GRAPH NEURAL NETWORKS
(GNN)

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Zhang, Z., Cui, P., & Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint arXiv:1812.04202.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
|

GRAPH TASKS

» Machine Learning tasks on Networks

» Link prediction (follow recommendation, drug/illness relationship...)
Node classification (bot detection in social media)

Attribute regression (age of individuals in a social media...)

Link classification/regression (relationship is: friend/colleague/lover ?)
Graph classification (Molecule classification)

Community detection

v

v

v

v

v

WHY NN

 Neural networks are especially useful with structured data

» Images (each pixel has left/right/top/bottom pixels)
» Text (each word has a specific position In a sentence)

» Graphs are pure structure!

RO (O DEEP NEURSSS
NE TWORKS

DNN

LINEAR REGRESSION

» We have variables describing an object (x{,x,...)

» l.e, apartments:
- Surface
- Number of rooms

- Which flat

@ Nilioct o learn to guess”
» e.g, [he price of the apartment in euros

* We assume that the target can be expressed as a linear

combination of the inputs

» A welighted sum...
» We need to learn the weights (b, b, . ..) + intercept ()

'y: b0+l91x1 +b2X2+ +bnxn

PERCEPTRON

Artificial neuron

Dendrites

Linear Activation
function function

Nucleus

https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc

PERCEPTRON

* Perceptron = linear regression + activation function

« Common activation function used here:

» RelLu: Rectified Linear Unit: f(x) = max(0,x)
» Necessary to introduce non-linearity

PERCEPTRON

* Perceptron = linear regression + activation function

= ommon activation function used here:
» RelLu: Rectified Linear Unit: f(x) = max(0,x)

IN_2

IN_3

IN.4

IN_5

NEURAL NET

3 perceptrons

Chained with 2 perceptrons

NEURAL NET

IN_2
Out_1
* A key element to understand: N3
» All weights are trained simultaneously N —
» Gradient descent NS
» Beyond the scope of this class: consider a recipe NPUTUNTS HIDDENUNITS OUTPUT UNITS

that allows you to find a good solution In a
reasonable time.

BACKWARD STEP

* o learn the weights, we use back=-propagation

* Short summary
» A loss function Is defined to compare the “predicted values” with ground
truth labels (at this point, we need some labels...)
» The derivative of the cost function relative to weights Is computed

» Weights are updated using grading descent (i.e., weights are modified In
the direction that will minimize the loss)

https://en.wikipedia.org/wiki/Backpropagation
| |

AW

v

v

v

v

EXAMPLE, FLATS IN PARIS

Input features:

- Floor

- SlUAETEE

- ApE

lEsoetFrice

Simple linear regression:

- Higher floor increase price (view...)
- Higher surface increase price

- Age lower price

Hidden units capture intermediate notions

- Small surface, old age, high floor =>"chambre de
bonne”

- Age> 100, large surface => Prestigious building
Final layout combines those factors

- "Chambre de bonne™ negative effect on price
computed based on surface. ..

IN 1 =
IN 2

Qut 1
IN 3
IN_4 Qut 2
IN 5

INPUTUNITS ~ HIDDENUNITS OUTPUT UNITS

MATRIX EXPRESSION

y: b0+b1x1 +b2X2+

weights

b0

b1

b2

b3

+ b x

n-n

b0 +b1*x1+b2*x2+b3*x3

> = -] -]
EEN w N —

o
S
o 3
: i ‘
w1 X
5
S /
qy@ S g,@ w2 |y W
©
> S >
Q 5 \Q)
N (26) Z
\. \0
Q)‘b' Q)‘b

MATRIX EXPRESSION

~
$ 8/ ‘\

-3 Input units

-7 hidden units

IgE—0.4"%

MATRIX EXPRESSION

IN_2

« With activation function »
» H =RelUXW" + 1b") NERPS

R Vector of size n

IN.4 &

- With hidden units e
4 H — G(XWT)WzT + leT) INPUTUNIW;S HIDDEN UNITS OUTPUT UNITS

