
COMMUNITY DETECTION
(GRAPH CLUSTERING)

COMMUNITY DETECTION

• Community detection is equivalent to “clustering” in
unstructured data

• Clustering: unsupervised machine learning
‣ Find groups of elements that are similar to each other

- People based on DNA, apartments based on characteristics, etc.
‣ Hundreds of methods published since 1950 (k-means)
‣ Problem: what does “similar to each other” means ?

COMMUNITY DETECTION

COMMUNITY DETECTION

• Community detection:
‣ Find groups of nodes that are:

- Strongly connected to each other
- Weakly connected to the rest of the network
- Ideal form: each community is 1)A clique, 2) A separate connected component

‣ No formal definition
‣ Hundreds of methods published since 2003

WHY COMMUNITY
DETECTION ?

• One of the key properties of complex networks was
‣ High clustering coefficient
‣ (friends of my friends are my friends)

• Different from random networks. How to explain it ?
‣ Watts strogatz (spatial structure?)

• => In real networks, presence of dense groups: communities
‣ Small, dense (random) networks have high density.
‣ Large networks could be interpreted as aggregation of smaller, denser

networks, with much fewer edges between them

SOME HISTORY

• The graph partitioning problem was a classic problem in graph
theory

• It goes like this:
‣ How to split a network in k equal parts such that there is a minimal number of

edges between parts.
‣ Variants were proposed:

- What if partitions are not exactly same size ?
- What if the number of parts is not exactly k ?
- …

SOME HISTORY

• Then in 2002, [Girvan & Newman 2002], introduction of the
problem of “community discovery”:
‣ Observation that social networks are very often composed of groups
‣ The number and the size of these groups is not known in advance
‣ Can we design an algorithm to discover automatically those groups ?

Girvan, Michelle, and Mark EJ Newman. "Community structure in social and biological networks." Proceedings of the national academy of sciences 99.12 (2002): 7821-7826.

COMMUNITY STRUCTURE IN
REAL GRAPHS

• If you plot the graph of your facebook friends, it looks like this

COMMUNITY STRUCTURE IN
REAL GRAPHS

• Connections in the brain ?

COMMUNITY STRUCTURE IN
REAL GRAPHS

• Phone call communications in Belgium ?

3. Results: division of the Belgian telephone territory

3.1 Division based on the frequency of calls

Figure 2 illustrates the groups obtained based on the frequency of telephone com-
munications between municipalities. The colours are of no particular significance
and are simply intended to facilitate the reading of the map.

Our main comments may be summarised in four points:

(1) Without having fixed the number of groups or their size, the optimal groups ob-
tained are spatially balanced: 17 ‘telephone areas’ composed of 15 to 66 munici-
palities appear ‘naturally’. This result is different from the division in labour pools (47
pools defined by de Wasseige et al., 2000) and, without being identical, resembles
the urban hierarchy of Van Hecke et al. (2007). To this effect, we have indicated on
the map in Figure 2 the regional cities and the major cities as defined in Van Hecke
et al. (2007). Note that certain telephone areas encompass two cities (for example,
the Belgian coast forms a telephone area in itself and groups the cities of Ostend
and Bruges; other examples: Hasselt and Genk or Mechelen and Leuven), whilst
other telephone areas do not correspond to a ‘regional city’ as defined by Van
Hecke et al. (2007) (for example Aalst to the west of Brussels is a telephone area,
whereas Aalst is not considered as a ‘regional city’; the same is true for the province

of Luxembourg).

(2) Surprisingly, the groups of municipalities
are always made up of adjacent municipali-
ties. As the grouping method does not im-
pose constraints regarding proximity or
contiguity of municipalities in groups, the
results could have revealed groups com-
posed of separate parts, but this is not the
case for the groups obtained.

(3) The linguistic border is followed by the
limits of the ‘telephone areas’, with the ex-
ception of the area of Brussels (in red on
the map) and the municipalities with facili-
ties Espierre-Helchin, Comines-Warneton,
Herstappe and Fourons. Language there-
fore seems to be a strong barrier in terms
of telephone communications: this confirms
the former results of Klaassen et al. (1972),
Rossera (1990) and Rietveld and Janssen
(1990). However, it should be noted that
the barrier around the German-speaking
region is less clearly marked.

(4) The biggest area obtained (66 munici-
palities) corresponds – not surprisingly – to
the biggest city: Brussels. Figure 3 presents
a zoom-in of Figure 2 centred on Brussels.

Brussels Studies
the e-journal for academic research on Brussels 5

V. BLONDEL, G. KRINGS, I. THOMAS,
« Regions and borders of mobile telephony in Belgium and in the Brussels metropolitan zone »,

Brussels Studies, Issue 42, 4 October 2010, www.brusselsstudies.be

Figure 2: ‘Telephone areas’ defined based on the frequency of communica-
tions between municipalities. We also indicate (1) = regional city (2) major
city (definitions from Van Hecke et al., 2007) and (3): provincial borders.

Vilvoorde, Zaventem, Tervuren, Braine-l’Alleud, Ottignies-Louvain-la-Neuve, Wavre,
Perwez and Jodoigne. However, Leuven is not included and is part of another tele-
phone area with Mechelen (see Figure 2). The Brussels telephone area resembles its
urban area: it covers a much bigger area than the 19 municipalities of the Brussels-
Capital Region, all around the capital with a stronger spatial extension towards the
south.

3.2 Division based on the average duration of communications

The municipalities are grouped here using the same method, according to the aver-
age duration of communications. The results are illustrated in Figures 4 (national
scale) and 5 (a zoom-in on Brussels) and lead to two main commentaries:

(1) the method leads naturally to the constitution of two groups: one to the north
and the other to the south of the country (Figure 4). Among the more than 200 mil-
lion communications analysed, only 1.05% are from the group in the north to the
group in the south, and 1.04% are from the group in the south to the group in the
north. In other words, almost 98% of telephone communications take place be-
tween customers within the same group. Let us note that the municipalities in the

German-speaking
community do not
form a separate
group, but are part
of the group in the
south of the country.

(2) Figure 4 shows
that the north-south
division follows the
linguistic border with
a few exceptions.
Not surprisingly,
these exceptions are
all municipalities
with facilities. With
the exception of
Wemmel, the mu-
nicipalities with facili-
ties in the outskirts
of Brussels (Dro-
genbos, Kraainem,
Linkebeek, Rhode-
Saint-Genèse,
Wezembeek-
Oppem) are all
grouped with the
municipalities in the
south of the country
(see Figure 5 for a
zoom-in). Three
other municipalities

Brussels Studies
the e-journal for academic research on Brussels 7

V. BLONDEL, G. KRINGS, I. THOMAS,
« Regions and borders of mobile telephony in Belgium and in the Brussels metropolitan zone »,

Brussels Studies, Issue 42, 4 October 2010, www.brusselsstudies.be

Figure 4: ‘Mobile telephone areas’ defined based on the average duration of communications.

FIRST METHOD BY GIRVAN &
NEWMAN

• 1)Compute the betweenness of all edges

• 2)Remove the edge of highest betweenness

• 3)Repeat until all edges have been removed
‣ Connected components are communities

• => It is called a divisive method

• =>What you obtain is a dendrogram

• How to cut this dendrogram at the best level ?

FIRST METHOD BY GIRVAN &
NEWMAN

Maximal
modularity

FIRST METHOD BY GIRVAN &
NEWMAN

• Introduction of the Modularity

• The modularity is computed for a partition of a graph
‣ (each node belongs to one and only one community)

• It compares :
‣ The observed fraction of edges inside communities
‣ To the expected fraction of edges inside communities in a random network

MODULARITY

Original formulation

MODULARITY

Sum over all pairs of nodes

MODULARITY

1 if in same community

MODULARITY

1 if there is an edge between them

MODULARITY

Probability of an edge in
a configuration model

MODULARITY

Network Science

Cheatsheet

Made by
Remy Cazabet

Community Structure

Blocks and Communities: De�nition

The general idea of blocks and communities is that nodes of a
network can be grouped together in homogeneous sets, based
on the network topology. The problem of automatically discover-
ing those groups is one of the most studied problem of network
science, but also one of the most di�cult to properly de�ne.

Partitions/Overlap

Wemust di�erentiate two types of node grouping:

�. A Partition of a graph is a division of its nodes such as each
of them belongs to one and only one group.

�. Overlapping communities/blocks allow, on the contrary,
nodes belonging to several groups. Unless speci�ed dif-
ferently, they also allow nodes to belong to no group.

Algorithms searching partitions are much more common than
those searching for overlapping groups, due to the increased
complexity of the later task. Overlapping community detection
is, nevertheless, an active �eld of research.

Community structure

The idea of having a network structured in communities is de�ned
as an analogy with communities in social networks. Communi-
ties are therefore de�ned (informally) as groups of nodes that are
strongly connected between themselves (high internal density)
and more weakly connected to the rest of the network low exter-

nal density.
This de�nition however cannot be translated unambiguously into
a mathematical formulation. The problem of community detec-

tion, or community discovery, is therefore complex to de�ne.

Block structure

The general idea of the block structure is that the probability to
observe an edge between two nodes is a function of the blocks
they belong to. Usually, no assumption is made apriori about
those probabilities: they can be high between nodes belonging
to the same blocks or to di�erent blocks, and can di�er for each
pair of block.

