COMPLEX NETWORKS

WHO AM I

- Rémy Cazabet
- Associate Professor (Maître de conférences)
- Université Lyon I
- LIRIS, DM2L Team (Data Mining \& Machine Learning)
- Computer Scientist => Network Scientist
- Member of IXXI

RESOURCES

- Website of the course:
- http://cazabetremy.fr/Teaching/CN/ComplexNetworks.html
- Slides, Cheat sheets, notebooks, etc.
- Contact me: remy.cazabet@univ-lyon I.fr

CLASS OVERVIEW

Day	Time	Room	Teacher	Topic	Resources
Thursday Sep. 14	$\begin{aligned} & \text { 13h30- } \\ & 15 \mathrm{~h} 30 \end{aligned}$	F	Rémy Cazabet	Lecture: Introduction, Describing Networks, Centralities	CheatSheet_intro - CheatSheet_matrices CheatSheet_centralities - Slides
Thursday Sep. 21	$\begin{aligned} & \text { 10h15- } \\ & \text { 12h15 } \end{aligned}$	F	Rémy Cazabet	Experiments: Gephi, networkx intro	
Thursday Sep. 28	$\begin{aligned} & \text { 10h15- } \\ & \text { 12h15 } \end{aligned}$	F	Rémy Cazabet	Lecture: Random Graphs	
Thursday Oct. 5	$\begin{aligned} & \text { 10h15- } \\ & \text { 12h15 } \end{aligned}$	F	Rémy Cazabet	Experiments: Random Graphs	
Thursday Oct. 12	$\begin{aligned} & \text { 10h15- } \\ & \text { 12h15 } \end{aligned}$	F	Pierre Borgnat	Spreading processes ; Dynamic on networks	
Thursday Oct. 19	$\begin{aligned} & \text { 10h15- } \\ & \text { 12h15 } \end{aligned}$	F	Pierre Borgnat	Graph Signal processing	
Thursday Oct. 26	$\begin{aligned} & \text { 10h15- } \\ & \text { 12h15 } \end{aligned}$	F	Pierre Borgnat	Representation Learning for graphs ; embeddings	
Thursday Nov. 9	15h4517h45	F	Pierre Borgnat	Graph Neural Networks	
Thursday Nov. 16	15h4517h45	F	Rémy Cazabet	Lecture: Communities+ ML classic	
Thursday Nov. 23	$\begin{aligned} & 15 \mathrm{~h} 45- \\ & 17 \mathrm{~h} 45 \end{aligned}$	F	Rémy Cazabet	Experiments: Communities	
Thursday Nov. 30	$\begin{aligned} & 15 \mathrm{~h} 45- \\ & 17 \mathrm{~h} 45 \end{aligned}$	F	Rémy Cazabet	Lecture: Dynamic of Networks + dynamic communities	
Thursday Dec. 7	15h45- 17h45	F	Rémy Cazabet	Experiments: Dynamic of networks	
Thursday Dec. 14	15h4517h45	F	?		

EVALUATION

- 50\% Project (Mostly my part)
- 50\% Final Exam (all parts)
- Project
- In groups of 2 or 3 .
- Apply class content to analyze a network of your choice
- More details later

LECTURES

- No need to write down definitions, etc.
- Slides, Cheatsheet
- Questions welcomed

COMPLEX NETWORKS

(NETWORK SCIENCE)

WHAT?
WHY?
WHY NOW?
WHAT FOR?

SCIENCE

- Science: understanding how things work
- The human body, the motion/characteristics of objects, societies, etc.
- Step I: understand properties of things and rules applying to them
- Fall of objects, classifications of species, etc.
- Macro-scale properties: temperature, pression

SCIENCE

- 2)Great success of the 19/20 centuries: Reductionism
- To understand things, I need to understand what they are made of:
- A human body: organs, vessels => cells => DNA, proteins \& stuff => Nucleotides
- Objects: Organic compounds => atoms => protons/electrons/neutrons => stuff
- => Now we know. And then what?