- Here, no intercept in hidden

DEEP NEURAL NETWORKS

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK

Hidden Multiple hidden layers
process hierarchical features

layer / ﬁ\\\ ////A\\\\\’/////

A< N\ oy
%\,\‘s’g I?A%\y ?') 7

,
NS \.lf)'// \“\\‘ \"' >/

AN LR 2;(’12’
ANR NS XNV S
7R RS
N N XS e Output:
AT ANE TeTAVAYE e AT AN * .9 ‘ .
IR 2 \i;q‘f;0,‘:"'\‘.:q:. . p;.’/~\‘.:¢' I THEEIA George
//'*"' ‘ \ INET § \ /Q»“ .;-‘\ /'.f., ¥
270 Tan 2R NN R~ PRSP~ 2
7RI\ TR 28N T RIALERES IRV LAXNT —7' 7 ,0’.‘
22 3¢ R\ D Input 0 SNRCWLL2T SR AL B RERR £

256 -\\\\
NN
\V

ORI LA OERN
A\\& Z 0N 25NN,

& - =
N AN ety

Identify combinations
light/dark & or features
pixel value Identify |dentify |dentify

Links carry signals \ edges combinations features /'
from one node ———— of edges

to another, boosting
or damping them
according to each
link's 'weight'.

EEF "H® "0S QA

[W
-
F== IE AU REF BEd

https://www.pnas.org/doi/10.107/3/pnas. 18215941 16

Ei1 1S Or FUCES
CONNECTED DNN

* Problem |: number of parameters

» Imagine working with image with 1000x 1000 pixels
- First layer = | million parameters * nb layers
- Hard to compute, hard to converge

* Problem 2: structure

BTRUC | URED OBJEG

* An Image Is a structured object:

» “Features’ have preferential relations with other features
gRieaim<el orid, but

- Relative pixel positions are important (top, right, left, group of pixels forming a circle, an eye,
hlacer.)

- Global position is not important (shifted image)

» Using fully connected does not capture efficiently those

broperties
» =>Convolution

Original Flip Rotation Random crop

+ Image without any + Flipped with respect to an + Rotation with a slight + Random focus on one
modification axis for which the meaning angle part of the image

of the image is preserve « Simulates i

] image.jpg 904x367 149 KB

CONVOLUTION

1x1 1x0 1x1 0 0
O 1,110} |4
Oxl OxO 1x1 1 1
0(0(1|1|0
0(1(1/0|0
Image Convolved
Feature

——

NS s sieditires” of ‘higher level”

- Pixels => lines, curves, dots => circles, long lines, curvy shapes => eye, hand, leaves =>
Animal, Car, sky ...

CONVOLUTION

* A convolution Is defined by the

welghts of Its kernel

* Which kernel(s) should we use!?

B C1its ofl the kernel can be

learnt, too

0 0 0
Identity 0 1 0
0 0 0
1 0 1
0 0 0
-1 0 1
0 1 0
Edge detection 1 -4 1
0 1 0
-1 -1 -1
-1 8 -1
1 -1 -1
0 -1 0
Sharpen -1 5 -1
0 -1 0
1 1 1
Box blur 1
. —11 1 1
(normalized) 9
1 1 1
1 2 1
Gaussian blur 3 x 3 1
' —— 6 2 4 2
approximaton E
o 1 2 1
| — —

https://en.wikipedia.org/wiki/Kernel _(image_processing)

CONVOLUTIONAL NEURAL
NETWORK

Convolution Pooling Convolution Pooling Fully Fully Output
+RelU +RelU Connected Connected perdictions

dog (0.01)

Cat (0.01)
Boat (0.94)
Bird (0.94)

-
-
-

Only 9 parameters per layer

Pooling: e.g., max of the square, reduce size

i

GRAPH CONVOLUTION

* GCN : Graph Convolutional Network

» An adaptation of the Convolution used on images to graphs

» Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

CONVOLUTIONAL NEURAL
NETWORK

» Convolution on a picture can be NNZNPINININ

| /N NINATIN

seen as a special case of a graph NZEN NN
operation: QSE $gs2$
» Combine weights of neighbors asn“nnnsasas
» With an image represented as a regular N INV/NV/NV/NV/NY/
grid /ININAININZINZN

