
o3 veV\u

U,V




BE T WEENNESS CENTRALITY

* Measure how much the node plays the role of a bridge

* Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cr (”U) o Z Ust(v)

sFvF£teEV T st

with os: the number of shortest paths between nodes s and ¢t and o+ (v)
the number of those paths passing through wv.

The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: C¥™ (v) = (ijﬁ((ﬁ)_z)-




Betweenness Centrality

Cp(v) = Z 75(v)

Ost

sHEvAtEV
: . ,~ynorm e Cp)
directed graph: C5"" (v) = i (V=)

5% 6+1+-+= 64
Colit) = 2 e S
11*10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity



BETVVEENNESS CEN T RALCHSS

Amsterdam Betweenness no limit

Betweennes

B o - 1945724

B 1945724 - 4393830

1 4393830 - 7638822
7638822 - 12495980
12495980 - 19088726
19088726 - 27886000

P 27886000 - 43568276

B 43568276 - 65663810

I 65563810 - 111707392

I 111707392 - 206674924
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EDGE - BETWEENNESS

Same definition as for nodes

R B8 N .l 23 3 N
" By |
- n i
{ TRIZ

? | .' G N YO\/E,ﬁU K ROMANIA '

WeR/eUioless the edge of o ’].! b P
highest betweenness In “A P " \l D
the European rail network ¢ R “tr R . N




RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

* Recursive importance:
» Important nodes are those connected to important nodes

« Several centralities based on this idea:

» Eigenvector centrality
» PageRank



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» If every node “sends’ its score 1o 1ts neighbors, the sum of all scores received
oy each node will be equal to Its original score

oint — = D e (1)

* With A a normalisation constant



RECURSIVE DEFINITION

» I his problem can be solved by what s called the power
method:

» |) We initialize all scores to random values

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!

» Perron-Frobenius theorem (see next slide)
» =>]rue for undirected graphs with a single connected component



BIGENVEC TOR CENTRAES.

* What we just described Is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a column vector of size n, which can be interpreted as the scores of nodes

* What Perron-Frobenius algorithm says is that the power
method will always converge to the leading eigenvector, .., the
elgenvector assocliated with the highest eigenvalue



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) o b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \\ /f\,\‘/
are pointing towards you ¥ %

But problem with source nodes (0 in-degree)

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-"[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[...], we expect that advertising funded search engines will be inherently biased towards the
advertisers and away from the needs of the consumers.”



PageRank Centrality

(Side notes)

& Sergey Brin received his B.S. degree in mathematics and computer science

" from the University of Maryland at College Park in 1993. Currently, he is a
Ph.D. candidate in computer science at Stanford University where he received
. his M.S. in 1995. He is a recipient of a National Science Foundation Graduate
Fellowship. His research interests include search engines, information
extraction from unstructured sources, and data mining of large text collections
and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E.
in Computer Engineering at the University of Michigan Ann Arbor in 1995.
He is currently a Ph.D. candidate in Computer Science at Stanford University.
Some of his research interests include the link structure of the web, human
computer interaction, search engines, scalability of information access
interfaces, and personal data mining.




PAGERANK

* 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even If that is their only in-coming link)
- =>What each node "is worth™ is divided equally among its neighbors (normalization by the

degree)
Ccttl 1 ok t41 ct
i = A : ¥ — > CU Dl Z kout + 8
vENIT vENIT v
. 16 . .
With f# = . a parameter (by default, 0.85) controlling the relative

importance of



PAGERANK

Matrix interpretation (‘f 1100

A= 0O 1 0 1 0

Principal eigenvector of the “Google Matrix’" 000 1o
First, define matrix § as: @ (012 18 0 s
-Random walk matrix (normalization by =0 0
CQ|umnS> 0 0 0 1/3 1/5

a : ' ' (e 0.03 0455 0.313 0.03 0.2
But with Columns with only O receive |/n (095 0455 0818 008 02
G=| 003 0455 0.03 0.313 0.2
0.03 0.03 0313 0.03 0.2
\ 0.03 0.03 003 0313 0.2

-Finally, G;; = aS; + (1 — a)/n S —

A - Adjacency Mat. Random W. mat.
1 1 1
01 0 0 1 1 0 00 7 3
1 0 1 1 1 1 1o 1111
0 1.0 1 0 0 3 2 3 41 3
01 1 0 0 0 0lo01loo
1 1 0 0 1 1 S
1 1.0 0 1 0 ot looo
1 1 1 1
35 00 37 3
1 1 1
35 0030



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk
process with restart

Teleportation probability: the parameter a gives the probability that in the next step of
the RW will follow a Markov process or with probability /-« it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on
this node after an infinite number of hops.



PAGERANK

* Then how do Google rank when we do a research!?

» Compute pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
"Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



O HERS

» Many other centralities can be found In the literature

» Katz Centrality (Generalization of eigenvector centrality adding penalization
with distance)

» Hub and Authority Scores (HITS)

» Random Walk Centrality (probabllity to pass on a node, linked to PageRank and
betweenness)

Communicablility Centrality => Betweeness but for a given length of walks
etc.

v

v

* 50+ (https://www.ncbi.nlm.nih.gov/pmc/articles/
RIMIE646 56 | /)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646361/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646361/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646361/

Which 1s which ¢

P Degree
) ) Clustering coefficient
Closeness
Harmonic Centrality
Betweenness

_ Figenvector
~ PageRank



Which i1s which ?

v v

» Degree
'ustermg coefficient
Closeness
Harmonic Centrality
Betweenness

_ Eigenvector
S PageRank




Which 1s which ¢

» Degree
ustermg coefficient
1 - Closeness

* Harmonic Centrality
Betweenness

X Figenvector
b Page Rank
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Try again :)
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