
Network Science
Cheatsheet

Made by
Remy Cazabet

� Random graphs

Many elements of this course are inspired by the excellent classes by
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http://tuvalu.santafe.edu/~aaronc/courses/5352/

Synthetic networks usages
Using synthetic networks is essential in network science for several reasons.
In particular, they allow to:

• Study some properties in a controlled environment. What happens
if we increase propertyX , while keeping all other properties constant?

• Compare an observed network with a randomized version of it. I
observed property X in my data, is it something remarkable, or would
I observe the same thing on a random network similar to my graph?

• Explain a phenomenon. Property X seems exceptional. It can be re-
produced in random networks by simple mechanism Y.

• Generate synthetic datasets, for instance to test the same algorithm
on multiples variations of the same network.

Synthetic networks types
There are three main types of synthetic networks:

• Deterministic models are instances of famous graphs or, more
commonly, repeated regular patters. e.g.,Caveman graph, grids, lat-
tices.

• Generativemodels assign to eachpair of nodes a probability of hav-
ing an edge according to their properties (degree, label, etc.). e.g.,
Erdős Rényi, Con�guration model, etc.

• Mechanistic models create networks by following a set of rules, a
process de�ned by an algorithm. e.g., Preferential attachment, Forest
�re, etc.

Regular lattices
Regular lattices are de�ned as repetition of the same pattern a given (poten-
tially in�nite) number of times. Nodes all have the same degree. The pattern
can be in �, � or more dimensions.
The clustering coe�cient depends on the structure, it can be large if the
structure is made of triangles, for instance. It is the same for all nodes (ex-
cept potentially nodes at the boundaries).
The average distance grows quickly with n, if k ⌧ n

Erdős-Rényi (ER) model
The Erdős-Rényi (ER)model is the simplest random graph model. Assum-
ing that we know the number of nodes and the number of edges, and no
other information, then edges are simply put between randomly chosen pair
of nodes.
ER models can be de�ned in two ways:

• in the G(n,L) formulation, the number of edges of the generated
graph is set to exactlyL, and thusL random pairs of nodes are cho-
sen among the set of all existing node pairs(sharp constraint, micro-
canonical ensemble).

• in the G(n, p) formulation, an edge is added between any set of
node with a probability p.(soft constraint, canonical ensemble).

Properties of both model are similar when the number of edges (de�ned by
L or p) is large.

Random version of observed graph
When one wants to compare a real network with a randomized version of it
(also called a rewired network), the usual way is not to start from the origi-
nal network and to actually rewire it edge by edge, but instead to generate
a new ER random graph keeping the same number of nodes and the same
number of edges (or the same density) as the observed network. Properties
of the observed network can then be compared with the generated net-
work. Note that it does note make sense to compare the properties of any
particular node in both networks, since nodes in the random graph have no
identity. Note that in some applications, there is not need to actually gener-
ate a random graph: one can simply compare properties of the real network
with theoretical properties of the random graph.

Soft ER
In the soft ER, the number of edges is not known in advance. The distribu-
tion of the number of edges in the soft ER are described by the binomial
distributionB(Lmax

, p)
From the known properties of the Binomial distribution, it can be shown that:

• The expected number of edges is hLi = pL
max ,

• The variance of the number of edges is �2 = L
max

p(1 � p)

Binomial distribution

The Binomial distribution B(Nb, pb) is a discrete distribu-
tion which model the number of successes x in a sequence
of Nb independent experiments with success probability pb .
For instance, it models how many times (x) one will ob-
tain a � (success) if they throw a dice Nb times and that
the probability to obtain a � is 1

6 . It is de�ned as P (x) =
�Nb

x

�
px(1� pb)N�x .

�N
x

�
is the binomial coe�cient, describ-

ing the number of ways, disregarding order, that x elements
can be chosen among Nb .

ER: Degree distribution
Since each node has an independent probability to be connected with each
other node, the degree distribution of the ER model is modeled as a bino-
mial distribution B(N � 1, p), i.e., the probability to have a given degree
knowing that we have a probability p to have a link with each of the other
nodes in the graph. From the properties of the Binomial distribution, we
know that:

• The expected average degree is hki = p(N � 1)

• The variance of the degree is �2
k
= p(N � 1)(1 � p)

We can note that the distribution becomes increasingly nar-
row as the network size increases, i.e., we are increasingly
con�dent that the degree of a node is in the vicinity of hki:

�k

hki
=

1

(N � 1)1/2

ER: Approximation of degree distribution
by a Poisson Distribution
When the number of nodesN is large and the average degree hki is small,
the degree distribution can be approximated by a Poisson distribution. From
the properties of Poisson distributions, we approximate that for a network
with average degree hki:

• The variance of the degree is �k =
p

hki

Poisson distribution

The Poisson distribution (Delta) is a discrete distribution
modeling the probability of observing exactly x occurrences
of an event in a period of duration�t if this event occurs ran-
domly and that there are in average � occurrences of it dur-
ing a period �t . It is known that the Poisson distribution is a
good approximation of the Binomial approximationwhenNb

is large and pb is small, which is the case for sparse graphs.
working with the Poisson distribution is convenient because
it depends only on a single parameter Delta.

ER: Clustering Coe�cient
The Global Clustering Coe�cient of a network is de�ned as the fraction
of closed triads among all triads. Since any edge (u, v) has a �x probabil-
ity to exist p independently of the existence of any other edge in the net-
work, the probability of having edge (a, c) 2 E for a triad [a, b, c] such as
(a, b), (b, c) 2 E is p.
Thus, the clustering coe�cient of an ER graph is C

g = p . Since we know
that most real networks are sparse, p is small, thus C

g is small. A similar
reasoning can be used to show that the average clustering coe�cient hCi

is small too.
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ER: Average Distance
We can intuitively estimate the order of the Average Distance of an ER ran-
dom graph as follows:
We know that the clustering coe�ent of an ER graph is small. Therefore,
we can approximate the graph as having a tree-like structure. As a conse-
quence, the number of nodes located at distance d of a node u increases
as hkid . From this approximation, the relation between distance an number
of nodes isN = hki

d hops, thus the order of ` is loghki n = log N

loghki .
We can thus say that the order of the average distance and the diameter of
a sparse ER graph relatively to its size isO(logN), and thus that: ER graphs
have a short average distance.

Order of magnitude

The notation O is used to represent the order of magni-
tude of a value. It roughly indicates how this value is re-
lated to another one, ignoring any constant, for instance,
O(x) = O(10x) = O(x/10). Typical orders of magnitude
are O(log x), O(x), O(x2) and O(2x).

ER: Largest connected component
The largest connected component of a graph is a way to measure its con-
nectivity. On random networks, the relation between the density (or aver-
age degree) of a graph and the size of its largest connected component
is known to undergo a phase transition phenomenon, i.e., a rapid change
when a threshold is crossed. More precisely, as long as hki < 1, several
connected components of similar sizes exist in the network, while, when
hki > 1, the graph has a single giant component with high probability.

An intuitiveway to understand this phenomenon is to use the sameobserva-
tion of the graph being tree-like as previously. Since the number of nodes
N that can be reached after d hops can be estimated to grow as hki

d , a
value of hki < 1 leads to an impossibility to reach all nodes even for a
large d, while hki > 1 leads to arbitrarily largeN for long enough d. Proper
demonstration and more details can be found in the original papera .

You can explore this property using this interactive explorable: https://www.
complexity-explorables.org/explorables/the-blob/

aErdős and Rényi ����.

Con�guration Model (CM)
The Con�guration Model is another classic random graph model in which
the degree of each node –or the degree distribution– is preserved. In gen-
eral terms, a con�guration model is de�ned by the number of nodes in the
graph, the number (or probability) of edges, and a distribution of degrees of
nodes.
This degree distribution can either be chosen a priori, for instance following
a Poisson or a Power-law distribution, or by taking the observed distribution
of a real network we would like to obtain a randomized-version of.
Note that in the later case, nodes can be considered to retain their iden-
tity: one can compare the local properties of the node of highest degree
between the two graphs, for instance.

Why the con�guration model
Formany real graphs, nodes represent real entities, and the degree of those
nodes is due to an intrinsic property of those nodes, which is known in ad-
vance and should be taken into account. For instance, let’s consider a net-
work representing �ight connections between airports: each node repre-
sents an airport, and there is an edge between two airports if a direct �ight
exist between them. JFK internation airport in New-York will likely be a Hub
in this network, having a very large degree. This large degree is a conse-
quence of the properties of the city it belongs to: large population, touristic
attraction, etc. So, if connections between airports were random, it could nev-
ertheless be relevant to keep the degree of this node.
Furthermore, the degree distribution itself is also a characteristic of the net-
work: the fact that hubs do exist in the network change its properties, com-
pared with a network in which such nodes do not exist.