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-20 | 6-2/

IFFERENCED

* In networks, number of neighbors different for each node

» Impossible to have a “fix" convolution kernel

» Matrix representations of images vs graphs

» Same object, completely different interpreation

» Graphs: position In the matrix (row, column) has no meaning
- Invariance to node ordering

e [0 0o 0 0 0 1 g
0’6 000000
@(@ lE
©

G-G Adi(G)# Ad(G)

D) ~ _

® ’e o len
e(e I
® lio110 0]

2

¥y v w v

(@) 2D Convolution. Analo-
gous to a graph, each pixel
in an image is taken as a
node where neighbors are de-
termined by the filter size.
The 2D convolution takes a
weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of
a node are ordered and have a
fixed size.

GRAPH CONVOLUTION

(b) Graph Convolution. To get
a hidden representation of the
red node, one simple solution
of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

e

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019)..Aicomprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

GRAPH CONVOLUTION

- Message passing interpretation

» Each node sends Iits information to its neighbors

» Nodes “combine™ (convolution) their neighbors’ information (+ their own) to
construct new features

* lell me who your friends are, I'll tell you who you are

* Can be related to:

» Information Diffusion on Networks
» PageRank
» Label propagation algorithms

MR

GCN LAYER INTUITION

- Convolution In images:

» [)Computes directly a weighted sum of neighbors’ values
- Learn the proper weights

» 2)Often followed by pooling

- Convolution in graphs:

» Weights cannot be learned directly

» |)Average the neighbors’ features (pooling-like)
- Using fix, predefined weights

» 2)Computes the weighted sum of neighbors’ values
- Learn the proper weights

GCN LAYER INTUITION

* A graph convolution can be understood as a linear (fully
connected) layer, with:

» As Input the average features of the neighbors
» As output a node embedding in the desired number of dimensions

- Equivalent to the number of neurons in a linear layer
- But also interpretable as the number of channels in Conv layer

GRAPHS # INDEPENDENT
FEEIS DATASES

» Graphs are inherently different from image/tabular datasets

» Images/tabular

- Each rtem Is iIndependent of the others

- =>We train for each item independently

- => The test set Is composed of new, never-seen rtems
» Graphs (general case)

- A single graph, composed of (connected) nodes

- =>FEach node is treated as an independent ritem

- =>But all nodes features are used In training

- =>Only target can be split in training/test
- =>"Semi-supervised learning”

GRAPHS # INDEPENDENT
FEEIS DATASES

» Example: Network of Twitter users

» Nodes: users
» Edges: followers

» Attributes: date joined, likes, gseographical position, keywords,. ..

Bl o ctilale/rfemale, Left/Right, etc.

» We know It for some users, but not all

» Using all users’ properties to guess the target for some users,
training on the known one

GRAPH CONVOLUTION

Stacking convolution layers

Outputs

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). Alcomprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

GRAPH CONVOLUTION

» Each convolution layer allows to depend on nodes farther In

the network

» Layer |: results depend only on direct neighbors
» Layer 2:

- direct neighbors’ features are result of Layer |
- =>results depends on nodes at distance | and 2 peep Naural Natwork

P lC

* Similar as convolutions in Images

Input Layer

edges combinations of edges object models

GRAPH CONVOLUTION

» Good news: average distance in real graphs Is short

» 6 degrees of separation

* Even on a large graph, a moderate number of convolutional
layers should allow to have impact from most of the graph

GCN EQUATION

GRAPH CONVOLUTION

H™Y = f(HY, A)

f(H(l),A) —} <13_%ADA—%H(Z)W(1))

H: node features

A: adjacency matrix (A =A 1

[: layer index

D: Degree matrix (degrees on the diagonal)
W:learnable weights

o activation fonction (often Rel.U)

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). 2comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

ADJACENCY MATRIX A

0 5 10 15 20 25 30

Zackary Karate club
(with communities for reference)

36

NORMALIZED A

DA ot e

Performs an average Average weighted by degree

Normalisation of the adjacency matrix

A A AL A

fHY, A) =0 (D 7AD—%H<Z>W<Z>)