SCIENCE

- 3)Two situations:
- The system is homogeneous and/or has a regular structure
- => You can explain it with equations (statistical physics...)
- The system is heterogeneous and/or has a complex structure
- => Understanding each component is not enough to understand the system
- Understanding each neuron tells you little about how the brain works.
- Understanding how each individual works/behaves tells you little about societies
- etc.
- => The structure/relations/interactions/organization matters.
- Networks allow representing complex heterogeneous organization

COMPLEX SYSTEMS

- Complex systems: Systems composed of multiple parts in interactions
- Complex networks model the interactions between the parts
- A common framework applicable to many systems
- =>Many networks share similar characteristics
- =>Similar processes shape the networks

WHO ?

- Network scientists:
- Physicists
- Computer scientists
- Mathematicians
- Sociologists
, => Work on similar problems, with converging vocabularies and references
- Applied network scientists
- Geographers, biologists, social scientists, economists, etc.
- =>Experts of i)their domain, and ii)complex networks analysis

Materials

Lecture books

Reviews

	© 2003 Sociey for Indussrial and Applied Martematics
The Structure and Function of	
Complex Networks*	

Statistical mechanics of complex networks
Réka Albert* and Albert-László Barabási

REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

Characterization and Modeling of weighted networks

Marc Barthélemy ${ }^{1}$, Alain Barrat ${ }^{2}$, Romualdo Pastor-Satorras ${ }^{3}$, and Alessandro Vespignani ${ }^{2}$
M. E. J. Newman ${ }^{\dagger}$
\qquad

Temporal networks
Petter Holme ${ }^{\text {a,b,c, }, \text {, Jari Saramäki }{ }^{\text {d }}}$
\square

The structure and dynamics of multilayer networks
 I. Gómez-Gardeñes ${ }^{i}$, M. Romance ${ }^{\text {dee }}$, I. Sendiña-Nadal ${ }^{\text {j.e. }}$, Z. Wang ${ }^{\text {k.l }}$ J. Gómez-Gan
M. Zanin ${ }^{\text {m,n }}$

Materials

Pop-science books

Materials

Specialized Journals

INTERNSHIPS

- If you are interested in doing an internship in this domain, feel free to contact me
- I'll officially propose some internships later

GRAPHS \& NETWORKS

GRAPHS \& NETWORKS

Network often refers to real systems

- WWW,
- social network

- metabolic network.
-Language: (Network, node, link)

Graph is the mathematical representation of a network
-Language: (Graph, vertex, edge)

In most cases we will use the two terms interchangeably.

Vertex	Edge
person	friendship
neuron	synapse
Website	hyperlink
company	ownership
gene	regulation

GRAPH
 REPRESENTATION

NETWORK REPRESENTATIONS

Networks: Graph notation

```
Graph notation : \(G=(V, E)\)
V
E
\(u \in V\)
\((u, v) \in E\)
set of vertices/nodes.
set of edges/links.
a node.
an edge.
```


NETWORK REPRESENTATIONS

- $G=(V, E)$
- Often encoded as edge list or adjacency list
- Software: custom data structure and manipulation
- add_nodes([i,j]), add_edge(i,j), ...
- Libraries in many languages

- Networkx (python)
- igraph (python, C, R)
- Graph-tools (python, C)

$$
\begin{aligned}
& \text { Types of } \\
& \text { Networks }
\end{aligned}
$$

Undirected networks

$G=(V, E)$
$(u, v) \in E \equiv(v, u) \in E$

- The directions of edges do not matter
- Interactions are possible between connected entities in both directions

The Internet: Nodes - routers, Links - physical wires

Directed networks

$$
\begin{aligned}
& G=(V, E) \\
& (u, v) \in E \not \equiv(v, u) \in E
\end{aligned}
$$

- The directions of edges matter
- Interactions are possible between connected entities only in specified directions

Citation network: Nodes - publications, Links - references

Weighted networks

$G=(V, E, w)$
$w:(u, v) \in E \Rightarrow R$

- Strength of interactions are assigned by the weight of links

Social interaction network: Nodes - individuals
Links - social interactions

Bipartite network

$$
\begin{aligned}
& G=(U, V, E) \\
& U \cap V=\varnothing \\
& \forall(u, v) \in E, u \in U \text { and } v \in V
\end{aligned}
$$

