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Networks as Matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables
of numbers. The size of amatrix is expressed asm×n, for amatrix
with m rows and n columns. The order (row/column) is impor-
tant.
Mij is a notation representing the element on row i and column
j .

A - Adjacency matrix

The most natural way to represent a graph as a matrix is called
the Adjacency matrix A. It is de�ned as a square matrix, such as
the number of rows (and the number of columns) is equal to the
number of nodes N in the graph. Nodes of the graph are num-
bered from 1 to N , and there is an edge between nodes i and j if
the corresponding position of the matrix Aij is not 0.

• A value on the diagonal means that the corresponding
node has a self-loop

• the graph is undirected, the matrix is symmetric: Aij =
Aji for any i, j .

• In anunweightednetwork, and edge is representedby the
value 1.

• In a weighted network, the value Aij represents the
weight of the edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward in-
terpretations and are frequently used, such as Multiplying A by
itself andMultiplying A by a column vector

Multiplying A by itself

Multiplying A by itself allows to know the number of walks of
a given length that exist between any pair of nodes: A2

ij corre-
sponds to the number of walks of length 2 from node i to node j,
A3

ij to the number of walks of length 3, etc.

Multiplying A by a column vector

Multiplying A by a column vector W of length 1 × N can be
thought as setting the i th value of the vector to the ith node,
and each node sending its value to its neighbors (for undirected
graphs). The result is a column vector with N elements, the ith
element corresponding to the sum of the values of its neighbors
inW . This is convenient when working with randomwalks or dif-
fusion phenomenon.

Spectral properties of A

Spectral Graph Theory is a whole �eld in itself, and beyond the
scope of this class. A few elements for those with a linear algebra
background:

• The adjacency matrix of an undirected simple graph is
symmetric, and therefore has a complete set of real eigen-
values and an orthogonal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the
graph.

• The n eigenvalues are denoted as λ0 ≤ λ1 ≤ λ2 ≤
. . . λmax

• The largest eigenvalue λmax lies between the average
and maximum degrees.

• In a large, sparse random graph, λmax ≈ 〈k〉

• The number of closed walks of length k in G equals∑n
i=0 λ

k
i

• A graph is bipartite if and only if its spectrum is symmetric
(i.e., if λ is an eigenvalue, then so is −λ

• If G is connected, then the diameter of G is strictly less
than its number of distinct eigenvalues

Graph Laplacian

The Graph Laplacian, or Laplacian Matrix of a graph is a variant
of the Adjacency matrix, often used in Spectral Graph Theory.
It is de�ned asD − A, withD the Degree matrix of the graph, de-
�ned as aN ×N matrix withDii = ki and zeros everywhere else.

Matrix notation - Example
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A - Adjacency
Mat.


0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0



D - Degree Ma-
trix


3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3



L - Laplacian


3 −1 0 0 −1−1
−1 5 −1−1−1−1
0 −1 2 −1 0 0
0 −1−1 2 0 0
−1−1 0 0 4 −1
−1−1 0 0 −1 3



A2


3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3



RandomW.mat.
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Laplace Operator

Intuitively, the Laplace operator is a generalization of the second
derivative, and is de�ned in discrete situations, for each value, as
the sum of di�erences between the value and its "neighbors". e.g.,
in time, the 2nd derivative acceleration is the di�erence between
current speed and previous speed. In a B&Wpicture, it’s the di�er-
ence between the greylevel on current pixel and the greylevel of
4 or 8 closest pixels, and perform edge detection. On a graph, with
W a column vector representing values on nodes, LW computes
for each node the di�erence to neighbors.

Spectral properties of L

Eigenvalues of the Laplacian have many applications, such as
spectral clustering, graph matching, embedding, etc. Assuming G
undirected with eigenvalues λ0 ≤ λ1 ≤ λ2 ≤ . . . λn, here are
some interesting properties:

• The smallest eigenvalue λi equals 0

• The number of 0 eigenvalues gives the number of con-
nected components

RandomWalk matrix
Another useful matrix of a graph is the Random Walk Transition
MatrixR. It is the columnnormalized version of the adjacencyma-
trix. Rij can be understood as the probability for a randomwalker
located on node i to move to j .

Going Further

• Introduction to spectral graph theory (Nica 2016)

• Survey on Graph Spectral Theory (Spielman 2012)

• Book on Graph Spectral Theory (Chung and Graham 1997)

• Spectral graph Clustering (Nascimento and De Carvalho
2011)

• Wavelets on graph (Hammond, Vandergheynst, and Gri-
bonval 2011)
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