COMPLEX NETWORKS



Centrality
measures




NODE

- We can measure nodes importance using so-called
centrality.

* Poor terminology: nothing to do with being central in general

Qicaoe:
» Some centralities have straightforward interpretation

» Centralities can be used as node features for machine learning on graph
- (Classification, link prediction, ...)



Degree centrality - recap
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NODE DEGRES

* Degree: how many neighbors

» Often enough to find important nodes

» Main characters of a series talk with the more people
» Largest airports have the most connections

< et

* But not always

» Facebook users with the most friends are spam
» VWebpages/wikipedia pages with most links are simple lists of references

ST



NODE CLUSTERING
COEFFICIENT

- Clustering coefficient: density of neighborhood
» ells you If the neighbors of the node are connected

* Be careful!

» Degree 2:value O or |
» Degree 1000: Not O or | (usually)
» Ranking them is not meaningful

- Can be used as a proxy for “communities’ belonging:

» If node belong to single group: high CC
» If node belong to several groups: lower CC



Link clustering coefficient: Overlap

* Link property
* Fraction of common neighbors of a connected pair
- Jaccard Coefficient of neighborhoods

Edge Clustering C'“ of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e,

[Ny NN |
[Ny UN,| — 2

C°(u,v) =

Strong link organization

./ A ( ) \(MI:
. \ Integrative Dispersive

Ce( . ) _ Pajevic, S., & Plenz, D. (2012). The organization of strong links in complex
, ] - networks. Nature Physics, 8(5), 429-436.
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PERINESS, CLOSENESS
HARMONIC CENTRALITY



FARNESS, CLOSENESS

* How close the node Is to all other nodes

» Parallel with the center of a figure:

» Center of a circle is the point of shorter average distance to any points in the
circle

Closeness Centrality Scores - Unweighted




FARNESS, CLOSENESS

Farness: Average distance to all other nodes in the graph

Farness(u):N . Z Lo ,v



EEOSENESS CEN TRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =

| e il 11
C.(i) = =— =0.55

Bx1+7%x2+1x%x3) 20



EEOSENESS CENTRALHSS

Closeness: Inverse of the farness, i.e., how close the node is to all other

nodes in term of shortest paths. AmsterdamPart_CLS_nolimit

Closeness
I 0.000000
N —1
ClOSGI’]eSS(u) = [ 0,000001 - 0,000000
Zv eViu lu U 0,000001 - 0,000000

0,000001 - 0,000000
\ 0,000001 - 0,000000
W Ve I 0.000001 - 0,007673
= I 0007674 - 0034569

I=dll hodes are at distance one

Kilometers




Harmonic Centrality

Harmonic centrality: A variant of the closeness defined as the average of
the inverse of distance to all other nodes (Harmonic mean). Well defined
on disconnected network with é = 0. Its interpretation is the same as the

closeness.
1

1
Harmonic(u) = ——— D
o veV\u

U,V




RATZ CEN T RALFTS

» Measure of the influence potential of a node

Ckatz(u) = > > o (A% )y

=1 v=1

in which AY means the number of paths of length ¢ from v to w, and

vUu

a < % a parameter smaller than the reciprocal of the largest eigenvalue

of A, alq[owing to compute with matrix form:

Gl = (07 = @52 =



RATZ CEN T RALFTS

Katz centrality of node 1=



RATZ CEN T RALFTS

™ )

Repeat for all distances as long
As possible (convergence)



RATZ CEN T RALFTS

Sum for each other node }



RATZ CEN T RALFTS

a 1S a parameter in [0, 1],
[ts strength decreases at
each rteration (increased distance)




RATZ CEN T RALFTS




RATZ CEN T RALFTS

Sum of paths to all other nodes at each
distance multiplied by a factor decreasing
with distance



BE TWEENNESS CENTRALITY

* Measure how much the node plays the role of a bridge

* Betweenness of u: fraction of all the shortest paths between all
the pairs of nodes going through u.

Cr (”U) . Z Ust(v)

sFvAtEV T st

with os: the number of shortest paths between nodes s and ¢t and o+ (v)
the number of those paths passing through wv.