Multiplex and multilayer networks

$G=\left(V, E_{i}\right), i=1 \ldots M$

- Nodes can be present in multiple networks simultaneously
- These networks are connected (can influence each other) via the common nodes

[Mendez-Bermudez et al. 2017]

Temporal and evolving networks

$$
\begin{aligned}
G= & \left(V, E_{t}\right),(u, v, t, d) \in E_{t} \\
& \mathrm{t}-\text { time of interaction }(\mathrm{u}, \mathrm{v}) \\
& d \text { - duration of interaction }(\mathrm{u}, \mathrm{v}, \mathrm{t})
\end{aligned}
$$

- Temporal links encode time varying interactions

$$
\begin{gathered}
G=\left(V_{t^{\prime}}, E_{t^{\prime}}\right) \\
v(t) \in V_{t^{\prime}} \\
(u, v, t) \in E_{t^{\prime}}
\end{gathered}
$$

- Dynamical nodes and links encode the evolution of the network

Mobile communication network
Nodes - individuals
Links - calls and SMS

GRAPH REPRESENTATION

Node-Edge description

$\begin{aligned} & N_{u} \\ & k_{u} \\ & \hline \end{aligned}$	Neighbourhood of u, nodes sharing a link with u. Degree of u, number of neighbors $\left\|N_{u}\right\|$.
$N_{u}^{\text {out }}$	Successors of u, nodes such as $(u, v) \in E$ in a directed graph
$N_{u}^{i n}$	Predecessors of u, nodes such as $(v, u) \in E$ in a directed graph
$\begin{aligned} & k_{u}^{o u t} \\ & k_{u}^{i n} \end{aligned}$	Out-degree of u, number of outgoing edges $\left\|N_{u}^{o u t}\right\|$. In-degree of u, number of incoming edges $\left\|N_{u}^{i n}\right\|$
$w_{u, v}$ s_{u}	Weight of edge (u, v). Strength of u, sum of weights of adjacent edges, $s_{u}=$ $\sum_{v} w_{u v}$.

Node degree

Number of connections of a node

- Undirected network

- Directed network

In degree

Out degree

Weighted degree: strength

DESCRIPTION OF GRAPHS

DESCRIPTION OF GRAPHS

- When confronted with a graph, how to describe it?
- How to compare graphs?
- What can we say about a graph?

SIZE

Counting nodes and edges

N / n	$\begin{array}{l}\text { size: number of nodes }\|V\| . \\ L / m \\ \text { number of edges }\|E\| \\ L_{\text {max }}\end{array}$
$\begin{array}{l}\text { Maximum number of links }\end{array}$	
Undirected network: $\binom{N}{2}=N(N-1) / 2$	

Directed network: $\binom{N}{2}=N(N-1)$

DENSITY

Network descriptors - Nodes/Edges

$\langle k\rangle \quad$ Average degree: Real networks are sparse, i.e., typically $\langle k\rangle \ll n$. Increases slowly with network size, e.g., $\langle k\rangle \sim \log (m)^{a}$

$$
\langle k\rangle=\frac{2 m}{n}
$$

$d / d(G)$ Density: Fraction of pairs of nodes connected by an edge in G.

$$
d=L / L_{\max }
$$

${ }^{a}$ Leskovec, Kleinberg, and Faloutsos 2005.

DENSITY

	\#nodes	\#edges	Density	avg. deg
Wikipedia	2 M	30 M	1.5×10^{-5}	30
Twitter 2015	288 M	60 B	1.4×10^{-6}	416
Facebook	1.4 B	400 B	4×10^{-9}	570
Brain c.	280	6393	0,16	46
Roads Calif.	2 M	2.7 M	6×10^{-7}	2,7
Airport	3 k	31 k	0,007	21

Beware: density hard to compare between graphs of different sizes

DEGREE DISTRIBUTION

PDF (Probability Distribution Function)

DEGREE DISTRIBUTION

- In a fully random graph (Erdos-Renyi), degree distribution is (close to) a normal distribution centered on the average degree
- In real graphs, in general, it is not the case:
- A high majority of small degree nodes
- A small minority of nodes with very high degree (Hubs)
- Often modeled by a power law
- More details later in the course