De�nition

C a community partition, or, more generally, a set of set
of nodes

ci community i, a set of nodes

Modularity

The most famous quality function to measure the quality of par-
titions is called the Modularity. Introduced ina, it is de�ned for a
partition C and a graph G as the di�erence between the fraction
of observed internal edges and the expected fraction of internal
edges if G were rewired according to a con�guration model, i.e.,
preserving the degrees of nodes.
More formally,

Q =
1

L

|C|X

i=1

(Li �
1

2
K

2
i)

with Li = L(H(ci)) the number of edges inside community i and
Ki =

P
u2ci

ku the sum of degrees of nodes in community i.
The original formulation of modularity, often found in the litera-
ture, is:

Q =
1

2L

X

uv

Auv �

kukv

2L

�
�(cu, cv)

with �(cu, cv) the kronecker delta between communities, i.e.,
�(cu, cv) = 1 if nodes u and v belongs to the same community,
� otherwise.

aGirvan and Newman ����.

Modularity: null model

The modularity as expressed above compares the number of
edges inside communities to the expected number of edges in
a null model, i.e., a randomized version of the graph. In the orig-
inal version, this null model is the con�guration model (as easily
recognized in the kukv

2L of the original formula).
Variants of themodularity have been proposed using di�erent null
modelsa, for instance an ER null model, or a gravity model to take
into account the e�ect of geographic distanceb

aJutla, Jeub, and Mucha ����.
bExpert et al. ����.

Modularity: resolution limit

It is important to remember that the Modularity is (only a) quality
function, not ade�nition of the quality of communities. An impor-
tant drawback of Modularity is known as the limit of resolutiona .
It says that partitions of maximal modularity are biased toward a
particular scale, i.e., for a graph of a give size (#nodes, #edges),
communities smaller or larger than a certain size cannot be found.
The typical example of this limit is the clique-ring structure (set of
cliques connected by a single edge), in which the expected par-
tition is to have one community by clique, while the solution of
highest modularity put several cliques in the same community,
when we increase the number of cliques.

aFortunato and Barthelemy ����.

Modularity and random networks

Another well known limitation of a Modularity maximization ap-
proach is that it �nds communitieswith high scores in randomnet-
works: since it is not adjusted for chance, random �ucutations in
a random network are mistaken for meaningful structure in the
network.

Multi-resolution Modularity

A simple solution has been proposed to the limit of resolution,
consisting in adding a resolution parameter � to tune the desired
resolutiona, i.e., (Li � 1

2K
2
i) becomes (Li � �

1
2K

2
i). It raises or

shrinks the expected number of edges inside communities. It re-
quires, however, to choose a proper value for �, i.e., to choose ar-
bitrarily a scale for communities.

aReichardt and Bornholdt ����.

Can also be defined
as a sum by community

MODULARITY

• Modularity compares the observed network to a null
model
‣ Usually the configuration model

- Multi-edges and loops are allowed
‣ Other models could be used, such as ER random graphs.

• Natural extension to weighted/multi-edge networks

FIRST METHOD BY GIRVAN &
NEWMAN

• Back to the method:
‣ Create a dendrogram by removing edges
‣ Cut the dendrogram at the best level using modularity

• =>In the end, your objective is… to optimize the Modularity,
right ?

• Why not optimizing it directly !

MODULARITY OPTIMIZATION

• From 2004 to 2008: The golden age of Modularity

• Scores of methods proposed to optimize it
‣ Graph spectral approaches
‣ Meta-heuristics approches (simulated annealing, multi-agent…)
‣ Local/Gloabal approaches…

• => 2008: the Louvain algorithm

LOUVAIN ALGORITHM

• Simple, greedy approach
‣ Easy to implement
‣ Fast

• Yields a hierarchical community structure

• Beat state of the art on all aspects (when introduced)
‣ Speed
‣ Max modularity obtained
‣ Do not fall in some traps (see later)

LOUVAIN ALGORITHM
• Each node start in its own community

• Repeat until convergence
‣ FOR each node:

- FOR each neighbor:
 if adding node to its community increase modularity, do it

• When converged, create an induced network
‣ Each community becomes a node
‣ Edge weight is the sum of weights of edges between them

• Trick: Modularity is computed by community
‣ Global Modularity = sum of modularities of each community

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.

LOUVAIN ALGORITHM

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.

RESOLUTION LIMIT

• Modularity == Definition of good communities ?

• 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]
‣ Resolution limit of Modularity

• Let’s see an example

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.

RESOLUTION LIMIT
Let’s consider a ring of cliques

Cliques are as dense as possible

Single edge between them:
=>As separated as possible

Any acceptable algorithm=>Each clique is a community

RESOLUTION LIMIT

But with modularity:

Small graphs=> OK

Large graphs=>
The max of modularity obtained

by merging cliques

RESOLUTION LIMIT

• Discovery that Modularity has a “favorite scale”:

• For a graph of given density and size:
‣ Communities cannot be smaller than a fraction of nodes
‣ Communities cannot be larger than a fraction of nodes

• Modularity optimisation will never discover
‣ Small communities in large networks
‣ Large communities in small networks

RESOLUTION LIMIT
• Multi-resolution modularity

c

∑
i

eii − a2
i

c

∑
i

eii − λa2
i

 = Resolution parameterλ

More a patch than a solution…

OTHER WEAKNESSES

• Modularity has other controversial/not-intuitive properties:
‣ Global measure => a difference in one side of the network can change

communities at the other end (imagine a growing clique ring…)
‣ Unable to find no community:

- Network without community structure: Max modularity for partitions driven by random
noise

• To this day, Louvain and modularity remain most used
methods
‣ Results are usually “good”/useful
‣ It’s a “standard” tool, like k-means or linear regression
‣ Some newer methods gain popularity (SBM, Leiden,…)

ALTERNATIVES
• 1000+ Algorithms published, and counting

• What unfortunately many methods still do:
‣ They define their own criteria of good communities without being grounded

on existing literature
‣ They show empirically on a few networks using a single validation method that

their method is better than Louvain

• Common saying:
‣ “No algorithm is better than other, it depends on the type of network”(no

free-lunch theorem)
‣ “The best method depends on the objective”

ALTERNATIVES

• Most serious alternatives (in my opinion)
‣ Infomap (based on information theory —compression)
‣ Stochastic block models (bayesian inference)

• These methods have a clear definition of what are good
communities. Theoretically grounded

INFOMAP

• [Rosvall & Bergstrom 2009]

• Find the partition minimizing the description of any random
walk on the network

• We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.

INFOMAP

Random
walk

Description
Without

Communities
With communities

Huffman coding: short codes for frequent items
Prefix free: no code is a prefix of another one (avoid fix length/separators)

The Infomap method
7

Figure 3 The code view of the map equation demo showing the encoding of a random walker with a two-module solution. In the Flash ap-
plication available on www.mapequation.org/apps/MapDemo.html, the random walker currently visits the green node with codeword 110. The height of a
block under Index codebook represents the rate at which the random walker enters the module. The bit sequence next to each block is the associated code-
word. Similarly, the height of a block underModule codebooks represents the rate at which the random walker visits a node, or exits a module. The blocks
representing exit rates have a arrow on their right side. The text field in the bo�om le� corner shows the encoding for the previous steps of the random
walker, ending with the step on the node with codeword 110. Steps in the two modules are highlighted with green and blue, respectively, and the enter
and exit codewords are boldfaced. L(M) in the bo�om right corner shows the theoretical limit of the description length for the chosen two-module net-
work partition given by Eq. 11. LM (M) shows the limit of the Hu�man coding given by the actual codebooks and LWALK (M) shows the average per-step
description length of the realized walk in the simulation.

the network from the constraints set by the link structure. The purpose of the code view shown in Figs. 3 and 4 is to illustrate
the duality between �nding regularities in the network structure and compressing a description of the �ow induced by the
network structure.

In the rate view, click Random walker and Start/stop and a random walker begins traversing the network. Moving from
one node to another, the random walker chooses which neighbor to move to next proportional to the weights of the links to
the neighbors according to Eq. (1). As described in Sec. 2.1.1, to ensure an ergodic solution, i.e., that the average visit rates
will reach a steady-state solution independent of where the random walker starts, the random walker sometimes moves to a
random node irrespective of the link structure. In this implementation, the random walker teleports to a random node with 15
percent chance every step, or about every six steps.