Approximate/Soft Con�guration model
In the approximate version of the Con�guration model, each pair of node
is connected by an edge with a given probability, which depends on their
objective degrees.
More precisely, the probability of having an edge (i, j) is de�ned as puv =
kukv

2L . Note that this is a well de�ned probability only if max(ku)
2
< 2m,

otherwise it can be higher than �. puv should therefore rather be understood
as the expected number of edges in a multigraph.
Intuitively, this de�nition can be understood as follows: each node u has ku

stubs. The total number of stubs in the graph is 2L. Knowing that node v

has kv stubs, the probability for each stub of u to connect to a stub of v is
kv

2L .
Note that this model is de�ned such as self-loops can exist.

Rewired exact con�guration model
When the objective of a con�guration model is to obtain an random version
of an observed graph, a common approach is to �x the exact degree of each
node, and to connect stubs randomly. An e�cient way to do so is to use the
following algorithm:

• Create a list s such as it contains ku times the index of node u

• Randomize s

• For each i in [0, L], create an edge between nodes of index s2i and
s2i+1 .
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Once a degree sequence �k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

�
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri � U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,
we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability
that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value
is 1/(n � i + 1). By induction, the probability of choosing any particular ordering is

�n
i=1(n � i + 1)�1 = 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform
deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

Note that this method can create self-loops and multiple links between the
same nodes, even if the original network was a simple graph. However,
the number of multiple links and self-links decreases when the number of
nodes increases, for sparse graphs.
The probability of an edge to exist between two nodes depend on their de-
gree, and is the same as in the soft CM.

CM: Friendship paradox
An interesting property of the Con�guration Model with heterogeneous de-
gree distribution arises when we study the average degree of random
neighbors. Let’s call pk the probability to pick a node of degree k when
we pick a node at random. This probability represents the degree distribu-
tion chosen for the con�guration model. Now, if we choose one node at
random, and then pick one of its neighbors at random, what is pneighb,k ,
the degree distribution of random neighbors? It is di�erent, because ran-
doms with a higher degree have, by de�nition, a higher probability of being
chosen. More formally,

pneighb,k =
k

2m
npk =

kpk

hki

becausenpk is the number of nodes of degree k in the graph, and k

2m is the
probability to pick at random a stub of a particular node of degree k among
all stubs.

We can now compute the average degree of neighbors of a node chosen
at random, it is:

hkneighbi =
X

k

kpneighb,k =
hk

2
i

hki

Thus if all degrees are the same (homogeneous), hkneighbi = hki, but if it is
heterogeneous, hkneighbi > hki due to the comparatively larger in�uence
of high degrees.

k=1

k=1

k=1

k=1 k=4

<kneigh>=1

<kneigh>=4 <kneigh>=4

<kneigh>=4
<kneigh>=4

<k>=8/5

<k2>=20/5=4

<kneigh>=<k2>/<k>=20/8=5/2

<kneigh>=(4*1+4*4)/(4+4*1)=20/8=5/2

https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/


CM: Clustering Coe�cient
The clustering coe�cient of the con�guration model can also be studied
theoretically. Its derivation is beyond the scope of this class and can be
found in the literaturea . Intuitively, we can use the same reasoning as for the
ER model: the probability of having edge (a, c) 2 E for a triad [a, b, c] such
as (a, b), (b, c) 2 E is kakc

2L . However, the probability of observing (a, b)
and (b, c) and thus to have such a triad also depends on ka, kb, kc . In the
end, the clustering coe�cient is

C =
1

L

[hk2
i � hki]2

hki3

where hk
2
i correspond to the expected variance (second moment) of the

degree.
Since the right part of the equation is a constant depending only on the av-
erage degree, the order of the clustering coe�cient is O(1/L), and thus
small for large graphs. This is true as long as hk

2
i is de�nite, which might

not be the case if the degree distribution is a power law.

aM. Newman ����.

CM: Average distance
We use the same logic as for the ER model of the graph being locally tree-
like due to the low Clustering Coe�cient to show intuitively that the average
distance is short. This property is veri�ed experimentally.

Di�erences btw. Real & Random networks
When comparing real networks to ER and CM networks of similar proper-
ties, we observe that they seem to disagree on one of two key properties: on
real graphs, usually, either the graph has a low clustering coe�cient and a
large average distance, or the opposite. On the contrary, random networks
always have both a low clustering coe�cient and a short average distance.
Small world phenomenon.