SUBGRAPHS

Subgraphs

Subgraph $H(W)$ (induced subgraph): subset of nodes W of a graph $G=(V, E)$ and edges connecting them in G, i.e., subgraph $H(W)=$ $\left(W, E^{\prime}\right), W \subset V,(u, v) \in E^{\prime} \Longleftrightarrow u, v \in W \wedge(u, v) \in E$
Clique: subgraph with $d=1$
Triangle: clique of size 3
Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph
Strongly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths
Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

Nodes/Edges in the subgraph

CLUSTERING COEFFICIENT

- Clustering coefficient or triadic closure
- Triangles are considered important in real networks
- Think of social networks: friends of friends are my friends
- \# triangles is a big difference between real and random networks

CLUSTERING COEFFICIENT

Triangles counting

δ_{u} - triads of u : number of triangles containing node u
Δ - number of triangles in the graph total number of triangles in the graph, $\Delta=\frac{1}{3} \sum_{u \in V} \delta_{u}$.

Each triangle in the graph is counted as a triad once by each of its nodes.
$\delta_{u}^{\max }$ - triads potential of u : maximum number of triangles that could exist around node u, given its degree: $\delta_{u}^{\max }=\tau(u)=\binom{k_{i}}{2}$
$\Delta^{\max }$ - triangles potential of G: maximum number of triangles that could exist in the graph, given its degree distribution: $\Delta^{\max }=\frac{1}{3} \sum_{u \in V} \delta^{\max }(u)$

CLUSTERING COEFFICIENT

C_{u} - Node clustering coefficient: density of the subgraph induced by the neighborhood of $u, C_{u}=d\left(H\left(N_{u}\right)\right)$. Also interpreted as the fraction of all possible triangles in N_{u} that exist, $\frac{\delta_{u}}{\delta_{u}^{\max }}$

Edges: 2
Max edges: $4 * 3 / 2=6$

$$
C_{u}=2 / 6=1 / 3
$$

Triangles=2
Possible triangles $=\binom{4}{2}=6$

$$
C_{u}=2 / 6=1 / 3
$$

CLUSTERING COEFFICIENT

$\langle C\rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C}=\frac{1}{N} \sum_{u \in V} C_{u}$.

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their degree, and that low degree nodes tend to be much more frequent than hubs, and their C value is very sensitive, i.e., for a node u of degree $2, C_{u} \in 0,1$, while nodes of higher degrees tend to have more contrasted scores.
C^{g} - Global clustering coefficient: Fraction of all possible triangles in the graph that do exist, $C^{g}=\frac{3 \Delta}{\Delta^{\max }}$

CLUSTERING COEFFICIENT

Global CC = Transitivity

Transitivity vs. Average Clustering Coefficient

Both measure the tendency for edges to form triangles.
Transitivity weights nodes with large degree higher.

- Most nodes have high LCC
- The high degree node has low LCC

Ave. clustering coeff. $=0.93$
Transitivity $=0.23$

Ave. clustering coeff. $=0.25$
Transitivity $=0.86$

CLUSTERING COEFFICIENT

- Global CC:
- In random networks, GCC = density
- =>very small for large graphs

Network	Size	$\langle k\rangle$	C	$C_{r a n d}$	Reference
WWW, site level, undir.	153127	35.21	0.1078	0.00023	Adamic, 1999
Internet, domain level	$3015-6209$	$3.52-4.11$	l.18-0.3	0.001	Yook et al., 2001a,
					Pastor-Satorras et al., 2001
Movie actors	225226	61	0.79	0.00027	Watts and Strogatz, 1998
LANL co-authorship	52909	9.7	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship	1520251	18.1	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c
SPIRES co-authorship	56627	173	0.726	0.003	Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship	11994	3.59	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c
Math. co-authorship	70975	3.9	0.59	5.4×10^{-5}	Barabási et al., 2001
Neurosci. co-authorship	209293	11.5	0.76	5.5×10^{-5}	Barabási et al., 2001
E. coli, substrate graph	282	7.35	0.32	0.026	Wagner and Fell, 2000
E. coli, reaction graph	315	28.3	0.59	0.09	Wagner and Fell, 2000
Ythan estuary food web	134	8.7	0.22	0.06	Montoya and Solé, 2000
Silwood Park food web	154	4.75	0.15	0.03	Montoya and Sole, 2000
Words, co-occurrence	460.902	70.13	0.437	0.0001	Ferrer i Cancho and Solé, 2001
Words, synonyms	22311	13.48	0.7	0.0006	Yook et al., 2001b
Power grid	4941	2.67	0.08	0.005	Watts and Strogatz, 1998
C. Elegans	282	14	0.28	0.05	Watts and Strogatz, 1998

