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Malware spreading
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Social contagion

Information spreading Rumour spreading
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Spreading processes

Why on networks?

• Spreading usually happen through interactions 
between agents

• Geographic vicinity
• Physical connection
• Social interaction
• etc.

• Network structure critically influence the 
dynamics of spreading processes
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 blog, Jooseery (2011)

Freese (2009)
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I’m not an epidemiologist!

Only an introduction,
Trust the experts
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

SI

SIS

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

SIR



Homogeneous mixing
Non-network approach

• Any individual can interact with any other
• The population has a finite size
• Individuals have an average number of contacts 

per unit of time

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. 
Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

Exponential outbreak

Saturation
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

Example: technology adoption
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fractiona :
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

aBarrat, Barthelemy, and Vespignani ����.



The SIS model

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

λ=2



The SIR model

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.
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SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.
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Spreading processes

Many other models exist:
SIRD, MSIR, SEIR

SEIS, MSEIRS
Variable contact rate

Voter
Majority rule

Etc.

Check for instance: 
https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-

models

https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models
https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models
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Epidemic spreading on networks

The homogeneous mixing approach is clearly 
unrealistic: interactions are organized in networks

How much does it affect spreading?



Epidemic spreading on networks
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Epidemic spreading on networks

β = τ

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered can saturate below �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.

Notation change on networks

ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ : the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

R0 on networks

In homogeneous or ER networks, R0 is naturally de�ned as �hki
µ

Another way to express the same thing is that, if we de�ne R0 =
�
µ , then the epidemic threshold is not equal to � but to 1

hki

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

On Networks On homogeneous 
mixing



Homogeneous networks

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

Homogeneous
Mixing

ER random graph =>approximation still holds, 
( )k ≈ ⟨k⟩



Homogeneous networks

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered can saturate below �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.

Notation change on networks

ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ : the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

R0 on networks

In homogeneous or ER networks, R0 is naturally de�ned as �hki
µ

Another way to express the same thing is that, if we de�ne R0 =
�
µ , then the epidemic threshold is not equal to � but to 1

hki

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

(Just a notation change)



Epidemic spreading on heterogeneous networks
• In degree heterogeneous networks the k ≃ ⟨k⟩ 

approximation does not hold

• Solution: Degree Block Approximation
• Assumption: all nodes with the same degree are 

statistically equivalent
• Look for infection/susceptible node densities in the 

degree groups

• Calculate the global average by a sum considering 
the degree distribution

i =
X

k

P (k)ik s =
X

k

P (k)sk

Node class with degree k=1

Node class with degree k=2

Node class with degree k=3

i =
X

k

P (k)ik
s =

X

k

P (k)sk



Epidemic spreading on heterogeneous networks

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
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�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

Homogeneous
Networks



Epidemic spreading on heterogeneous networks

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From⇥k , it can be showna that the time scale ⌧ of the process, i.e.,
a measure inversely proportional to its speed, is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.

aBarrat, Barthelemy, and Vespignani ����.

Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From⇥k , it can be showna that the time scale ⌧ of the process, i.e.,
a measure inversely proportional to its speed, is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.

aBarrat, Barthelemy, and Vespignani ����.

Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

• Assume: no degree-degree correlations in the network

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected ⇥k =

P
k0 P (k0|k)ik0 , with P (k0|k) the probability

that a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = 5.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = 5. We vary the exponent of
the distribution, while keeping hki = 5 constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = 5
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Number of stubs of degree k’/ Total Number of stubs (normalized by nb node)
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Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Barrat, Barthelem
y, Vespignani book



SI process on heterogeneous networks



SIS process on heterogeneous networks

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected ⇥k =

P
k0 P (k0|k)ik0 , with P (k0|k) the probability

that a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)ik0

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki2
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = 5.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = 5. We vary the exponent of
the distribution, while keeping hki = 5 constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.
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Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
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We observe that the more marked the communities, the less
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The highest the exponent of the degree distribution, the faster is
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In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = 5
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.



Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Applications

• Model fitting (to better know an observed diffusion)
• Predicting future trends
• Epidemic control

• Vaccine, etc. => Which nodes/edges to target?

• Example of strategy: friend paradox
• Vaccine contacts of random nodes instead of random nodes

Application of di�usion models

Di�usion models can be used for several applications:

• Model �tting: better understand an actual epidemic by �t-
ting parameters on real observations

• Predicting trends of evolution

• Control of epidemics: Given an epidemicmodel and a sup-
porting network, �nd an optimal solution to control (accel-
erate or slow-down) the epidemic.

Optimal node/edge removal

One way to slow-down an epidemic consist in removing
nodes(e.g., vaccination). The problem can be formulated as
a budget constrained removal, i.e., if we can remove only x
nodes/edges, which one should we choose? Based on theoreti-
cal and experimental results, heuristic solutions consist in remov-
ing: highest degree nodes, highest betweeness nodes/edges
(isolating communities), long-distance edges (shortcuts) in spatial
networks.

Friendship paradox and node removal

It has been proposeda that the friendship paradox could be used
to apply budget-constrained high degree nodes preferential vac-
cination in real networks where �nding such nodes is not possible
because the whole network is unknown: instead of targeting ran-
dom individuals, one could vaccinate random contacts of random
individuals, thus greatly increasing the average degree of vacci-
nated persons.

aCohen, Havlin, and Ben-Avraham ����.

Going further

Book Dynamic processes on Networks: Barrat, Barthelemy, and
Vespignani ���� Surveys: Analysis and Control of Epidemics:
Nowzari, Preciado, and Pappas ���� Di�usion in networks: Lam-
berson ����
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OTHER MODELS

• Many other diffusion models
‣ Contagious but without symptoms state 
‣ Propagation of information information
‣ Opinion dynamics (states correspond to opinion, e.g., red/blue), diffusion rules 

can vary a lot
- Majority rule: your opinion change to the one of the majority around you
- Repeated exposition rule: each time you are exposed to an idea, you are likely to change 

your opinion
- Etc.