The histogram on the right in the rate view shows the node-visit distribution. The colored bars show the average distribution
so far in the simulation, and the bars with a gray border show the ergodic solution. The visit rates of the ergodic solution
correspond to the eigenvector of the leading eigenvalue of the transition matrix given by the network. This solution also
corresponds to the PageRank of the nodes (29). After a long time the average visit rates of the random walker will approach
the ergodic solution, but this walk-based method is very ine�cient for obtaining the ergodic solution. In practice, since the
map equation only takes the ergodic visit rates as input, we use the power-iteration method to derive the ergodic solution
(25). The power-iteration method works by operating on the probability distribution of random walkers rather than on a
speci�c random walker. By pressing Init votes , each node receives an equal share of this probability. By clicking Vote , the
probability at each node is pushed to neighbors proportional to the link weights, and 15 percent is distributed randomly. As

Rosvall&Bergstrom (2008)

Finding a compressed description of a random walk taking place on a graph

mapequation.org

Module codebook Index codebook

http://mapequation.org

The Infomap method
Rosvall&Bergstrom (2008)

Finding a compressed description of a random walk taking place on a graph

8

Figure 4 The code view of the map equation demo showing the encoding of a random walker with the optimal five-module solution. Com-
pared to the two-module solution in Fig. 3, the index codebook is larger and used more o�en. Nevertheless, and thanks to the more e�icient encoding of
movements within modules with the smaller module codebooks, the per-step codelength is 0.32 bits shorter on average.

can be seen by clicking a few times on Vote , the probability distribution quickly approaches the ergodic solution.
In the code view, each node is labeled with its codeword as shown in Figs. 3 and 4. Each event, i.e., that the random walker

visits a node, enters a module, or exits a module, is also represented as a block in the stacks on the right. The stack under Index
codebook shows module-enter events, and the stack under Module codebooks shows within-module events. Mouseover a node
or a block in the map equation demo highlights the corresponding block or node. The height of a block represents the rate at
which the corresponding event occurs, and the bit string to the right of each block is the codeword associated with the event.
The codewords are Hu�man codes (27) derived from their frequency of use. Hu�man codes are optimal for symbol-by-symbol
encoding with binary codewords given a known probability distribution. As explained in Sec. 2.1.2, the average codelength of
a Hu�man code is bounded below by the entropy of the probability distribution (28). In general, the average codelength of a
Hu�man code is somewhat longer than the theoretical limit given by the entropy, which has no constraints on using integer-
length codewords. For example, the average codelengths with actual binary codewords shown in the lower right corners of
Figs. 3 and 4 are about a percent longer than the theoretical limit.

In practice, for taking advantage of the duality between �nding the community structure and minimizing the description
length, we use the theoretical limit given by the map equation. That is, we show the codewords in the map equation demo only
for pedagogical reasons. For example, note that frequently visited nodes are assigned short codewords and that infrequently
visited nodes are assigned longer codewords, such that the description length will be short on average. Similarly, modules
which the random walker enters frequently are assigned short codewords, and so on. The varying codeword lengths take
advantage of the regularity that some events happenmore frequently than other, but does not take advantage of the community
structure of the network. Instead, it is the modular code structure with an index codebook and module codebooks that exploits
the community structure.

The optimal network partition corresponds to a modular code structure that balances the cost of specifying movements
within and between modules. Figure 3 shows a network partition with two modules. The lower bound of the average descrip-
tion length for specifying movements within modules is 3.77 bits per step and only 0.10 bit per step for specifying movements

mapequation.org

Module codebook Index codebook

http://mapequation.org

The Infomap method

• Minimise the expected description length of the random walk

by assigning short codewords to common events or objects and
long codewords to rare ones, much as common words are short
in spoken languages (19). Fig. 1B shows a prefix-free Huffman
coding for our sample network. Each codeword specifies a
particular node, and the codeword lengths are derived from the
ergodic node visit frequencies of an infinitely long random walk.
With the Huffman code pictured in Fig. 1B, we are able to
describe the specific 71-step walk in 314 bits. If we instead had
chosen a uniform code, in which all codewords are of equal
length, each codeword would be log 25! 5 bits long and 71!5 !
355 bits would have been required to describe the walk.

Although in this example we assign actual codewords to the
nodes for illustrative purposes, in general, we will not be
interested in the codewords themselves but rather in the theo-
retical limit of how concisely we can specify the path. Here, we
invoke Shannon’s source coding theorem (17), which implies that
when you use n codewords to describe the n states of a random
variable X that occur with frequencies pi, the average length of
a codeword can be no less than the entropy of the random
variable X itself: H(X) ! "#1

n pi log(pi). This theorem provides
us with the necessary apparatus to see that, in our Huffman
illustration, the average number of bits needed to describe a
single step in the random walk is bounded below by the entropy
H(P), where P is the distribution of visit frequencies to the nodes
on the network. We define this lower bound on code length to
be L. For example, L ! 4.50 bits per step in Fig. 1B.

Highlighting Important Objects. Matching the length of codewords
to the frequencies of their use gives us efficient codewords for
the nodes, but no map. Merely assigning appropriate-length
names to the nodes does little to simplify or highlight aspects of
the underlying structure. To make a map, we need to separate
the important structures from the insignificant details. We
therefore divide the network into two levels of description. We
retain unique names for large-scale objects, the clusters or
modules to be identified within our network, but we reuse the
names associated with fine-grain details, the individual nodes
within each module. This is a familiar approach for assigning
names to objects on maps: most U.S. cities have unique names,
but street names are reused from one city to the next, such that
each city has a Main Street and a Broadway and a Washington
Avenue and so forth. The reuse of street names rarely causes
confusion, because most routes remain within the bounds of a
single city.

A two-level description allows us to describe the path in fewer
bits than we could do with a one-level description. We capitalize
on the network’s structure and, in particular, on the fact that a
random walker is statistically likely to spend long periods of time
within certain clusters of nodes. Fig. 1C illustrates this approach.
We give each cluster a unique name but use a different Huffman
code to name the nodes within each cluster. A special codeword,
the exit code, is chosen as part of the within-cluster Huffman
coding and indicates that the walk is leaving the current cluster.
The exit code always is followed by the ‘‘name’’ or module code
of the new module into which the walk is moving [see supporting
information (SI) for more details]. Thus, we assign unique names
to coarse-grain structures (the cities in the city metaphor) but
reuse the names associated with fine-grain details (the streets in
the city metaphor). The savings are considerable; in the two-
level description of Fig. 1C the limit L is 3.05 bits per step
compared with 4.50 for the one-level description.

Herein lies the duality between finding community structure
in networks and the coding problem: to find an efficient code, we
look for a module partition M of n nodes into m modules so as
to minimize the expected description length of a random walk.
By using the module partition M, the average description length
of a single step is given by

L$M% ! q! H$"% " !
i!1

m

p@
i H$# i% . [1]

This equation comprises two terms: first is the entropy of the
movement between modules, and second is the entropy of
movements within modules (where exiting the module also is
considered a movement). Each is weighted by the frequency with
which it occurs in the particular partitioning. Here, q! is the
probability that the random walk switches modules on any given
step. H(Q) is the entropy of the module names, i.e., the entropy
of the underlined codewords in Fig. 1D. H(P i) is the entropy of
the within-module movements, including the exit code for
module i. The weight p@

i is the fraction of within-module
movements that occur in module i, plus the probability of exiting
module i such that #i!1

m p@
i ! 1 & q! (see SI for more details).

For all but the smallest networks, it is infeasible to check all
possible partitions to find the one that minimizes the description

L = 2.67 bits/step
Q = 0.25 Q = 0.50

L = 4.13 bits/step

Q = 0.00
L = 2.73 bits/step L = 4.68 bits/step

Q = 0.56

Map equation
ytiraludoMytiraludoM

Map equation

Map equation
Modularity

Map equation
Modularity

B

A

Fig. 2. Mapping flow highlights different aspects of structure than does
optimizing modularity in directed and weighted networks. The coloring of
nodes illustrates alternative partitions of two sample networks. (Left) Parti-
tions show the modular structure as optimized by the map equation (mini-
mum L). (Right) Partitions show the structure as optimized by modularity
(maximum Q). In the network shown in A, the left-hand partition minimizes
the map equation because the persistence times in the modules are long; with
the weight of the bold links set to twice the weight of other links, a random
walker without teleportation takes on average three steps in a module before
exiting. The right-hand clustering gives a longer description length because a
random walker takes on average only 12/5 steps in a module before exiting.
The right-hand clustering maximizes the modularity because modularity
counts weights of links, the in-degree, and the out-degree in the modules; the
right-hand partitioning places the heavily weighted links inside of the mod-
ules. In B, for the same reason, the right-hand partition again maximizes
modularity, but not so the map equation. Because every node is either a sink
or a source in this network, the links do not induce any long-range flow, and
the one-step walks are best described as in the left-hand partition, with all
nodes in the same cluster.

1120 " www.pnas.org#cgi#doi#10.1073#pnas.0706851105 Rosvall and Bergstrom

Expected decryption
length of partition M

Entropy of movement between
modules, i.e. the frequency weighted
average length of codewords

Entropy of movement inside modules, i.e. the
frequency weighted average length of
codewords in the module codebook

probability of between modules
movements of a RW, i.e. the rate of
usage of the index codebook

probability of within modules movements
of a RW, i.e. the rate of usage of the
module codebook

5

The unrecorded visit rates on links q�!� and nodes p� can now be expressed:

q�!� = p
⇤
�p�!� (5)

p� =
X

�

q�!� . (6)

This so called smart teleportation scheme ensures that the solution is independent of where the random walker starts in
directed networks with minimal impact on the results from the teleportation parameter. A typical value of the teleportation
rate is � = 0.15, but in practice the clustering results show only small changes for teleportation rates in the range � 2 (0.05,0.95)
(24). For example, for undirected networks the results are completely independent of the teleportation rate and identical to
results given by Eq. (2). For directed networks, a teleportation rate too close to 0 gives results that depend on how the random
walker was initiated and should be avoided, but a teleportation value equal to 1 corresponds to using the link weights as the
stationary distribution. Accordingly, the unrecorded teleportation scheme also makes it possible to describe raw �ow given by
the links themselves without �rst inducing dynamics with a random walker. The Infomap code described in Sec. 2.2 can use
any of these dynamics described above, but we recommend the unrecorded teleportation scheme proportional to link weights
for most robust results.