PATH RELATED SCORES

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk) Path: a walk in which each node is distinct.
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
$\ell_{u, v}$: Distance: The distance between nodes u, v is the length of the shortest path

Graph

All shortest path algorithm

finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles)

```
proc FloydWarshall(G=(V,E,W))
// let dist be a |V| x |V| array of minimum distances initialized to }\infty\mathrm{ (infinity)
for each edge (u,v)
        dist[u][v] \leftarroww(u,v) // the weight of the edge (u,v)
    for each vertex v
        dist[v][v] \leftarrow0
    for k from 1 to |V|
        for i from 1 to |V|
            for j from 1 to |V|
        if dist[i][j] > dist[i][k] + dist[k][j]
                        dist[i][j] \leftarrow dist[i][k] + dist[k][j]
        end if
```

Checking and updating all paths going through nodes $\mathrm{k}=1,2,3, \ldots, \mathrm{~N}$ by assuming that:
$\operatorname{shp}(i, j, k)=$
$\min (\operatorname{shp}(i, j, k-1)), \operatorname{shp}(i, k, k-1)+\operatorname{shp}(k, j, k-1))$
Complexity: $O\left(n^{3}\right)$

Network descriptors 2 - Paths

$\ell_{\max } \quad$ Diameter: maximum distance between any pair of nodes.
$\langle\ell\rangle$ Average distance:

$$
\langle\ell\rangle=\frac{1}{n(n-1)} \sum_{i \neq j} d_{i j}
$$

AVERAGE PATH LENGTH

- The famous 6 degrees of separation (Milgram experiment) - (More on that next slide)
- Not too sensible to noise
- Tells you if the network is "stretched" or "hairball" like

SIDE-STORY: MILGRAM EXPERIMENT

- Small world experiment (60's)
- Give a (physical) mail to random people
- Ask them to send to someone they don't know
- They know his city, job
- They send to their most relevant contact
- Results: In average, 6 hops to arrive

SIDE-STORY:MILGRAM EXPERIMENT

- Many criticism on the experiment itself:
- Some mails did not arrive
- Small sample
- Checked on "real" complete graphs (giant component):
- MSN messenger
- Facebook
- The world wide web

SIDE-STORY:MILGRAM EXPERIMENT

Facebook

SMALL WORLD

Small World Network

A network is said to have the small world property when it has some structural properties. The notion is not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle\ell\rangle \approx \log (N)$
- Clustering coefficient must be high, i.e., much larger than in a random network, e.g., $C^{g} \gg d$, with d the network density

More on this during the random network class

NETWORK DESCRIPTORS

- Many other network descriptors exist:
- Modularity (later in community detection class)
- Centralization (comparing the centrality scores between most central and less central, see later)
- Rich-club coefficient: tendency of high-degrees to connected to high-degrees, cf random network class
- Motif profiles (how often do specific subgraphs appear)
- Network Resilience (see practicals)
- etc.

GRAPHS AS MATRICES

Matrices in short

Matrices are mathematical objects that can be thought as tables of numbers. The size of a matrix is expressed as $m \times n$, for a matrix with m rows and n columns. The order (row/column) is important.
$M_{i j}$ is a notation representing the element on row m and column j.