HVW=COMBINE FEATURES

Q
4 0
CHENG
wi X
D
*QQ ®§ w2 y W
w3 z
ni b +b*y
n2
H
n3
n4

HW= New features

38

A A

FHD, A) = 6 (B—%AD—%H@W@)
A(HW)= AVERAGE OVER NEIGHEORS
(OF TRANSFORMED FEATURES)

S@é\ .,g)%‘/
ni W
n2 X
n3 y
n4

n1 n2Z n3 n4

a*w+b*x+c*y+d*z

=mean(w+X+y+2z)

fHY, A) =06 (D ZAD—= H(Z)W(z))

A(HW)= AVERAGE NEIGHBORS
"MBEDDING
(AH)W= EMBED AVERAGE OF NEIGHBORS
FEATURES

IR M D A REICEATICOINES A SS G E A=

40

GRAPH CONVOLUTION

* Individual embeddings computed as

h.l+1 = Z 1 thT
. jEN, \/deg(i)\/deg(j) :

s hjl embedding of node j In the previous layer

» Embedding of node i is a weighted sum of Iits neighbors’ attributes multiplied by
welghts

GCN: STEP-BY-STEP

Without features: Structure only

EATERS DI

f(H(l),A) —3s) (DA_%Aﬁ_%H(l)W(l))
Size of the weight matrices by layer

W, : dy X d,
W,:d, Xd,

W, :d, Xd, _,

d is the number of features per node in the original network data,
d, . 1 is the number of desired features (usually followed by a normal
classifier; e.g., logistic)

255

FORWARD STEP

* We can first look at what happens without weight
learning, i.e., doing only the forward step.

* We set the original features to the identity matrix, H, = I. Each
node’s features Is a one hot vector of itself (| at its position, O
otherwise)

* Weights are random (normal distribution centered on 0)

» Two layers, with W sizesn X 5,5 X 2

44

FORWARD STEP

FfHD, A) =0 < D TAD= H(Z)W(l)>

0 B 10 15 20 25 30

aaaaa

BR=Nrhio> features y

25

30

10

BE—t 0) fcatures =

20

25

8 e

255

FORWARD STEP

Blnension 2

Dimension |

Even with random welghts, some structure Is preserved
in the “embedding” (colors=communities)

seldl@
rece

FORWARD STEP

Why Is some Info

ure (communities, -

rma
—>[abel propagation mec

lon preserved!

nanism, due to loca

ransItivItY. ..) ClosERfiee
ive similar values, convergence to a particular

value. ..

€S

FORWARD STEP

K-means on the 2

D e

bedding”’

(paramater k=3 clusters)

Node positions based on spring layout,
colors=clusters

48

[EARNING STEP

ST TING THE GCIN

* We define a “'semi-supervised” objective:

» Labels are known only for a few nodes (the 2 instructors)
» Choose a loss function for binary classification (logistic...)
» The loss Is computed only for the two instructors

* We run e steps (‘epoch’”) of back-propagation, until
convergence

50

ST TING THE GCIN

W,

el
Combine one-hot to 5D

ST
EomipRcdB oD

Sl

Result:
Computed feature vector
As expected, values for nodes
0 and 33 are opposed

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Evpoch

oo s W O

U o s b B B B B B B B W wWwwWwWwwwwwWw NN NNNNNNNNNNN - O
ocowvwoegooumewWwNMHOOVLWOEISOANODBWNMHMOOVLWOESOOODBGWNMHOWOLWESIOAWUD B WN -O

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

oo oCcoococococoo

.6987
.6804
.6634
.6476
.6326
.6174
.6017
.5852
.5684
.5513

(=== NeBeN-E-R-N-N-R-N-E-R-R-R-R-N-DN-N-R-R-R-R-R-EN-E-R-R-N-B-N-D-N-D-N-N-N-]

.5338
.5158
.4976
.4792
.4605
.4416
.4225
.4033
.3842
.3652
.3464
.3279
.3096
.2916
L2741
.2571
.2407
.2248
.2095
.1946
.1803
.1668
.1541
.1422
.1312
.1209
.1113
.1024
.0940
.0863
.0793
L0727
.0667
.0611
.0560
.0513
.0470
.0432
.0396
.0363
.0333

ST TING THE GCIN

Epoch: 0

S

el 6

Features values

We retrieve the expected
“communities”

16

APPLICATIONS

* Most GNIN works consider that we have attributes on nodes,

and use supervised tasks

Classify bots in social media based on activity

Predict congestion in road network based on past traffic

Classify protein role in protein/protein interaction network

Classify users based on ritem/user interactions (recommender systems)

v

v

v

v

BRAPH AU TOENCODERS

AU TOENCODERS

» Autoencoders are mostly used for unsupervised learning using
deep neural networks

* lypically, for images.