The map equation is free from external resolution parameters. Instead the resolution scale is set by the dynamics. The
dynamics described above correspond to encoding one node visit per step of the random walker, but the code rate can be set
both higher and lower (26). A higher code rate can be achieved by adding self-links and a lower code rate can be achieved
by adding non-local links to the network (26). A higher code rate gives smaller modules because the random walker becomes
trapped in smaller regions for a longer time. The Infomap code allows to increase the code rate from the natural value of
encoding one node visit per step of the random walker.

2.1.2. Basic information theory
While the map equation gives the theoretical lower limit of a modular description of a random walker on a network, the
interactive map equation demo illustrates the description with real codewords. We use Hu�man codes (27), which are optimal
in the sense that no binary codes can come closer to the theoretical limit. However, for identifying the optimal partition of the
network, we are only interested in the compression rate and not the actual codewords. Accordingly, the Infomap algorithm
only measures the theoretical limit given by the map equation.

Shannon’s source coding theorem (28) states that the per step theoretical lower limit of describing a stream of n indepen-
dent and identically-distributed random variables is given by the entropy of the probability distribution. That is, given the
probability distribution P = {pi } such that

P
i pi = 1, the lower limit of the per-step codelength is given by

L(P) = H (P) ⌘ �
X

i
pi logpi , (7)

with the logarithm taken in base 2 to measure the codelength in bits. In other words, no codebook with codewords for the
events distributed according to P can use fewer bits on average.

Accordingly, the best compression of random walker dynamics on a network is given by the entropy rate (28)
X

�
p�H (p�!�), (8)

which corresponds to the average codelength of specifying the next node visit given current node position, averaged over
all node positions. This coding scheme takes advantage of the independent and identically distributed next node visits given
current node position, but can not be used to take advantage of themodular structure of the network. Instead, themap equation
uses the extra constraint that the only available information from one step to the next is the currently visitedmodule, or that the
random walk switches between modules, forcing independent and identically distributed events within and between modules.
From this assumption naturally follows a modular description that is maximally compressed by the network partition that best
represents the modular structure of the network with respect to the dynamics on the network.

2.1.3. The mathematics of the map equation
Given a network partition, the map equation speci�es the theoretical modular description length of how concisely we can
describe the trajectory of a randomwalker guided by the possibly weighted, directed links of the network. We useM to denote
a network partition of the network’s n nodes into m modules, with each node � assigned to a module i . We then seek to
minimize the description length L(M) given by the the map equation over possible network partitions M. Again, network
partition that gives the shortest description length best captures the community structure of the network with respect to the
dynamics on the network.

The map equation can be expressed in closed form by invoking Shannon’s source coding theorem in Eq. (7) for each of

• Shannon’s source coding theorem (Shannon’s entropy)
for a probability distribution P = {pi} such that Σi pi = 1, the
lower limit of the per-step code-length is

Finding the optimal partition M:

Sum of Shannon entropies of multiple codebooks weighted by the rate of usage

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.

INFOMAP

• To sum up:
‣ Infomap defines a quality function for a partition different than modularity
‣ Any algorithm can be used to optimize it (like Modularity)

• Advantage:
‣ Infomap can recognize random networks (no communities)

STOCHASTIC BLOCK MODELS

• Stochastic Block Models (SBM) are based on statistical models
of networks

• They are in fact more general than usual communities.

• The model is:
‣ Each node belongs to 1 and only 1 community
‣ To each pair of communities, there is an associated density (probability of each

edge to exist)

Stochastic block models

E

1
2
3

…

N

b

Mod. maximization: Girvan Newman
Several of the most popular community detection algorithms
have as objective to discover the partition of highest modularity.
This is a di�cult problem, and thus existing approaches are based
on heuristics.
The original method by Girvan and Newmana �rst builds a den-
drogram by iteratively removing the edge of highest between-
ness. It is called a divise approach: At the top of the dendrogram,
there is a single community, then �, �, � etc., until each node is
in its own community. Modularity is used as a criterium to cut the
dendrogram.

aGirvan and Newman ����.

Mod. maximization: Louvain method
The Louvain methoda is certainly themost usedmethod for com-
munity detection. Its objective is to optimize the modularity using
a greedy, agglomerative approach:
Step �: Optimizing modularity at a hierarchical level

• Each node starts in its own community

• Repeat until convergence:

�. FOR each node, compute the gain in modularity of
adding it to the community of each of its neighbors

�. choose the decision that increases the most the
modularity (the best decision can be to keep the
node in the same community)

Step �: Global algorithm

• Repeat until convergence:

�. Optimize modularity for the current hierarchical
level according to Step �

�. Move to a higher hierarchical level by computing
an induced network: each community becomes a
node, theweight of the edge between nodes/com-
munities i and j corresponds to the number (sum of
weights) of edges between nodes of ci and nodes
of cj .

The result of Louvain algorithm is a hierarchy of communities.

aBlondel et al. ����.

Louvain method strengths and weak-
nesses
The main reason explaining the popularity of the Louvain method
to this day is its scalability: The algorithm is very scalable in prac-
tice on real graphs, for several reasons: �)It is a greedy approach,
�) By checking only the interest of moving to neighbor’s commu-
nities, it bene�ts from the sparsity of networks, �)Modularity gains
of a partition change can be computed locally, using its de�nition
as a sum of independent values for each community.
Another advantage of the Louvain method is that results at lower
hierarchical levels can naturally mitigate the problem of the res-
olution limit, for instance on the ring clique example, Louvain �nd
each clique in its community at the �rst level, and only in a second
level yield the problematic partition.
However, it has also be shown ina that the greedy nature of the
algorithm could lead to having counter-intuitive structures, such
as disconnected communities. The authors of the paper proceed
to introduce a variant of the algorithm called Leiden, solving this
problem.

aTraag, Waltman, and Eck ����.

Infomap

Infomapa is a method based on an objective function di�erent
from the Modularity. Its objective is to Minimize the description
length of an average random walk in the network, i.e. maximize
the compression of the description of such a walk. More formally,
the code length to minimize for partition C is described as:

H(C) = qH(y) +

|C|X

i

p
i
H(�i)

with q the probability for a move to be between modules,H(y)
the amount of information (bits) required to encode a move be-
tween modules, pi the probability for a move to be inside com-
munity i andH(�i) the amount of information required to encode
a move inside community i.
A greedy optimization algorithm, for instance one similar in nature
to the one of Louvain, can then be used to minimize this descrip-
tion length.
Compared with Modularity, the main advantage of this approach
is that it does not systematically �nd communities in random net-
works. It is known also to su�er from a form of resolution limit.
Several improvements have been proposed, for instance to dis-
cover hierarchical partitions.

aRosvall and Bergstrom ����.

Infomap Algorithm intuition

Illustration of the intuition behind Infomap random walk
compression. For a more accurate depiction, check the excellent

illustration by the authorsa . The real encoding length is not
computed explicitly, but estimated for an in�nite random walk

based on information theory principles.

0001

0010

0011

0100

0101

1010

00

01

11

01

00

11

0 1

0001 0010 0011 0010 0100 0101

0 00 01 11 01 1111 1 01 00

Encoding nodes globally

Encoding communities + nodes locally

1111Community change=

Encoding a particular random walk
According to the 2 schemes

Global node codes Local node codes

aRosvall and Bergstrom ����.

Stochastic Block Models (SBM)
A stochastic block model is a random graph model de�ned by:
b n ⇥ 1 vector such as bi describes the index of the

block of node i.
E k ⇥ k stochastic block matrix, such as Eij gives

the number of edges between blocks i and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).

✓ n⇥1 vector representing the nodedegrees (optional)

SBM inference
The objective of a community/block detection algorithm based
on the SBM principle is thus to perform SBM inference, i.e., to �nd
the parameters of the SBM that best explain the observed graph,
usually in term of maximizing the likelihood. Said di�erently, we
search –among a certain class of models– the model that has the
highest probability to generate the observed graph. Note that for
an observed graph, for each partition in blocks b, there is a single
block matrix E that is relevant to consider, that can be found sim-
ply by counting the number of edges actually present between
blocks in the graph.
More formally, the objective is:

b := argmax
b

P (A|b)

Stochastic block models

Properties:
• Every vertices in a same module are statistically equivalent
• Vertices in a module are connected by a random graph
• Emergent degree distribution is a combination of Poisson distributions

Generating networks
1. Take n disconnected nodes

2. Connect each u,v ∈ V nodes with probability Eb(u),b(v)

Mod. maximization: Girvan Newman
Several of the most popular community detection algorithms
have as objective to discover the partition of highest modularity.
This is a di�cult problem, and thus existing approaches are based
on heuristics.
The original method by Girvan and Newmana �rst builds a den-
drogram by iteratively removing the edge of highest between-
ness. It is called a divise approach: At the top of the dendrogram,
there is a single community, then �, �, � etc., until each node is
in its own community. Modularity is used as a criterium to cut the
dendrogram.

aGirvan and Newman ����.