ADJACENCY MATRIX

A - Adjacency matrix

The most natural way to represent a graph as a matrix is called the Adjacency matrix A. It is defined as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes N in the graph. Nodes of the graph are numbered from 1 to N, and there is an edge between nodes i and j if the corresponding position of the matrix $A_{i j}$ is not 0 .

- A value on the diagonal means that the corresponding node has a self-loop
- the graph is undirected, the matrix is symmetric: $A_{i j}=A_{j i}$ for any i, j.
- In an unweighted network, and edge is represented by the value 1.
- In a weighted network, the value $A_{i j}$ represents the weight of the edge (i, j)

Graph

A - Adjacency Mat.

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

ADJACENCY MATRIX

LAPLACIAN

Graph Laplacian

The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Adjacency matrix, often used in Graph theory and Spectral Graph Theory. It is defined as $D-A$, with D the Degree matrix of the graph, defined as a $N \times N$ matrix with $D_{i i}=k_{i}$ and zeros everywhere else.

D - Degree Matrix
L-Laplacian
$\left(\begin{array}{llllll}3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$

$$
\left(\begin{array}{cccccc}
3 & -1 & 0 & 0 & -1 & -1 \\
-1 & 5 & -1 & -1 & -1 & -1 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & -1 & -1 & 2 & 0 & 0 \\
-1 & -1 & 0 & 0 & 4 & -1 \\
-1 & -1 & 0 & 0 & -1 & 3
\end{array}\right)
$$

SPECTRAL GRAPH THEORY

Spectral properties of L

Eigenvalues of the Laplacian have many applications, such as spectral clsutering, graph matching, embedding, etc. Assuming G undirected with eigenvalues $\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{n}$, here are some interesting properties:

- The smallest eigenvalue λ_{i} equals 0
- The number of O eigenvalues gives the number of connected components

More with Pierre Borgnat

RANDOM WALK MATRIX

Random Walk matrix

Another useful matrix of a graph is the Random Walk Transition Matrix R. It is the column normalized version of the adjacency matrix. $R_{i j}$ can be understood as the probability for a random walker located on node i to move to j.

A - Adjacency Mat.

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Random W. mat.

$$
\left(\begin{array}{cccccc}
0 & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{3} \\
0 & \frac{1}{5} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{5} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & 0
\end{array}\right)
$$

EXEMPLE OF GRAPH ANALYSIS

- Source: [The Anatomy of the Facebook Social Graph, Ugander et al. 20 I I]
- The Facebook friendship network in 2011

EXEMPLE OF GRAPH ANALYSIS

- 72 IM users (nodes) (active in the last 28 days)
- 68B edges
- Average degree: 190 (average \# friends)
- Median degree: 99
- Connected component: 99.9।\%

EXEMPLE OF GRAPH ANALYSIS

Degree distribution

EXEMPLE OF GRAPH ANALYSIS

Age homophily
 (More next class)

EXEMPLE OF GRAPH ANALYSIS

My friends have more Friends than me!

Many of my friends have the Same \# of friends than me!

CENTRALITIES

Characterizing/Discovering important nodes

CENTRALITY

- We can measure nodes importance using so-called centrality.
- Poor terminology: nothing to do with being central in general
- Usage:
- Some centralities have straightforward interpretation
- Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)

NODE DEGREE

- Degree: how many neighbors
- Often enough to find important nodes
- Main characters of a series talk with the more people
- Largest airports have the most connections
- ...
- But not always
- Facebook users with the most friends are spam
- Webpages/wikipedia pages with most links are simple lists of references
- ...

FARNESS, CLOSENESS HARMONIC CENTRALITY

FARNESS, CLOSENESS

- How close the node is to all other nodes
- Parallel with the center of a figure:
- Center of a circle is the point of shorter average distance to any points in the circle

FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

$$
\operatorname{Farness}(u)=\frac{1}{N-1} \sum_{v \in V \backslash u} \ell_{u, v}
$$

CLOSENESS CENTRALITY

Closeness: Inverse of the farness, i.e., how close the node is to all other nodes in term of shortest paths.

$$
\operatorname{Closeness}(u)=\frac{N-1}{\sum_{v \in V \backslash u} \ell_{u, v}}
$$

$$
C_{c l}(i)=\frac{12-1}{(3 \times 1+7 \times 2+1 \times 3)}=\frac{11}{20}=0.55
$$