» Composed of two parts
» An encoder

- e.g, a classic sequence of convolutional layers

» A decoder

- e.g, an inverse architecture (e.g., the same layers in inverse order)

* In the middle Is the “"embedding’’, what we are Interested In
» Constrained to be small

AU TOENCODERS

input | | output
T - i § -=T]
\ T~ : g - /
\ T F~ : 5 P /
\ / v ~. code | .- 7 \ /
\ / \ ~is e / \ /
\ / \ R A / \ /
\ / \ i/ A Y vy
\ /! v i Voo \
\ ! ! N \ 7
\/ \lé \/ \/ ’
/ !\ v\ \
/ \ / \ /s \ /
' A riN f
o V2N AN B P I\
d \ / Sk | \ / \
/ \ / i \S\ \ / \
/ ’/’ \\\ \
— - T~

decoder
encoder

AU TOENCODERS

RiRetobjective 1s to

» Encode a complex object
- e.g,a 3 color layers, 256 x 256 image
» Into a small-dimensional vector
BRcee ector of sizel 28

» Such that these vectors allow to reproduce the output with
minimal loss of iInformation

- Many applications:
» Visualization (like PCA/SNE)

» Downstream task (these vectors can be used for classification, etc.)
» Generate variations (Generative image models...)

GRAPH AUTOENCODERS

» Same principle, but with graphs :)

» Classic architecture]| | |:

» Encoder: GCN layers (e.g., 2 layers)
» Decoder: Dot product between embeddings (+activation)

» Minimize the binary cross entropy between input and output adjacency
matrices

» =>Compute vectors for each node
» such that their dot product is

- Close to | If they are connected (parallel => similar vectors)

- Close to O If they are not (orthogonal => different vectors)

[1]Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.

BIAE INTEREDHE

* Node embedding capturing the structure of the graph

» Community detection!?

» Obtain a parsimonious model of the graph

» Relation with SBM, or even more with RDPG (Random Dot Product Graph), a
related inferential framework to discover embedding such as edge probability
depends on dot products between node vectors.

Rl rediction (next)

LINK PREDICTION

LINK PREDICTION

« Observed network: current state

* Link prediction: What edge

» Might appear Iin the future (future link prediction)
» Might have been missed (missing link prediction)

- Many applications
» Recommender systems
» Drug/healness prediction, ...

62

LINK PREDICTION

» Classification objective

» Binary classes: edge/No edge

» Usually, evaluation based on class probability
- AUC(ROCQC), AP (Average Precision)...

» BEvaluation process

» Hide some of the edges in the graph
» Check that

- Training on the remaining edges
- We predict well the removed ones

LINK PREDICTION

« Classic methods

» Common Neighbors
» Adamic Adar

o)

- =>Work only on nodes at distance two

» Advanced methods
» Graph embedding (DeepWalk, Node2Vec, etc.)

- Use dot product of embedding as score, or other variants, e.g., training a classification on
vectors

» Community structure, random walks

=)o not take node features into account

LINK PREDICTION

» Using GAE
» The objective of GAE Is to reconstruct the graph, 1.e., to predict which edge s
present or not =>Directly a link prediction objective

» GAE final step: dot product of embeddings

= irediction score: result ot the dot product of node
vVeCctors

LINK PREDICTION

» Using directly a GNN

» GNNs produce node embeddings in the output
» We need to combine node embeddings

* Iwo (main) solutions

» Create a combined vector from two independent vectors, and add a linear
layer for classification

