
COMPLEX NETWORKS



Centrality
measures



NODE

• We can measure nodes importance using so-called 
centrality. 

• Poor terminology: nothing to do with being central in general

• Usage:
‣ Some centralities have straightforward interpretation
‣ Centralities can be used as node features for machine learning on graph

- (Classification, link prediction, …)



Degree centrality - recap
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NODE DEGREE

• Degree: how many neighbors

• Often enough to find important nodes
‣ Main characters of a series talk with the more people
‣ Largest airports have the most connections
‣ …

• But not always
‣ Facebook users with the most friends are spam
‣ Webpages/wikipedia pages with most links are simple lists of references
‣ …



NODE CLUSTERING 
COEFFICIENT

• Clustering coefficient: density of neighborhood

• Tells you if the neighbors of the node are connected

• Be careful! 
‣ Degree 2: value 0 or 1
‣ Degree 1000: Not 0 or 1 (usually)
‣ Ranking them is not meaningful 

• Can be used as a proxy for “communities” belonging:
‣ If node belong to single group: high CC
‣ If node belong to several groups: lower CC



Link clustering coefficient: Overlap
• Link property
• Fraction of common neighbors of a connected pair
• Jaccard Coefficient of neighborhoods

Ce(i, j) =
3
8

Link clustering coefficient: Overlap
• Link property
• Fraction of common neighbours of a connected pair
• Jaccard index of common neighbours

Oij = 3/(6+5-3) = 3/8

• ni - number of common neighbours of nodes i and j 
• (ki-1)+(kj-1)-nij maximum number possible triangles 

between nodes i and j

Oij =
nij

(ki � 1) + (ki � 1)� nij

ji

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,
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with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:
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with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|

|Nu [ Nv| � 2

Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :

�
cos
xy

=
x.y

|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

�
cos
uv

=
|Nu \ Nv|p

kukv

Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv

N

which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.

Pajevic, S., & Plenz, D. (2012). The organization of strong links in complex 
networks. Nature Physics, 8(5), 429-436.



FARNESS, CLOSENESS
HARMONIC CENTRALITY



FARNESS, CLOSENESS

• How close the node is to all other nodes

• Parallel with the center of a figure:
‣ Center of a circle is the point of shorter average distance to any points in the 

circle
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a votemecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
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u
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v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

FARNESS, CLOSENESS
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
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This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes. Its interpretation is the same as
the closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a vote mecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.



Harmonic Centrality
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

12

1

2

3

4

5

6

7

8

9

10

11

14

15

16

18

19

20

21

22

23

24

28

29

30

31

32

33

34

12

13

17

25 26

27

degree harmonic

Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which (A`

vu
means the number of paths of length ` from v to u. Note that

in a directed network, Katz centrality must be interpreted as a votemecha-
nism: a highest centrality of u means that more nodes can reach u quickly,
and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
X

v2Nin
u

C
t

v
(�)

This recursive de�nition can be interpreted in term of eigenvectors and
eigenvalues, which is de�ned as Ax = �x, with x an eigenvector, � and
eigeinvalue. The Ax operation corresponds to Equation �. The eigenvector
centrality is de�ned as the leading invector, i.e., the eigenvector associated
with the highest eigenvalue.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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by distance
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Repeat for all distances as long 
As possible (convergence)
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Sum for each other node j
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 is a parameter in [0,1].
Its strength decreases at 

each iteration (increased distance)

α
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� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k inG equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Graph Laplacian
The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Ad-
jacency matrix, often used in Graph theory and Spectral Graph Theory.
It is de�ned as D � A, with D the Degree matrix of the graph, de�ned as a
N ⇥ N matrix withDii = ki and zeros everywhere else.

Intuitively, Laplace operator is a generalization of the second derivative, and
is de�ned in discrete situations, for each value, as the sum of di�erences be-
tween the value and its "neighbors". e.g., in time, the �nd derivative accelera-
tion is the di�erence between current speed and previous speed. In a B&W
picture, it’s the di�erence between the greylevel on current pixel and the
greylevel of � or � closest pixels, and perform edge detection. On a graph,
with W a column vector representing values on nodes, LW computes for
each node the di�erence to neighbors.