The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a

directed graph: C'¥™ (v) = (ijﬁ((ﬁ)_z)-




Betweenness Centrality

Cp(v) = Z 75(v)

Ost

sHEvAtEV
: . ,~~ynorm e Cp)
directed graph: C5"" (v) = i (V=)

5% 6+1+-+= 64
o) = 2 =
11*10 110

Exact computation:

Floyd-Warshall: O(n3) time complexity
O(n?) space complexity

Approximate computation
Dijskstra: O(n(m+n log n)) time complexity



BE TWEENNESS CENTRALITY
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EDGE - BETWEENNESS

Same definition as for nodes

R B8 N .l 23 3 N
" By |
- n i
{ TRIZ

? | .' G N YO\/E,ﬁU K ROMANIA '

Can you guess the edge of o ’].! b P
highest betweenness In “A P " \l D
the European rail network ¢ R “tr R . N




RECURSIVE DEFINITIONS



RECURSIVE DEFINITIONS

* Recursive iImportance:
» Important nodes are those connected to important nodes

« Several centralities based on this idea:

» Eigenvector centrality
» PageRank



RECURSIVE DEFINITION

* \We would like scores such as:

» Each node has a score (centrality),

» If every node “sends’’ its score 1o 1ts neighbors, the sum of all scores received
oy each node will be equal to Its original score

@i — i el (1)

& i A 2 normalisation constant



RECURSIVE DEFINITION

» I his problem can be solved by what s called the power
method:

» |) We initialize all scores to random values

» 2)Each score Is updated according to the desired rule, until reaching a stable
point (after normalization)

* Why does 1t converge!

» Perron-Frobenius theorem (see next slide)
» =>]rue for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

* What we just described Is called the Eigenvector centrality

» A couple eigenvector (x) and eigenvalue (4) is defined by the
following relation: Ax = Ax

» X IS a column vector of size n, which can be interpreted as the scores of nodes

* What Perron-Frobenius algorithm says is that the power
method will always converge to the leading eigenvector, I.e., the
elgenvector associated with the highest eigenvalue



Eigenvector Centrality

Some problems in case of directed network:

- Adjacency matrix is asymmetric B
- 2 sets of eigenvectors (Left & Right) o b \/’
- 2 leading eigenvectors A (\/ // )
- Use right eigenvectors : consider nodes that \‘ /f/\.\‘/'/
are pointing towards you ¥ ,&q

But problem with source nodes (0 in-degree) — —

-Vertex A is connected but has only outgoing link = Its centrality will be O

-Vertex B has outgoing and an incoming link, but incoming link comes from A
= Its centrality will be O

-etc.

Solution: Only in strongly connected component
Note: Acyclic networks (citation network) do not have strongly connected component



PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page
Computer Science Department,

Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu




PageRank Centrality

» Eigenvector centrality generalised for directed networks

PageRank

The Anatomy of a Large-Scale Hypertextual VWWeb Search Engine

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy
use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently
and produce much more satisfying search results than existing systems. The prototype with a full
text and hyperlink database of at least 24 million pages 1s available at http://google.stanford.edu/




PageRank Centrality

(Side notes)

-“We chose our system name, Google, because it
is a common spelling of googol, or 10! and fits well with our goal of building very large-
scale search ™

-“[...] at the same time, search engines have migrated from the academic domain to the
commercial. Up until now most search engine development has gone on at
companies with little publication of technical details. This causes search
engine technology to remain largely a black art and to be advertising
oriented (see Appendix A). With Google, we have a strong goal to push
more development and understanding into the academic realm.”

-"[...], we expect that advertising funded search engines will be inherently biased towards the
advertisers and away from the needs of the consumers.”



PageRank Centrality

& cle hotes)

& Sergey Brin received his B.S. degree in mathematics and computer science

" from the University of Maryland at College Park in 1993. Currently, he is a
Ph.D. candidate in computer science at Stanford University where he received
. his M.S. in 1995. He is a recipient of a National Science Foundation Graduate
Fellowship. His research interests include search engines, information
extraction from unstructured sources, and data mining of large text collections
and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E.
in Computer Engineering at the University of Michigan Ann Arbor in 1995.
He is currently a Ph.D. candidate in Computer Science at Stanford University.
Some of his research interests include the link structure of the web, human
computer interaction, search engines, scalability of information access
interfaces, and personal data mining.