CLOSENESS CENTRALITY

Closeness: Inverse of the farness, i.e., how close the node is to all other nodes in term of shortest paths.

$$
\operatorname{Closeness}(u)=\frac{N-1}{\sum_{v \in V \backslash u} \ell_{u, v}}
$$

I =all nodes are at distance one

Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of the inverse of distance to all other nodes (Harmonic mean). Well defined on disconnected network with $\frac{1}{\infty}=0$. Its interpretation is the same as the closeness.

$$
\operatorname{Harmonic}(u)=\frac{1}{N-1} \sum_{v \in V \backslash u} \frac{1}{\ell_{u, v}}
$$

$$
C_{h}(i)=\frac{1}{12-1}\left(3 \times \frac{1}{1}+7 \times \frac{1}{2}+1 \times \frac{1}{3}\right)=\frac{41}{66}=0.6212
$$

BETWEENNESS CENTRALITY

- Measure how much the node plays the role of a bridge
- Betweenness of u : fraction of all the shortest paths between all the pairs of nodes going through u.

$$
C_{B}(v)=\sum_{s \neq v \neq t \in V} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

with $\sigma_{s t}$ the number of shortest paths between nodes s and t and $\sigma_{s t}(v)$ the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized version can be obtained by dividing by the number of pairs of nodes, i.e., for a directed graph: $C_{B}^{\text {norm }}(v)=\frac{C_{B}(v)}{(N-1)(N-2)}$.

Betweenness Centrality

$$
C_{B}(v)=\sum_{s \neq v \neq t \in V} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

directed graph: $C_{B}^{\text {norm }}(v)=\frac{C_{B}(v)}{(N-1)(N-2)}$.

$$
C_{B}(u)=2 \frac{5 * 6+1+\frac{1}{2}+\frac{1}{2}}{11 * 10}=\frac{64}{110}
$$

Exact computation:

Floyd-Warshall: $O\left(n^{3}\right)$ time complexity
$O\left(n^{2}\right)$ space complexity
Approximate computation
Dijskstra: $O(n(m+n \log n))$ time complexity

BETWEENNESS CENTRALITY

(blue higher)

(red higher)

EDGE - BETWEENNESS

Same definition as for nodes

Can you guess the edge of highest betweenness in the European rail network?

RECURSIVE DEFINITIONS

RECURSIVE DEFINITIONS

- Recursive importance:
- Important nodes are those connected to important nodes
- Several centralities based on this idea:
- Eigenvector centrality
- PageRank
- ...

RECURSIVE DEFINITION

- We would like scores such as:
- Each node has a score (centrality),
- If every node "sends" its score to its neighbors, the sum of all scores received by each node will be equal to its original score

$$
\begin{equation*}
C_{u}^{t+1}=\frac{1}{\lambda} \sum_{v \in N_{u}^{i n}} C_{v}^{t} \tag{1}
\end{equation*}
$$

- With λ a normalisation constant

RECURSIVE DEFINITION

- This problem can be solved by what is called the power method:
- I) We initialize all scores to random values
- 2)Each score is updated according to the desired rule, until reaching a stable point (after normalization)
- Why does it converge?
- Perron-Frobenius theorem (see next slide)
- =>True for undirected graphs with a single connected component

EIGENVECTOR CENTRALITY

- What we just described is called the Eigenvector centrality
- A couple eigenvector (x) and eigenvalue (λ) is defined by the following relation: $A x=\lambda x$
- x is a column vector of size n, which can be interpreted as the scores of nodes
- What Perron-Frobenius algorithm says is that the power method will always converge to the leading eigenvector, i.e., the eigenvector associated with the highest eigenvalue

Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric
- 2 sets of eigenvectors (Left \& Right)
- 2 leading eigenvectors
- Use right eigenvectors : consider nodes that are pointing towards you

But problem with source nodes (0 in-degree)

-Vertex A is connected but has only outgoing link $=$ Its centrality will be 0
-Vertex B has outgoing and an incoming link, but incoming link comes from A $=$ Its centrality will be 0
-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component

PageRank Centrality

- Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine
Brin, S. and Page, L. (I998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International World-Wide Web Conference (WWW 1998), April I4-I8, I998, Brisbane,Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

PageRank Centrality

- Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine
Brin, S. and Page, L. (I998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International World-Wide Web Conference (WWW 1998), April I4-I8, I998, Brisbane,Australia.