» Use directly a vector-to-scalar operation

LINK PREDICTION

» Combining two node vectors into a node-palr vector

» Vector concatenation [x|,x2] [x3x4]=>[xI|,x2,x3,x4]
s Eciicrence Pl X2 x4]==xI-x3 , x2-x4]
WEcEEmnereProduct x| x2[[x3 x4]=>[x1*x3 , x2*x4]

AR

* Followed by a classification task on this new vector

LINK PREDICTION

» Combining two node vectors into a scalar

dot productrunnormalized cosine similarity

Euclidean Cosine Hamming
O
O Al1lo]1[1]0]0
! $
O Bl1]1]1]0]0{0
O
Manhattan Minkowski Chebyshev
0- O ———— O
p=2
v
‘ P=1 ‘ .

VGAE

VARIANT:VGAE

« VAE :Variational AutokEncoder

» Popular improvement over classic AutoEncoder

* Limits of Autoencoders:

» Embedding space Is often poorly structured

- Poor continuity: The “middle” vector between two vectors (vl,v2) do not correspond to
a middle image between the two corresponding to vI/v2

- Poor completeness: Space seems “‘sparse’: many vectors correspond to nothing
meaningful

* VAE solution:

» Instead of encoding an Input as a single point, we encode It as a distribution
over the latent space

Zfi& encoder

“training” data for
the autoencoder

decoder

JAN

encoded data can be decoded
without loss if the autoencoder
has enough degrees of freedom

O

without explicit regularisation,
some points of the latent space
are “meaningless” once decoded

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-/05109 | 91/3

VAL

AY Point from e 0d, 4 O
SPAce rmeaningless

once decoded

Q poinds that are close

similar once decoded

irregular latent space x V regular latent space

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-/05109 | 91/3

VAL

* [he model Is trained as follows:

|)the input Is encoded as gaussian distribution over the latent space
2) a point from the latent space is sampled from that distribution

3) the sampled point is decoded and the reconstruction error can be
computed

4) finally, the reconstruction error is backpropagated through the network

v

v

v

v

VAL

Regularization: trade-off between best fit to data and distance
between each gaussian and a standard gaussian(centered, unit
variance)

what can happen without regularisation x V what we want to obtain with regularisation

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-/05109 | 91/3

- .
-
- - g
——— .
-]
-
R

[———— !

@

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-/05 109 [9173

VGAE

» Simple adaptation to graphs, I.e,, a classic graph autoencoder In
which the encoding part is replaced by Variational mechanism.

glifpractce:

» Layer |:normal GCN
» Layer 2:two parallel GCN layers

- One to learn the centroid
- One 1o learn the variance (diagonal of the covariance matrix)

- =>For each node, instead of having | vector of size d, we have two vectors of size d
» Jo decode, we take a random point from the multivariate gaussian

GOING FURTHER

TRANSDUCTIVE / INDUCTIVE

* [ransductive

» What we discussed until now:
- We have access to the whole graph at training time
- We just don't see all the labels (test, prediction)

* Inductive

» Train on a set of nodes/graphs

» Results can be applied to unseen nodes/graphs

- A GCN layer can be trained on multiple (sub)networks, and learned weights used on a new
scenario (but not very efficient)

- GraphSAGE=>Works for each node on a local graph centered on the node, by sampling a
fixed number of neighbors. Transform the graph problem in a more classic problem.

MULTI-PARTITE GRAPHS

* Nodes of multiple types:

» [tems/Users
» Drug/iliness

it

* Each type of node has their own attributes

» Cannot learn a single GCN layer

» =>[earn 2 independent layers

» User attributes to Item attributes
» [tem attributes to User attributes

GAT

Graph Altention networks

SELF-AT TENTION
MECHANISM

* Mechanisms coming mostly from Language models

» [ransformers (as In GPT) are a particular type of self-attention

GRAPH AT TENTION

* In the normal GCN, a limit is the fix rule used to combine the
neighbors attributes (weighted average)

h.l+1 il Z I thT
ey \/deg(in/deg(j)

» Graph attention principle is to allow each node to “choose”
what “attention” to give to each neighbor

| hiz+1 ! Z a.hiwT

)
JEN,
- ay; attention from i to j