PAGERANK

* 2 main iImprovements over eigenvector centrality:

» In directed networks, problem of source nodes
=> Add a constant centrality gain for every node
» Nodes with very high centralities give very high centralities to all their neighbors
(even If that Is their only in-coming link)
- =>What each node "is worth" Is divided equally among its neighbors (normalization by the

degree)
oL Lz ok t4+1 C,
(0 S A\ v St > CU T Z out + B

UEN’I?:Ln UEN&TL v

With by convention =1 and a a parameter (usually 0.85) controlling the
relative importance of f



PAGERANK

Matrix interpretation @ (01100

A= 0 1 0 1 0

0 01 00

: 3 : ! s oY 1

Principal eigenvector of the “Google Matrix’ ’ 0/ ) / ’ /
. . () o 1/2 1/3 0 1/5
First, define matrix S as: o | Lo, e
-Normalization by columns of A 00 13 0 175
0 0 0 1/3 1/5

-Columns with only O receives |/n

0.88 0.03 0.313 0.313 0.2
0.03 0455 0.03 0.313 0.2
0.03 0.03 0313 0.03 0.2
0.03 0.03 0.03 0313 0.2

E—

(e) (0.03 0.455 0.313 0.03 0.2

-Finally, G;; = a5;; + (1 —a)/n

|



PageRank - as Random Walk

Main idea: The PageRank computation can be interpreted as a Random Walk
process with restart

Teleportation probability: the parameter a gives the probability that in the next step of
the RW will follow a Markov process or with probability 7-a it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on
this node after an infinite number of hops.



PAGERANK

* Then how do Google rank when we do a research!?

» Compute pagerank (using the power method for scalability)

» Create a subgraph of documents related to our topic

« Of course now It Is certainly much more complex, but we don't really know:
“Most search engine development has gone on at companies with little publication of technical
detalls. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



o i siss

- Many other centralities have been proposed
* The problem Is how to interpret them ¢

» Can be used as supervised tool:

Compute many centralities on all nodes

Learn how to combine them to find chosen nodes

Discover new similar nodes

(roles In social networks, key elements in an infrastructure, ...)

v

v

v

v



Which i1s which ?

Blagce
Clustering coefficient
Closeness
Harmonic Centrality
Betweenness
Katz
Figenvector
PageRank
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Caveats of centrality measures

- Each centrality measures is a proxy of an
underlying network process

- If this process is irrelevant for the actual network
than the centrality measure makes no sense

« E.g. If information does not pass via the
shortest paths in a network, betweenness

centrality is irrelevant



Node similarity

Similarity between nodes based on their neighborhood

How much two nodes are similarly connected

- What does it mean that they have 3 neighbours in common?

- It is relative to their degree (different meaning for nodes with 3 or 100 neighbours)

=Normalisation to penalise nodes with small degrees
We can define it using existing measures:
- Cosine Similarity

- Pearson Coefficient



Cosine similarity

Cosine similarity between two non-zero vectors: Number of common neighbours:

r-Y Nij = Z Aik Ak

cos 0 =

Vectors are the rows of adjacency matrix
Zk AikAkj
2 2
VI A S A2,

0;; = cosf =

with properties for adjacency vectors as

Ai,j = O/]. A?] — Azg ;Ai: ;Aik= ki

Number of common
_ 2k Aik Ak neighbours normalised

_ M
 Kik; v/ kik; | Dby the geometric mean

of their degrees

Cosine similarity: o,



Pearson coefficient

Correlation between rows of the adjacency matrix
GOV D (Aik — (Ai)) (Aji — (4;))
F oo VLA — (AP VA = (4)))°

cov: covariance, expected product of deviations from individual expected values
o. std deviation, square root of the expected squared deviation from the mean

Intuition, numerator: Number of common neighbours compared to the
expected number of common neighbours