Mod. maximization: Louvain method
The Louvain methoda is certainly themost usedmethod for com-
munity detection. Its objective is to optimize the modularity using
a greedy, agglomerative approach:
Step �: Optimizing modularity at a hierarchical level

• Each node starts in its own community

• Repeat until convergence:

�. FOR each node, compute the gain in modularity of
adding it to the community of each of its neighbors

�. choose the decision that increases the most the
modularity (the best decision can be to keep the
node in the same community)

Step �: Global algorithm

• Repeat until convergence:

�. Optimize modularity for the current hierarchical
level according to Step �

�. Move to a higher hierarchical level by computing
an induced network: each community becomes a
node, theweight of the edge between nodes/com-
munities i and j corresponds to the number (sum of
weights) of edges between nodes of ci and nodes
of cj .

The result of Louvain algorithm is a hierarchy of communities.

aBlondel et al. ����.

Louvain method strengths and weak-
nesses
The main reason explaining the popularity of the Louvain method
to this day is its scalability: The algorithm is very scalable in prac-
tice on real graphs, for several reasons: �)It is a greedy approach,
�) By checking only the interest of moving to neighbor’s commu-
nities, it bene�ts from the sparsity of networks, �)Modularity gains
of a partition change can be computed locally, using its de�nition
as a sum of independent values for each community.
Another advantage of the Louvain method is that results at lower
hierarchical levels can naturally mitigate the problem of the res-
olution limit, for instance on the ring clique example, Louvain �nd
each clique in its community at the �rst level, and only in a second
level yield the problematic partition.
However, it has also be shown ina that the greedy nature of the
algorithm could lead to having counter-intuitive structures, such
as disconnected communities. The authors of the paper proceed
to introduce a variant of the algorithm called Leiden, solving this
problem.

aTraag, Waltman, and Eck ����.

Infomap

Infomapa is a method based on an objective function di�erent
from the Modularity. Its objective is to Minimize the description
length of an average random walk in the network, i.e. maximize
the compression of the description of such a walk. More formally,
the code length to minimize for partition C is described as:

H(C) = qH(y) +

|C|X

i

p
i
H(�i)

with q the probability for a move to be between modules,H(y)
the amount of information (bits) required to encode a move be-
tween modules, pi the probability for a move to be inside com-
munity i andH(�i) the amount of information required to encode
a move inside community i.
A greedy optimization algorithm, for instance one similar in nature
to the one of Louvain, can then be used to minimize this descrip-
tion length.
Compared with Modularity, the main advantage of this approach
is that it does not systematically �nd communities in random net-
works. It is known also to su�er from a form of resolution limit.
Several improvements have been proposed, for instance to dis-
cover hierarchical partitions.

aRosvall and Bergstrom ����.

Infomap Algorithm intuition

Illustration of the intuition behind Infomap random walk
compression. For a more accurate depiction, check the excellent

illustration by the authorsa . The real encoding length is not
computed explicitly, but estimated for an in�nite random walk

based on information theory principles.

0001

0010

0011

0100

0101

1010

00

01

11

01

00

11

0 1

0001 0010 0011 0010 0100 0101

0 00 01 11 01 1111 1 01 00

Encoding nodes globally

Encoding communities + nodes locally

1111Community change=

Encoding a particular random walk
According to the 2 schemes

Global node codes Local node codes

aRosvall and Bergstrom ����.

Stochastic Block Models (SBM)
A stochastic block model is a random graph model de�ned by:
b n ⇥ 1 vector such as bi describes the index of the

block of node i.
E k ⇥ k stochastic block matrix, such as Eij gives

the number of edges between blocks i and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).

✓ n⇥1 vector representing the nodedegrees (optional)

SBM inference
The objective of a community/block detection algorithm based
on the SBM principle is thus to perform SBM inference, i.e., to �nd
the parameters of the SBM that best explain the observed graph,
usually in term of maximizing the likelihood. Said di�erently, we
search –among a certain class of models– the model that has the
highest probability to generate the observed graph. Note that for
an observed graph, for each partition in blocks b, there is a single
block matrix E that is relevant to consider, that can be found sim-
ply by counting the number of edges actually present between
blocks in the graph.
More formally, the objective is:

b := argmax
b

P (A|b)

STOCHASTIC BLOCK MODELS
• SBM can represent different things:

‣ Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities. 6

1 2 3 4 5 6
Group s

1

2

3

4

5

6

G
ro

up
r

(a) (b)

Figure 2. The stochastic blockmodel (SBM): (a) The matrix of probabilities between groups prs defines the
large-scale structure of generated networks; (b) a sampled network corresponding to (a), where the node
colors indicate the group membership.

patterns, such as bipartiteness, core-periphery, and many others.

Instead of simple graphs, we may consider multigraphs by allowing multiple edges between
nodes, i.e. Ai j 2 N. Repeating the same procedure, we obtain in this case

P(AAA|lll ,bbb) = ’
i< j

l Ai j
bi,b j

(lbi,b j +1)Ai j+1 , (5)

with lrs = e�µrs/(1 � e�µrs) being the average number of edges existing between any two nodes
belonging to group r and s. Whereas the placement of edges in Eq. 4 is given by a Bernoulli
distribution, in Eq. 5 it is given by a geometric distribution, reflecting the different nature of both
kinds of networks. Although these models are not the same, there is in fact little difference between
the networks they generate in the sparse limit given by prs = lrs = O(1/N) with N � 1. We see
this by noticing how their log-probabilities become asymptotically identical in this limit, i.e.

lnP(AAA|ppp,bbb) ⇡ 1
2 Â

rs
ers ln prs �nrns prs +O(1), (6)

lnP(AAA|lll ,bbb) ⇡ 1
2 Â

rs
ers lnlrs �nrnslrs +O(1). (7)

Therefore, since most networks that we are likely to encounter are sparse [15], it does not matter
which model we use, and we may prefer whatever is more convenient for our calculations. With
this in mind, we may consider yet another variant, which uses instead a Poisson distribution to

https://arxiv.org/pdf/1705.10225.pdf

STOCHASTIC BLOCK MODELS
• SBM can represent different things:

‣ Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

STOCHASTIC BLOCK MODELS

• SBM can represent different things:
‣ Associative SBM: density inside nodes of a same communities >> density of

pairs belonging to different communities.

• This is very powerful and potentially relevant

• Problem: Often hard to interpret in real situations.
‣ SBM can be “constrained”: we impose that intra d.>inter d.

SBM SIMPLE GRAPHS

• Probability to generate a given graph with a given
(likelihood)
‣ Note that for a given , maximizing is trivially obtained as the fraction of

edges existing between each block pair.

• Assuming a simple graph, Bernouilli distribution
‣ Product of probability for each observed edge to be present and for each non

existing edge to be not present

‣

b, E
(A |b, E)

A, b E

p(A |b, E) = ∏
i<j {

Ebibj
if Aij = 1

1 − Ebibj
if Aij = 0

SBM POISSON
• Different statistical models can be used

‣ The poisson model is a popular choice (simple computation)

• Poisson distribution of edges:
‣ Assume possibility of multiple edges between nodes

- But little difference in practice for sparse graphs

‣

- Since Poisson PMF:

- With the probability to observe an edge
- Here I ignore self-loops for simplicity

P(A |b, E) = ∏
i<j

(Ebibj
)Aij

Aij!
e−Ebibj

P(k) =
λk

k!
e−λ

λ

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical review E, 83(1), 016107.

DC-SBM
• As with modularity, we would like to preserve nodes degrees

‣ Else, high-degree nodes tend to end up in a same community, since they are
“densely connected” (but expected according to degree)

•

‣ is a vector corresponding to nodes degree
‣ As , optimal can be deducted from :

- with the sum of degrees in ’s cluster

P(A |b, E, θ) = ∏
i<j

(θiθjEbibj
)Aij

Aij!
e−θiθjEbibj

θ
E θ b, A
̂θi =

ki

κbi

κbi
i

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical review E, 83(1), 016107.

SBM INFERENCE
• Likelihood maximization:

‣

• Leads to quality functions simple to optimise.
‣ Poisson, with self-loops, log and without unnecessary constant:

-

‣ Same, degree corrected

-

‣ With
- : number of edges between blocks
- : number of nodes in block
- : sum of degrees on block

b̂ = argmaxb p(A |b, E, θ)

ℒ(A |b) = ∑
rs

mrs log
mrs

nrns

ℒ(A |b) = ∑
rs

mrs log
mrs

κrκs

mrs r, s
nr r
κr r

Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical review E, 83(1), 016107.

SBM INFERENCE

• Problem: trivial solution
‣ Each node in its own cluster

-
- Probability of 1 to generate the observed network

• Classic solution: fix a number of clusters k

E = A

MDL SBM
• [2016 Peixoto]

‣ Non-parametric SBM
‣ Bayesian inference
‣ Minimum Description Length (MDL) (Occam’s razor)

P(A |b) = P(A |θ, E, b)P(θ |E, b)P(E |b)P(b)

Bayesian Formulation

STOCHASTIC BLOCK MODELS

Peixoto, Tiago P. "Bayesian stochastic blockmodeling." arXiv preprint arXiv:1705.10225 (2017).