Watts-Strogatz (WS) Model
TheWatts-Strogatzmodel was introducedWatts and Strogatz ���� to show
how a simple phenomenon could create networks having both a large clus-
tering coe�cient and a short average distance.
The model has � parameters:

• N : number of nodes

• K : initial number of neighbors

• p: rewiring probability

The network is created following a �-step processes: FirstN nodes are dis-
posed on a ring, and each node is connected to its K closest neighbors.
Then each edge is replaced by a random edge with probability p. It can
be interpreted as a network combining the properties of a (�-dimentional)
regular lattice and of an ER network.

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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WS - Small World Regime
The WS model properties vary according to the value of p: if p is too small,
the network has properties similar to a regular lattice, and if p is too large,
properties of an ER graph.
We can observe this transition by comparing how the Clustering (C) and av-
eragedistance (L) changewhen varyingp, comparedwith the networkwhen
p = 0, i.e., a regular lattice.

WS - Clustering
Properties of the WS models cannot be studied in the same way as previ-
ous randomgraphs. It can be shownhowever, by counting triangles, that the
Clustering Coe�cient is independent ofN , and thus do not necessarily de-
creases for large graphs. More precisely, it can be shown thatC = 3(K�2)

4(K�1)

when p = 0.

WS - Average Path length
The average path length of theWSmodel can be shown through numerical
simulations to be of the form:

` =
ln(NKp)

K2p

WS - Degree distribution
Without entering into details, it can be shown the the degree distribution
range from a �xed degree for all nodes to a Poisson distribution, since each
rewired edge is decreasing the degree of some nodes and increasing the
degree of some others in a random way.

Examples of di�erences in Clustering and average path length for a few real
graphs, compared with randomized versions of it.

graph N L k Cg h`i ER-Cg ER-h`i CM-Cg CM-h`i

karate �� �� �.�� �.�� �.�� �.�� �.�� �.�� �.��
football ��� ��� ��.�� �.�� �.�� �.�� �.�� �.�� �.��
wiki-science ��� ���� ��.�� �.�� �.�� �.�� �.�� �.�� �.��
euroroad ���� ���� �.�� �.�� ��.�� �.�� �.�� �.�� �.��

Barabási-Albert (BA) Model
The Barabási-Albertmodel of random graphs was introduceda to illustrate
how a simple mechanism could explain a common property of real graphs,
the power-law degree distribution. This mechanism is though to some-
what mimic what is happening in real life, at least for some networks. It is
often called preferential attachment, and mimic the rich get richer phe-
nomena: nodes that already have a large degree are more attractive, and
thus are more likely to become connected with other nodes creating links.

aBarabási and Albert ����.

BA - Preferential attachment
The preferential attachment process has two parameters, the number of
edges to create at each step m and the initial number of nodes m0 , with
m  m0 . It is de�ned by the following iterative process:

• Start with a connected graph withm0 nodes

• At each step, add a new node and m links connecting it to m other
nodes chosen randomly with a probability ⇧i =

kiP
j
kj

BA - Degree distribution
The degree distribution created by the preferential attachment mechanism
is a power law of exponent ↵ = 3. The exponent of the distribution does
not depend on parametersm andm0 . The degree exponent is stationary in
time, i.e., it stays the same while we add new nodes and edges.

Nodes degree increase with time: the earlier a node was added, the larger
its degree tend to be. More generally, degrees increase as power-law of
exponent ↵ = 1/2



BA - Average Path Length
Networks generated by the BA process have a power-law degree distribu-
tion of exponent↵ = 3. It is known that such networks have a short average
path length, more formally:

h`i =
lnN

ln lnN

BA - Clustering Coe�cient

Although the demonstration is beyond the scope of this classa , it can be
shown that the clustering coe�cient of BA graphs is:

C =
L

4

(lnN)2

N

This is � times more than for a random network, but still decreases with the
network size, and becomes very small for large graphs. It is thus considered
a small clustering coe�cient.

aBarabási and Albert ����.

Other random graph models
Manyother graphmodels have beenproposed in the literature, eithermech-
anistic models to mimic common properties of some graphs, as with BA and
WS models, or statistical models to generate random graphs with imposed
constraints, as the Con�guration model does with degree distributions.
Some examples of mechanistic models:

• Vertex copying model (J. M. Kleinberg et al. ����)

• Tunable-clustering scale-free model (Holme and Kim ����)

• Forest �re model (Leskovec, J. Kleinberg, and C. Faloutsos ����)

Some examples of statistical models:

• Exponential Random Graphs (Robins et al. ����)

• Stochastic Block Models (Peixoto ����)

• A survey on the topic(Orbanz and Roy ����)
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