
Experimenting with random-network generators

1. Comparing networks and their randomized versions.
(a) Using networkx, load the airport dataset.

It can be useful to work on a smaller network for experimenting (you can go back to the
original graph when your functions are ready). To work on a subnetwork composed of the
nodes of largest degree, you can do for instance:

Listing 1: Filtering out low degree nodes
to_keep = [n for n,v in g.degree() if v > 10]
g_small = g.subgraph(to_keep)

(b) Generate an Erdos-Renyi (ER) random version of it. You can use gnp_random_graph and gnm_random_graph
methods.

(c) Generate also a configuration model (degree preserving) version of it, using expected_degree_graph ,
and the degrees observed for the real network (e.g., with g.degree)

(d) Compare the network properties of the 3 different versions of the graph, in particular the average
degree, average clustering coefficient(transitiviy), and average path length. Interpret in terms
of small-worldness.

(e) To have a statistically robust approach, generate 100 versions of the configuration model and gnp
model, and compute their average clustering coefficient. Plot the distribution of values obtained.
Compare with the value on the real network to confirm that the observed transitivity is significantly
higher (Bootstrapping confidence).

2. Resilience

When analyzing networks of infrastructure, transport or telecommunication, the resilience or
robustness of the network is a popular investigation topic. Resilience can be defined as the
capacity of the network to resist attacks and/or failures. The resistance can be measured in
several ways, and attacks and failures can be modeled differently too. We will briefly investigate
this question on the airport dataset.

(a) Let’s define a simple measure of how efficient the network is as the fraction of nodes belonging to
the largest connected component. Write a function computing this score, given a network.

(b) Write a function that, given an ordered list of nodes, removes them one by one from the network,
computes the resilience measure at each step, and returns the result.

(c) First, let’s compute the resilience of the airport network to failures, i.e., random node removals.
Generate a vector containing all nodes in a random order, and call the function defined above on
it. Plot the results, i.e., resilience as a function of nodes removed. Repeat a few times to see how
much it depends on the order of nodes.

(d) Let’s now test the resilience to attacks, i.e., we will remove nodes in a specific order, and search for
the most damaging strategy. Compare attacks based on the PageRank and the Betweeness.

(e) Compare the same process (Random attacks, attacks targeted on PageRank/Betweeness on ER and
configuration versions of the airport dataset.

(f) Try to interpret the resilience in terms of the classic network descriptions, i.e., degree distribution,
clustering...

3. Spatial graph
(a) We want to capture the spatial network aspect of our airport dataset. Extract first the coordinates

of each node in a dictionary, for instance with
coordinates = {n:(g.nodes[n]["lat"],g.nodes[n]["lon"]) for n in g.nodes}

(b) For each edge in the network, compute the distance between its two endpoints. The great circle
distance, i.e., the distance following the curvature of the earth, can be computed using function
haversine from package haversine . In a google colab notebook, you can install it with
!pip install haversine

(c) Plot the distribution of edge distances using sns.displot . You can use the binwidth argument
to make your graph more clear.

(d) Compute the distribution of distances between all pairs of nodes in the network. You can use for
instance itertools.combinations(LIST,r=2)

(e) Plot the distribution. Observe that it is far from a bell curve, so we need to control it to know the
influence of distance.

(f) To compute the actual influence of distance, you need to take into account both factors. A
simple solution consists of using bins (e.g., 500km), and for each bin, to divide the number of
observed links between nodes at this distance by the number of node pairs located at this dis-
tance. It can be interpreted as a notion of density, it is the probability to encounter an edge
in a pair of nodes taken at random at a given distance. A simple way to do it is to use the
np.histogram(edge_distances, bins) function to count the number of items in each bin.

(g) Plot the ad-hoc deterrence function computed that way.
(h) The next step would be to generate a random spatial graph by keeping the position of nodes and

the deterrence function, and to study how much of the airport dataset properties are explained by
it. Since it is a bit complex to code, just write the algorithm in natural language, and compare it
with your peers. If you want to try implementing it, you can use the IntervalDict function from
package python_intervals . Remember that this will not preserve node degrees. If you want to
preserve both, you need to use a gravity random network model.

4. Going further: Experimenting with PageRank
(a) Let’s investigate a question relating to node centralities and random networks. We know that nodes

with higher degrees tend to have a higher PageRank, there is a strong correlation between the two.
We would like to know if the PageRank scores we observed are explained only be the degree of
nodes, or if there is something more to it.

(b) Compute and plot the distribution of PageRank scores in the original graph. You can use seaborn
library and displot function, which simply requires a list of values. You can plot it with a log
scale on y by adding the line plt.yscale("log") just after your seaborn command.

(c) Compare with the distribution of PageRank in the ER graph first. You should observe a completely
different distribution. Make the relation with the degree distribution.

(d) Compare now with the distribution of Pagerank in the configuration model. The distribution should
be more similar to the real one. Run it 100 times, memorizing all Pagerank values observed, and
plot the resulting distribution.

(e) We could use a statistical test to check if both samples come from a same distribution, but let’s
focus on the highest degree nodes. Re-run 100 version of the configuration model, memorizing
the highest value encountered. Plot the distribution of those highest values and compare with the
highest value on the original network. What do you conclude ? Can you make an hypothesis on
what is happening ?

Page 2

5. Going further : Generating Scale-Free networks with Preferential Attachment.

Networkx has a function to create networks following the preferential attachment principle
(barabasi_albert_graph), but we would like to study the dynamic of the model, so we will
code our own version.

(a) Using networkx, generate an initial random ER network composed of a small number of nodes
(b) Write a for loop, such as each iteration adds a new node to the network, with a small number

of edges, each of them connected to existing nodes with a probability proportional to their degree
(preferential attachment). You can use, for instance, the method random.choices

(c) Plot the degree distribution, with and without a log-log scale.
(d) We want to observe how node degrees increase over time. For a few nodes (e.g., nodes 1, 2, 3, 9,

10, 11, 19, 20, 21), plot the evolution of their degree, for instance on a plot such as x=iteration,
y=degree, one line per node.

(e) Compare the degree distribution after the first, last, and some intermediary steps.

To plot several distributions on a same plot, you can either use seaborn.scatterplot ,
providing a long form pandas dataframe, i.e., a dataframe with 3 columns (x,y,label) such as
each row correspond to one point (x,y) of the experiment represented by label. The plot is
then done calling scatterplot(x="x",y="y",hue="label",data=dataframe) . Another
solution is to call several time pyplot plt.plot(x, y, ’color’, label=’label’) func-
tion.

(f) Vary the number of initial nodes, the number of nodes to add and the number of edges added by
each node, and observe how the final degree distribution is affected.

Page 3