Sergey Brin and Lawrence Page
Computer Science Department, Stanford University, Stanford, CA 94305, USA sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract

In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available at http://google.stanford.edu/

PageRank Centrality

(Side notes)
-"We chose our system name, Google, because it
is a common spelling of googol, or 10^{100} and fits well with our goal of building very largescale search"
-"[...] at the same time, search engines have migrated from the academic domain to the commercial. Up until now most search engine development has gone on at companies with little publication of technical details. This causes search engine technology to remain largely a black art and to be advertising oriented (see Appendix A). With Google, we have a strong goal to push more development and understanding into the academic realm."
-"[...], we expect that advertising funded search engines will be inherently biased towards the advertisers and away from the needs of the consumers."

PageRank Centrality

(Side notes)

Sergey Brin received his B.S. degree in mathematics and computer science from the University of Maryland at College Park in 1993. Currently, he is a Ph.D. candidate in computer science at Stanford University where he received his M.S. in 1995. He is a recipient of a National Science Foundation Graduate Fellowship. His research interests include search engines, information extraction from unstructured sources, and data mining of large text collections and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E. in Computer Engineering at the University of Michigan Ann Arbor in 1995. He is currently a Ph.D. candidate in Computer Science at Stanford University. Some of his research interests include the link structure of the web, human computer interaction, search engines, scalability of information access interfaces, and personal data mining.

PAGERANK

- 2 main improvements over eigenvector centrality:
- In directed networks, problem of source nodes
- => Add a constant centrality gain for every node
- Nodes with very high centralities give very high centralities to all their neighbors (even if that is their only in-coming link)
- => What each node "is worth" is divided equally among its neighbors (normalization by the degree)

$$
C_{u}^{t+1}=\frac{1}{\lambda} \sum_{v \in N_{u}^{i n}} C_{v}^{t} \quad=>\quad C_{u}^{t+1}=\alpha \sum_{v \in N_{u}^{i n}} \frac{C_{v}^{t}}{k_{v}^{o u t}}+\beta
$$

With by convention $\beta=I$ and α a parameter (usually 0.85) controlling the relative importance of β

PAGERANK

Matrix interpretation

Principal eigenvector of the "Google Matrix": First, define matrix S as:
-Normalization by columns of A -Columns with only 0 receives I/n

$$
- \text { Finally, } G_{i j}=\alpha S_{i j}+(1-\alpha) / n
$$

Graph	A - Adjacency Mat.	Random W. mat.
	$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{cccccc}0 & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{5} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{5} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & 0\end{array}\right)$

PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk process with restart

Teleportation probability: the parameter α gives the probability that in the next step of the RW will follow a Markov process or with probability $1-\alpha$ it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on this node after an infinite number of hops.

PAGERANK

- Then how do Google rank when we do a research?
- Compute pagerank (using the power method for scalability)
- Create a subgraph of documents related to our topic
- Of course now it is certainly much more complex, but we don't really know:
"Most search engine development has gone on at companies with little publication of technical details. This causes search engine technology to remain largely a black art"" [Page, Brin, 1997]

OTHERS

- Many other centralities can be found in the literature
- Katz Centrality (Generalization of eigenvector centrality adding penalization with distance)
- Hub and Authority Scores (HITS)
- Random Walk Centrality (probability to pass on a node, linked to PageRank and betweenness)
- Communicability Centrality => Betweeness but for a given length of walks
- etc.

Which is which?

Degree
 Clustering coefficient
 Closeness
 Harmonic Centrality
 Betweenness

Eigenvector PageRank

Which is which?

Try again :)

Degree
Betweenness
Closeness
Eigenvector

Try again :)

A: Degree B:Closeness

C: Betweenness
D: Eigenvector