D (A~ (ADA —{47) = Y Awdy -

)
3 n

Properties
 r(ij)=0 - if the number of common neighbours exactly as many as we

would expect by chance
 r(ij)>0 - if nodes have more neighbours in common than expected

 r(ij)<O0 - if nodes have fewer neighbours in common than expected



ASSORITATIVITY - HOMOPHILY



Homophily - Assortative mixing

"birds of a feather flock together”

 Property of (social) networks that nodes of the same attitude tends to be connected with
a higher probability than expected

- It appears as correlation between vertex properties of x(i) and x(j) if (i j)EE

Vertex properties

- age

« gender

 nationality

- political beliefs

« socioeconomic status

+ habitual place

* Obesity o

- Homophily can be a link creation mechanism
or consequence of social influence (and it is

Hig?]school network

d|ff|CU|t ’[O dlS’[II‘]QUISh) colored by race (J Moody)

? Connected people of the same political opinion are connected because they were a priori similar
(homophily) or they become similar after they become connected (social influence)?



Homophily - Assortative mixing

Dissasortative mixing

« Contrary of homophily, where dissimilar nodes are tend to be connected

Examples

2o
» Sexual networks N
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Homophily - Assortative mixing

To quantify homophily

D .iCii

Discrete properties

a;b;

e

women
black  hispanic white other a;
black | 0.258 0.016 0.035 0.013 | 0.323
& | hispanic | 0.012 0.157 0.058 0.019 | 0.247
g white | 0.013 0.023 0.306 0.035 | 0.377
other | 0.005 0.007 0.024 0.016 | 0.053
b; | 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix e;; and the values of a; and
h; for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

No assortative mixing :

=0 (e;; = a;b;)
Perfectly assortat

Perfectly disassortative: - | <r<0O

e =

-y,

a;b;



Homophily - Assortative mixing

To quantify homophily Scalar properties
WO Pearson correlation coefficient of properties
' ' at both extremities of edges
£ 301 S - | ey fraction of edges joining nodes with values x and y
SRR« I f BT . T =
:120 -0 | '_ -*_'l-._.-;.- .;::— | -— . ] B Ty Y x
N ny xy(efﬂy R afl?by)
" 1 T )
1010'"'2|0'"'3|0'H'4|0'”'5|0H Ta0b
age of hushand [years| with o, standard deviation of a,

r=0, no assortative mixing,
r>0 assortative mixing,
r<0 disassortative mixing



Degree-degree correlation

A particular type of application is the degree correlation:

* Are important nodes connected to other important nodes with a higher probability than

expected?

» The degree can be used as any other scalar property

social <

technological <

biological <

network type size n | assortativity r | error o,
physics coauthorship undirected 52 909 0.363 0.002
biology coauthorship undirected | 1520251 0.127 0.0004
mathematics coauthorship | undirected 253 339 0.120 0.002
film actor collaborations undirected 449913 0.208 0.0002
company directors undirected 7673 0.276 0.004
student relationships undirected 573 —0.029 0.037
email address books directed 16 881 0.092 0.004
power grid undirected 4941 —0.003 0.013
Internet undirected 10 697 —0.189 0.002
World-Wide Web directed 269 504 —0.067 0.0002
software dependencies directed 3162 —0.016 0.020
protein interactions undirected 2115 —0.156 0.010
metabolic network undirected 765 —0.240 0.007
neural network directed 307 —0.226 0.016
marine food web directed 134 —0.263 0.037
freshwater food web directed 92 —0.326 0.031

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002)



Average nearest-neighbour degree

R. Pastor-Satorras, A. Vazquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)

- More detailed characterisation of degree-degree correlations
* kanna: @verage nearest neighbours degree
Zk'ekk,

* kamd CaN be written @s: K (= 2KPH 10 =5

k/

e — - —

- where P(k’lk) is the conditional probability that an edge of a
node with degree & points to a node with degree k’

- If there are no degree correlations:

2
haa )= ... =

* kannalS iINdependent of k (nodes of any degrees should have the same
nearest neighbors degree)

- |f the network is assortative k.,(k) Is a positive function

- If the network is disassortative kn.(k) is a negative function



