
Experimenting with Community Structure

1. Detecting your first Community Structure

To detect communities, you can use the cdlib package. It also contains functions
for evaluation and comparison of partitions. For details, check the documentation at
https://cdlib.readthedocs.io/en/latest/

If for some reason you cannot install it, you can use the louvain_communities function from
networkx, and NMI function from sklearn, although you will need to do some transformations.

(a) Using networkx , load the airport dataset
(b) Using cdlib , detect communities on this network using the louvain method. You have to use the

algorithms.louvain method (and do from cdlib import algorithms before).
(c) Visualize the communities found. In order to interpret them, you should draw each node at its

geographical location, with a color per community.

There are several ways to draw a spatial network with colors corresponding to communities,
from using Gephi to plotting points on an interactive map using folium .
Here, I provide a simple code to plot the data as a simple scatter plot

import seaborn as sns
import matplotlib.pyplot as plt
x= list(nx.get_node_attributes(g,"lon").values())
y= list(nx.get_node_attributes(g,"lat").values())

coms_dict=coms.to_node_community_map()
hues=list(coms_dict[n][0] for n in g.nodes())

plt.figure(figsize=(12,8))
plot = sns.scatterplot(x=x,y=y,hue=hues,palette=sns.color_palette
("tab20",len(coms.communities)),s=5)
plot.legend_.remove()

(d) Vary the resolution parameter and observe changes in the community structure.

2. Understanding Modularity. To be sure that you understand correctly the modularity, write a function
that computes it for a given partition and a given graph(you can start with a small graph, for instance
the karate_club_graph of networkx. Make your code efficient by remembering that the score depends
only on pairs of nodes inside communities. Check that you obtain the same results as using the cdlib
function newman_girvan_modularity . (Be careful that if your network has weights, by default they
are used by cdlib modularity)

3. Comparing Partitions
(a) The provided airport data also contains information about the country of each airport, which can

be interpreted as a ground truth partition of the network.
You can obtain it using nx.get_node_attributes(g,"country") . Transform this information
into a NodeClustering object of cdlib

(nc = NodeClustering(partition,graph,"GroundTruth") , with partition a list of list of
nodes.

https://cdlib.readthedocs.io/en/latest/

(b) Compute the NMI and AMI (https://cdlib.readthedocs.io/en/latest/reference/evaluation.
html) between the community structure and the partition in countries.

(c) By exploring with a for loop the values of the resolution parameter for modularity, find the partition
with the highest similarity to the partition in countries.

(d) Compare visually the results, and think about the reason why we should not expect to find exactly
communities corresponding to countries.

4. Other methods
(a) Run the kclique algorithm, with k=10 .

(b) Check the communities obtained (if you plot them, be careful that there can be one node belonging
to several communities)

(c) Identify the nodes belonging to several communities.
(d) Run infomap and compare the communities found with the ones found with Louvain with default

parameters, in terms of community sizes and in terms of similarity to the country ground truth.

5. Internal evaluation
(a) Using countries as ground truth does not makes much sense. To evaluate which partition is the

most interesting, we can evaluate them with internal scores. You can check https://cdlib.
readthedocs.io/en/latest/reference/evaluation.html#internal-evaluation-fitness-scores
to see the ones available in CDlib.

(b) Check the conductance definition, and then compute it on your different solutions. Check the
communities of highest and lowest conductance, and the average conductance for each partition

(c) Do the same with the avg_transitivity .

(d) Draw a scatterplot, in which the x axis corresponds to conductance score, y corresponds to
avg_transitivity , and each point is a community. You can compare two methods, by using

different colors for communities from different methods. Using these two scores together can be
related to the original definition of communities: we want communities well separated from the rest
of the graph, and internally well connected.

6. Going further: Intuitions on the SBM

I propose this exercise using only networkx and cdlib. You could do much more with SBM using
graph-tool package (real SBM inference, degree-corrected SBM, Hierarchical SBM, etc.), but it

requires a little bit more time to get used to at first, so I recommend it only if you’re particularly
interested in the topic.

(a) Starting from a reasonable partition of the graph (i.e., countries or the result of the infomap
method..) Compute the block matrix. You thus need to count the number of edges between
and inside each community.

(b) Using networkx stochastic_block_model method, generates a graph based on the computed
block matrix

(c) Using the network and node descriptors that you know, compare the properties of this generated
graph with the properties of your original graph (and with a simple ER or configuration model). How
is it different? How is it similar? Think about clustering coefficient, average distance, distribution
of node centralities, degree distribution, internal transitivity, etc.

(d) How do these properties change when you increase/decrease the number of blocks?

Page 2

https://cdlib.readthedocs.io/en/latest/reference/evaluation.html
https://cdlib.readthedocs.io/en/latest/reference/evaluation.html
https://cdlib.readthedocs.io/en/latest/reference/evaluation.html#internal-evaluation-fitness-scores
https://cdlib.readthedocs.io/en/latest/reference/evaluation.html#internal-evaluation-fitness-scores