Information Theoretic Formulation
P(A, θ, E, b) = 2−Σ Σ = S + L

S = − log2P(A |θ, E, b)

L = − log2P(θ, E, b)

bits necessary to encode the
graph knowing the model

bits necessary to encode the model

Objective = maximize the graph compression.
-Too many communities: over-complexifying the model
-Too few communities: More costly to encode the graph, since the model provides few
useful information
Occam’s razor

STOCHASTIC BLOCK MODELS

• To sum up:
‣ SBM have a convincing definition of communities
‣ Have a richer expression power
‣ Can also say if there is no community
‣ And also suffer from a form of resolution limit

• Less often used, but regain popularity since works by Peixoto.
‣ Variants:

- Overlapping (Mixed membership, Fuzzy)
- Hierarchical
- …

EVALUATION OF
COMMUNITY STRUCTURE

EVALUATION

• Two main approaches:
‣ Intrinsic/Internal evaluation

- Partition quality function
- Individual Community quality function

‣ Comparison of observed communities and expected communities
- Synthetic networks with community structure
- Real networks with Ground Truth

INTRINSIC EVALUATION

INTRINSIC EVALUATION

• Partition quality function
‣ Already defined: Modularity, graph compression, etc.

• Quality function for individual community
‣ Internal Clustering Coefficient

‣ Conductance:

- Fraction of external edges

|Eout |
|Eout | + |Ein | :

of links to nodes inside
(respectively, outside) the

community

|Ein | , |Eout |

COMPARISON WITH
GROUND TRUTH

SYNTHETIC NETWORKS

• Planted Partition models:
‣ Another name for SBM with manually chosen parameters

- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

‣ Problem: how to choose parameters?
- Either oversimplifying (all nodes same degrees, all communities same #nodes, all intern

densities equals…)
- Or ad-hoc process (sample values from distributions)

SYNTHETIC NETWORKS

SYNTHETIC NETWORKS

• LFR Benchmark [Lancichinetti 2008]
‣ High level parameters:

- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of external edges of each node

‣ Varying the mixing parameter makes community more or less well defined

• Currently the most popular

SYNTHETIC NETWORKS

SYNTHETIC NETWORKS

• Pros of synthetic generators:
‣ We know for sure the communities we should find
‣ We can control finely the parameters to check robustness of methods

- For instance, resolution limit…

• Cons:
‣ Generated networks are not realistic: simpler than real networks

- LFR: High CC, scale free, but all nodes have the same mixing coefficient, no overlap, …
- SBM: depend a lot on parameters, random generation might lead to unexpected ground

truth (it is possible to have a node with no connections to other nodes of its own
community…)

REAL NETWORKS WITH GT

• In some networks, ground truth communities are known:
‣ Social networks, people belong to groups (Facebook, Friendsters, Orkut,

students in classes…)
‣ Products, belonging to categories (Amazon, music…)
‣ Other resources with defined groups (Wikipedia articles, Political groups for

vote data…)

• Some websites have collected such datasets, e.g.
‣ http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html

REAL NETWORKS WITH GT

• Pros of GT communities:
‣ Retain the full complexity of networks and communities

• Cons:
‣ No guarantee that communities are topological communities.
‣ In fact, they are not: some GT communities are not even a single connected

component…

• Currently, controversial topic
‣ Some authors say it is non-sense to use them for validation
‣ Some others consider it necessary

REAL NETWORKS WITH GT

• Example: the most famous of all networks: Zackary Karate
Club

If your algorithm find the right
communities,

Then it is wrong…

MEASURING PARTITION
SIMILARITIES

• Synthetic or GT, we get:
‣ Reference communities
‣ Communities found by algorithms

• How to measure their similarity ?
‣ NMI => AMI
‣ ARI
‣ …

MEASURING PARTITION
SIMILARITIES

• NMI: Normalized Mutual Information

• Classic notion of Information Theory: Mutual Information
‣ How much knowing one variable reduces uncertainty about the other
‣ Or how much in common between the two variables

• Normalized version: NMI
‣ 0: independent, 1: identical

• Adjusted for chance: aNMI AMI(U, V) =
MI(U, V) − E{MI(U, V)}

max {H(U), H(V)} − E{MI(U, V)}

ALGORITHMS COMPARATIVE
ANALYSIS

ASONAM ’19, August 27–30, 2019, Vancouver, BC, Canada Michele Coscia

Figure 1: ASN . Nodes are community detection algorithms.
Node size: sum of total edge weights. Node color: commu-
nity a�liation –multicolored nodes belong tomultiple com-
munities. Edge width: number of times the two algorithms
returned similar partitions. Only including links exceeding
null expectation. Link color: signi�cance, from dark (high)
to light (low, but still signi�cant with p < .00001).

The NC backbone requires a parameter � , which controls for
the statistical signi�cance of the edges we include in the resulting
network. We set the parameter to the value required to have the
minimumpossible number of edges, while at the same time ensuring
that each node has at least one connection. In our case, we set
� = 19.5, meaning that we only include edges with that particular t-
score (or higher), which is roughly equivalent to say thatp < .00001.

Again, note that we are not imposing the ASN to be connected
in a single component. Under these constraints, ASN could be just
a set of small components, each composed by a pair of connected
algorithms.

4 ANALYSIS
4.1 The Algorithm Similarity Network
We start by taking a look at the resulting ASN network. We show
a depiction of the network in Figure 1 – calculated using the oNMI
MAX similarity function and setting � = 19.5 for the noise cor-
rected backboning. The network contains all the results, both from
synthetic and from real-world networks.

The �rst remarkable thing about ASN is that it does have a
community structure. The network is sparse – by construction,
this is not a result –: only 9% of possible edges are in the network.
However, and this is surprising, clustering is high – transitivity is
0.47, or 47% of connected node triads have all three edges necessary
to close the triangle.

For these reasons, we can run a community discovery algorithm
on ASN . We choose to run the overlapping Infomap algorithm
[38]. The algorithm attempts to compress the information about
random walks on the network using community pre�x codes: good
communities compress the walks better because the random walker
is “trapped” inside them.

The quality measure is the codelength necessary to encode ran-
domwalks. The codelength gives us a corroboration of the presence

10-4

10-3

10-2

10-1

100

100 101 102 103

p
(k

>
=

x)

x

Figure 2: The (complement of the) cumulative edge weight
distribution of the fullASN : the probability (y-axis, log scale)
that an edge has a weight equal to or larger than a certain
value (x-axis, log scale).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
N

M
I

L
F

K

ONMI MAX

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

C
o

u
n

t

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
N

M
I

S
U

M

ONMI MAX

 0

 10

 20

 30

 40

 50

 60

 70

 80

C
o

u
n

t

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
N

M
I

S
U

M

ONMI LFK

 0

 10

 20

 30

 40

 50

 60

 70

C
o

u
n

t

Figure 3: The correlation between theASN weights using dif-
ferent oNMI variants: (left) MAX vs LFK; (middle) MAX vs
SUM; (right) LFK vs SUM. Each dot is an algorithm pair and
the color represent how many pairs shared a given oNMI
score combination.

of communities. Without communities, we need ⇠ 8.52 bits to en-
code the random walks. With communities, the codelength reduces
to ⇠ 4.48.

Figure 2 shows the complement of the cumulative distribution
(CCDF) of the edge weights of ASN before operating the backbon-
ing. We can see that, while the distribution is not a power-law –
note the log-log scale –, it nevertheless spans multiple orders of
magnitude, with a clear skewed distribution. In fact, 50% of the
edges have a weight lower than 10 – only in 10 cases out of the pos-
sible 960 + 819 the two algorithms were in the top �ve most similar
results –, while the three strongest edges (.1% of the network) have
weights of 1,453, 1,519, and 1,540, respectively.

This means that the distribution could have been a power-law,
had we performed enough tests. In any case, such broad distribution
justi�es our choice of backboning method, which is speci�cally de-
signed to handle cases with large variance and lack of well-de�ned
averages.

4.2 Robustness
In developing our framework, we made choices that have repercus-
sions ASN ’s shape. How much do these choices impact the �nal
result? We are interested in estimating the amount of change in
ASN ’s topology, speci�cally whether it is stable: di�erent ASN s
calculated with di�erent procedures and parameters are similar.

The �rst test aims at quantifying the amount of change intro-
duced by using a di�erent oNMI measure. Recall that our o�cial
ASN uses the MAX variant. There are two alternatives: LFK and

ASONAM ’19, August 27–30, 2019, Vancouver, BC, Canada Michele Coscia

ID Col ¯|C | Avg Size d̄ Q̄ c̄ Avg Ncut
1 Red 19.7979 9.0942 0.3220 0.2200 0.7423 0.7674
2 Blue 5.6520 16.4769 0.2627 0.1102 0.5542 0.7100
3 Green 4.8948 11.9844 0.2580 0.1118 0.6288 0.7407
4 Purple 10.3702 11.0140 0.2917 0.0333 0.7555 0.8033
5 Orange 4.2852 17.0505 0.2329 0.0863 0.5963 0.7483

Table 2: The averages of various community descriptive statistics per algorithm group. ¯|C |: Average number of communities.
Avg Size: Average number of nodes in the communities. d̄: Average community density. Q̄ : Average modularity – when the
algorithm is overlapping we use the overlapping modularity instead of the regular de�nition. c̄: Average conductance – from
[24]. Avg Ncut: Average normalized cut – from [24].

Figure 5: TheASN focusing exclusively on overlapping com-
munity discovery algorithms. The legend of the �gure is the
same as the one for Figure 1.

and therefore smaller – communities, which tend to be denser but
also to have higher conductance.3 This is another warning sign for
uncritically accepting modularity as the de facto quality measure to
look at when evaluating the performance of a community discovery
algorithm. It works perfectly for the methods based on the same
community de�nition, but there are other – di�erent and valid –
community de�nitions.

Other interesting facts include the almost identical average mod-
ularity between community 2 – whose algorithms are explicitly
maximizing modularity – and community 3 – which is based on
spreading processes. Community 1 has higher internal density, but
also higher conductance and normalized cut than average, showing
how overlapping approaches can �nd unusually dense communities,
sacri�cing the requirement of having few outgoing connections.

The categories we discussed are necessarily broad and might
group algorithms that have signi�cant di�erences in other aspects.
For instance, there are hundreds of di�erent ways to make your
algorithm return overlapping communities – communities shar-
ing nodes. Our approach allows us to focus on such methods to
�nd di�erences inside the algorithm communities. In practice, we
can generate di�erent versions of ASN , by only considering the
similarities between the algorithms in the “overlapping” category.

3Community 1 returns more communities, but it is composed by overlapping algo-
rithms, which can return more communities without necessarily make them small, as
they can share nodes. Thus its communities are larger than one would expect given
their number.

Note that this is di�erent than simply inducing the graph from
the original ASN , selecting only the overlapping algorithms and
all the edges between them. Here we select the nodes and all their
similarities and then we apply the backboning, with a di�erent –
higher – � threshold. In this way, we can deploy a more stringent
similarity test, that is able to distinguish between subcategories of
the main category.

Figure 5 depicts the result. Infomap divides the overlappingASN
in three communities, proving the point that there are substantial
sub-classes in the overlapping coverage category. There are strong
arguments in favor of these classes being meaningful, although a
full discussion requires more space and data. For instance, consider
the bottom-right community of the network (in blue). It contains
all the methods which apply the same strategy to �nd overlapping
communities: rather than clustering nodes, they cluster edges. This
is true for Linecomms [12], HLC [1], Ganet+ [33], and OLC [3]. The
remaining methods do not cluster link directly, but ASN suggests
that their strategies might be comparable.

We can conclude that ASN provides a way to narrow down to
subcategories of community discovery and �nd relevant informa-
tion to motivate one’s choice of an algorithm.

4.4 Ground Truth in Synthetic Networks
The version of ASN based on synthetic LFR benchmarks allows an
additional analysis. The LFR benchmark generates a network with
a known ground truth: it establishes edges according to a planted
partition, which it also provides as an output. Thus, we can add a
node to the network: the ground truth. We calculate the similarity
of the ground truth division in communities with the one provided
by each algorithm. We now can evaluate how the algorithms per-
formed, by looking at the edge weights between the ground truth
node and the algorithm itself. In the MAX measure, this means the
number of times the algorithm was in the top similarity with the
ground truth and vice versa.

Table 3 shows the ten best algorithms in our sample. We do not
show the worst algorithms, because MAX is a strict test, and thus
there is a long list of (21) algorithms with weight equal to zero,
which is not informative. The table shows that the best performing
algorithm are Linecomms, OSLOM, and the overlap version of
Infomap.

Should we conclude that these are the best community discovery
algorithms in the literature? The answer is yes only if we limit
ourselves to the task of �nding the same type of communities
that the LFR benchmark plants in its output network. Crucially,

All methods Overlapping only

Discovering Communities of Community Discovery ASONAM ’19, August 27–30, 2019, Vancouver, BC, Canada

Rank Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gce 32

Table 3: The ten nodes with the highest MAX edge weight
with the ground truth node in ASN – using exclusively data
from the LFR synthetic networks.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2

#
 N

u
ll
 M

o
d

e
ls

APL

Figure 6: The number of sets of 10 random nodes (y-axis)
with a given avg path length between them. The black line
shows the observation. The blue line shows the average path
length of ASN .

this does not include all possible types of communities you can
�nd in complex networks. To see why this is the case, consider
again ASN from Figure 1. The ten nodes listed in Table 3 are not
scattered randomly in the network: they tend to be in the same
area. Speci�cally we know that the ground truth node is located
deep inside the blue community, as most of the top ten algorithms
from Table 3 are classi�ed in that group.

We can quantify this objectively by calculating the average path
length between the ten nodes, which is equal to 2.51 – on average
you need to cross two and a half edges to go from any of these ten
nodes to any other of the ten. This is shorter than the overall average
path length in ASN , which is 3.25. We test statistical signi�cance
by calculating the expected average path length when selecting ten
random nodes in the network. Figure 6 shows the distribution of
their distances. Only seven out of a thousand attempts generated a
smaller or equal average path length.

We conclude this section with a word of caution when using
benchmarks to establish the quality of a community discovery
algorithm, which is routinely done in review works and when
proposing a new approach. If the benchmark does not �t the desired
de�nition of community, it might not return a fair evaluation. If
one is interested in communities based on neighborhood similarity
– the green community in Figure 1 – the LFR benchmark is not the
correct one to use. Moreover, when deciding to test a new method

against the state of the art, one must choose the algorithms in the
literature �tting the same community de�nition, or the benchmark
test would be pointless. This warning goes the other way: assuming
that all valid communities look like the ones generated by the LFR
benchmark would impoverish a �eld that – as the strong clusters in
ASN show – does indeed have signi�cantly di�erent perspectives
of what a community is.

5 CONCLUSION
In this paper we contributed to the literature on reviewing com-
munity discovery algorithms. Rather than classify them by their
process, community de�nition, or performance, here we classify
them by their similarity. How similar are the groupings they return?
We performed the most comprehensive analysis of community dis-
covery algorithms to date, including 73 algorithms tested over more
than a thousand synthetic and real world networks. We were able to
reconstruct an Algorithm Similarity Network – ASN – connecting
algorithms to each other based on their output similarity. ASN con-
�rms the intuition about the community discovery literature: there
are indeed di�erent valid de�nitions of community, as the strong
clustering in the network shows. The clusters are meaningful as
they re�ect real di�erences among the algorithms’ features. ASN
allows us to perform multi-level analysis: by focusing on a spe-
ci�c category, we can apply our framework to discover meaningful
sub-categories. Finally, ASN ’s topology highlights how projecting
the community detection problem on a single de�nition of commu-
nity – e.g. “a group of nodes densely connected to each other and
sparsely connected with the rest of the network” – does the entire
sub-�eld a disservice, by trivializing a much more diverse set of
valid community de�nitions.

By its very nature, this paper will always be a work in progress.
We do not claim that there are only 73 algorithms in the community
discovery literature that are worth investigating. We only gathered
what we could. Future work based on this paper can andwill include
whatever additions authors in the �eld feel should be considered –
and they are encouraged to help us by sending suggestions and/or
working implementations to mcos@itu.dk. The most up to date
version of ASN will be available at http://www.michelecoscia.com/
?page_id=1640. Moreover, for simplicity, here we focused only on
algorithms that work on the simplest graph representations. Sev-
eral algorithms specialize in directed, multilayer, bipartite, and/or
metadata-rich graphs. These will be included as we re�ne the ASN
building procedure in the future.

REFERENCES
[1] YY Ahn, JP Bagrow, and S Lehmann. 2010. Link communities reveal multiscale

complexity in networks. nature 466 (2010), 761.
[2] Alessia Amelio and Clara Pizzuti. 2014. Overlapping community discovery

methods: A survey. In Social Networks: Analysis and Case Studies. Springer,
105–125.

[3] B Ball, B Karrer, and MEJ Newman. 2011. E�cient and principled method for
detecting communities in networks. PRE 84, 3 (2011).

[4] Qing Cai, Lijia Ma, Maoguo Gong, and Dayong Tian. 2016. A survey on network
community detection based on evolutionary computation. IJBIC 8, 2 (2016),
84–98.

[5] Gennaro Cordasco and Luisa Gargano. 2010. Community detection via semi-
synchronous label propagation algorithms. In BASNA. IEEE, 1–8.

[6] Michele Coscia, Fosca Giannotti, and Dino Pedreschi. 2011. A classi�cation for
community discovery methods in complex networks. SADM 4, 5 (2011), 512–546.

[7] Michele Coscia and Frank MH Ne�ke. 2017. Network backboning with noisy
data. In ICDE. IEEE, 425–436.

Coscia, Michele. "Discovering Communities of Community Discovery." arXiv preprint arXiv:1907.02277 (2019).

OTHER MESO-SCALE
ORGANIZATIONS

MESO-SCALE

• MACRO properties of networks:
‣ degree distribution, density, average shortest path…

• MICRO properties of networks:
‣ Centralities

• MESO-scale: what is in-between
‣ Community structure
‣ Overlapping Community Structure
‣ Core-Periphery
‣ Spatial Organization (another class)

CORE-PERIPHERY
• Already introduced in the first class, k-cores, etc.

OVERLAPPING COMMUNITIES

• In real networks, communities are often overlapping
‣ Some of your High-School friends might be also University Friends
‣ A colleague might be a member of your family
‣ …

• Overlapping community detection is considered much harder
‣ And is not well defined

OVERLAPPING COMMUNITIES

• Many algorithms
‣ Adaptations of modularity, random walks, label propagations, SBM…
‣ Original methods
‣ Many local methods (local criterium), unlike global optimization for non-

overlapping methods.

OVERLAPPING COMMUNITIES

• Motif-based definitions:
‣ Cliques

- Of a given size
- Maximal cliques

‣ N-cliques
- Set of nodes such as there is at least a path of length <=N between them
- Generalization of cliques for N>1
- Computationally expensive

Link clustering - overlapping communities
Link graphs

• Links are replaced by nodes which are connected if the original
links share a node

• Community detection on link graphs allows for overlapping
communities

K-CLIQUE PERCOLATION

• (Other name: CPM, C-finder)

• Parameter: size k of atomic cliques

• 1)Find all cliques of size k

• 2)merge iteratively all cliques having k-1 nodes in common

K-CLIQUE PERCOLATION

K-CLIQUE PERCOLATION

• Weakness: communities can be very far from random
networks

HIERARCHICAL
COMMUNITIES

Lancichinetti, Andrea, et al. "Finding statistically significant communities in networks." PloS one 6.4 (2011): e18961.

SUPERVISED MACHINE LEARNING1:
LINK PREDICTION

81

LINK PREDICTION

• Do you know why Facebook “People you may know” is so
accurate?

• How youtube/Spotify/amazon recommend you the right item?

• =>Link prediction
‣ More generally, recommendation, but link prediction is a popular way to do it

82

LINK PREDICTION

• Observed network: current state

• Link prediction: What edge
‣ Might appear in the future (future link prediction)
‣ Might have been missed (missing link prediction)

83

LINK PREDICTION

• Overview:

• Link prediction based on network structure:
‣ Local: High clustering (friends of my friends will become my friends)
‣ Global: Two unrelated hubs more likely to have links that unrelated small nodes
‣ Meso-scale organisation: different edge probability for nodes in different

communities/blocks

• Link prediction can also be based on node properties
‣ e.g., age, revenue, gender, etc.
‣ Combining with usual machine learning, outside of the scope of this class

84

FIRST APPROACH TO LINK PREDICTION:

HEURISTIC BASED

(HEURISTICS, NOT MACHINE LEARNING)

85

HEURISTICS
• Network science experts can design heuristics to predict

where new edge might appear/be missing

• Principle: design a score based on network topology f(v1,v2)
which, given two nodes, express their likeliness of being
connected (if they aren’t already)
‣ Common neighbors
‣ Jaccard coefficient
‣ Hub promoted
‣ Adamic Adar
‣ Ressource allocation
‣ Community based

Zhou, T., Lü, L., & Zhang, Y. C. (2009). Predicting missing links via local information. The European Physical Journal B, 71(4), 623-630.86

COMMON NEIGHBORS

• “Friends of my friends are my friends”

• High clustering in most networks

• =>The more friends in common, the highest probability to
become friends

Neighbors of xΓ(x) = 87

PREDICTION

• How to predict links based on Common Neighbors (CN)?

A

C

D

E

B

(D,C)=2

(A,E)=1
(D,E)=0

Original Graph Heuristic
(e.g., Common Neighbors)

(D,C)
(A,E)
(D,E)

Node pairs sorted
by score

Less likely

More likely

… …

88

JACCARD COEFFICIENT

• Used in many applications:
‣ Measure of similarity of sets of different sizes

• Intuition:
‣ Two people who know only the same 3 people

- =>high probability
‣ Two people who know 1000 people, only 3 in commons

- =>Lower probability

89

HUB PROMOTED

• Intuition:
‣ Normalized by min-number of neighbours
‣ Variant: hub depressed (max instead of min)

‣ Two stars have 10 common followers or I have ten friends following a star

90

ADAMIC ADAR
• Intuition:

‣ For previous scores: all common nodes are worth the same
‣ For AA:

- A common node with ONLY them in common is worth the most
- A common node connected to everyone is worth the less
- The higher the size of its neighborhood, the lesser its value

91

RESSOURCE ALLOCATION

• Similar to Adamic Adam, penalize more higher degrees

92

PREFERENTIAL ATTACHMENT
• Preferential attachment:

‣ Every time a node join the network, it creates a link with nodes with probability
proportional to their degrees

‣ In fact, closer to the definition of the configuration model

• Score not based on common neighbors
‣ =>Assign different scores to nodes at network distance >2

• Intuition: Two nodes with many neighbors more likely to have
new ones than nodes with few neighbors

93

OTHER SCORES

Sorenson Index Salton Cosine Similarity

Hub Depressed Leicht-Holme-Nerman

Examples of other scores proposed

94

COMMUNITY STRUCTURE

• General idea:
‣ 1)Compute community structure on the whole graph
‣ 2)Assign high score for 2 nodes in a same community, a low score otherwise

• How to choose the score?

95

COMMUNITY STRUCTURE

• For methods based on a quality function optimization
(Modularity, Infomap’s information compression, etc.)
‣ Assign a score to each pair proportional to the change in quality function

associated with adding an edge between them

• For instance, Louvain optimize Modularity.
‣ Each edge added between communities:

- Decrease in the Modularity
‣ Edge added inside community:

- Increase in Modularity, depends on properties of the community and nodes

Ghasemian, A., Hosseinmardi, H., & Clauset, A. (2019). Evaluating overfit and underfit in models of network community structure. IEEE
Transactions on Knowledge and Data Engineering.

96

OTHER SCORES

• Distance based:
‣ Length of the shortest path
‣ Probability to reach a node from another on a random-walk of distance k

- See next classes on embeddings
‣ Number of paths of length d between the nodes

• Problem: computational complexity

97

ML APPROACH TO LINK PREDICTION:

SIMILARITY SCORE,
SUPERVISED

98

SUPERVISED MACHINE
LEARNING

• Use Machine Learning algorithms to learn how to combine
heuristics for optimizing predictions

• Two steps:
‣ Training: show features + value to predict
‣ Using/Validating: try to predict value from features

99

SUPERVISED MACHINE
LEARNING

• Our features: similarity indices (CN, AA, PA, …)
‣ One (limited interest) or, obviously, several
‣ Nodes attributes can be added of available (age, salary, etc.)

• Our label/value to predict: Link(1) or No link(0) (2 classes)

• These types of ML algorithms are called classifiers
‣ Logistic Classifier
‣ Decision Tree Classifier
‣ Neural networks Classifier
‣ …

100

SUPERVISED MACHINE
LEARNING

A

C

D

E

B

Original Graph

Training set
With Positive and Negative Examples

…

D,C
D,E

Pair

2
0

H1

4
2

H2

A,C
B,C

1
1

3
4

0
0

Edge

1
1

Node pairs for prediction

…

A,E
B,E

Pair

1
1

H1

3
3

H2

Trained Model
f(H1,H2)->p(1)

ML Algorithm
Logistic,

Classification Tree,
Neural Networks,

etc.

…

A,E
B,E

Pair

1
1

H1

3
3

H2
0.31
0.24

Edge
(A,E)

(B,E)

Node pairs sorted
by score

Less likely

More likely

…

1 ML training

2 Prediction

101

SUPERVISED MACHINE
LEARNING

• Scores of methods, very different in their mechanisms, but
same input and output

Let’s see 2 simple examples: Logistic classification,
Decision Trees

102

LOGISTIC CLASSIFICATION
• Value to predict :

‣ 0 (no edge)
‣ 1 (edge)

• Linear relations between variables
‣

• Find that minimizes

yt

yi = β0 + β1xi1 + ⋯ + βpxip + εi

β0, β1, . . . yt − yi

https://en.wikipedia.org/wiki/Logistic_regression

103

DECISION TREES
• Measure of heterogeneity (Gini, entropy…)

• Split recursively data in 2 to maximize homogeneity in child
nodes

https://en.wikipedia.org/wiki/Decision_tree104

DECISION TREES

• Example of possible outcomes with a decision tree:

• If CN <1
‣ IF PA>1000 => Predict 1
‣ ELSE => Predict 0

• ELSE
‣ IF PA > 10000 => Predict 1
‣ ELSE

- IF AA > 10 => Predict 1
- ELSE
- IF JC < 0.2 => Predict 0
- … 105

NODE CLASSIFICATION

Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in social networks. In Social network data analytics (pp. 115-148). Springer, Boston, MA.106

NODE CLASSIFICATION

• For the node classification task, we want to predict the class/
category (or numerical value) of some nodes
‣ Missing values in a dataset
‣ Learn to predict, in a social network/platform(Netflix…) individuals’:

- Political position, opinion on a given topic, possible security threat, …
- Interests, tastes, etc.
- Age, gender, sexual orientation, language spoken, salary, etc.
- Fake accounts, spammers, bots, malicious accounts, etc.
- …

‣ Wikipedia article category, types of road in an urban network, etc.

107

NODE CLASSIFICATION

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of
Sciences, 110(15), 5802-5805.

Example of risks

Jernigan, C., & Mistree, B. F. (2009). Gaydar: Facebook friendships expose sexual
orientation. First Monday, 14(10).

108

NODE FEATURES

• Non-network approach: Use a classification algorithm based
on features of the node itself (age, salary, etc.)

• The network structure can be integrated using node
centralities: Degree, clustering coefficient, betweenness, etc.

• But we can do much better :
‣ “Tell me who your friends are, and I will tell you who you are”

109

NEIGHBORHOOD BASED
CLASSIFICATION

• Classification based on the distribution of features in the
neighborhood

• For each node, compute the distribution of labels in its
neighborhood (vectors of length m, with m the set of all
possible labels)
‣ Pick the most frequent

- e.g., political opinions
‣ Train a classifier on this distribution

- e.g., distribution of age, language in the neighborhoods to recognize bots (unexpectedly
random)

110