Spectral properties of L
Eigenvalues of the Laplacian havemany applications, such as spectral clsu-
tering, graph matching, embedding, etc. AssumingG undirected with eigen-
values �0  �1  �2  . . .�n , here are some interesting properties:

• The smallest eigenvalue �i equals �

• The number of � eigenvalues gives the number of connected com-
ponents

RandomWalk matrix
Another useful matrix of a graph is the RandomWalk Transition Matrix R.
It is the column normalized version of the adjacency matrix. Rij can be un-
derstood as the probability for a random walker located on node i to move
to j .

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

3 �1 0 0 �1 �1
�1 5 �1 �1 �1 �1
0 �1 2 �1 0 0
0 �1 �1 2 0 0
�1 �1 0 0 4 �1
�1 �1 0 0 �1 3

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3

1

CCCCCA

RandomW. mat.

0

BBBBBBBBBBBB@

0 1
5 0 0 1

4
1
3

1
3 0 1

2
1
2

1
4

1
3

0 1
5 0 1

2 0 0

0 1
5

1
2 0 0 0

1
3

1
5 0 0 1

4
1
3

1
3

1
5 0 0 1

4 0

1

CCCCCCCCCCCCA
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� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k inG equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Graph Laplacian
The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Ad-
jacency matrix, often used in Graph theory and Spectral Graph Theory.
It is de�ned as D � A, with D the Degree matrix of the graph, de�ned as a
N ⇥ N matrix withDii = ki and zeros everywhere else.

Intuitively, Laplace operator is a generalization of the second derivative, and
is de�ned in discrete situations, for each value, as the sum of di�erences be-
tween the value and its "neighbors". e.g., in time, the �nd derivative accelera-
tion is the di�erence between current speed and previous speed. In a B&W
picture, it’s the di�erence between the greylevel on current pixel and the
greylevel of � or � closest pixels, and perform edge detection. On a graph,
with W a column vector representing values on nodes, LW computes for
each node the di�erence to neighbors.

Spectral properties of L
Eigenvalues of the Laplacian havemany applications, such as spectral clsu-
tering, graph matching, embedding, etc. AssumingG undirected with eigen-
values �0  �1  �2  . . .�n , here are some interesting properties:

• The smallest eigenvalue �i equals �

• The number of � eigenvalues gives the number of connected com-
ponents

RandomWalk matrix
Another useful matrix of a graph is the RandomWalk Transition Matrix R.
It is the column normalized version of the adjacency matrix. Rij can be un-
derstood as the probability for a random walker located on node i to move
to j .

Matrix notation - Example

Graph

�

�

�
�

��

A - AdjacencyMat.

0

BBBBB@

0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0

1

CCCCCA

D - Degree Matrix

0

BBBBB@

3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3

1

CCCCCA

L - Laplacian

0

BBBBB@

3 �1 0 0 �1 �1
�1 5 �1 �1 �1 �1
0 �1 2 �1 0 0
0 �1 �1 2 0 0
�1 �1 0 0 4 �1
�1 �1 0 0 �1 3

1

CCCCCA

A2

0

BBBBB@

3 2 1 1 3 2
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• Measure how much the node plays the role of a bridge

• Betweenness of u: fraction of all the shortest paths between all 
the pairs of nodes going through u.
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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which is the maximal score in the network, but one other vertex has the same closeness (which
one?). Its harmonic centrality is 0.6212 . . . , which is the second largest value (what is the largest?).
The minimal scores are 0.316 (closeness) and 0.417 (harmonic), which illustrates the narrow range
of variation of closeness (less than a factor of 2). (Do you see which vertex produces these scores?)

Applying the harmonic centrality calculation to the karate club network yields the figure on the
next page (with circle size scaled to be proportional to the score). The small size of this network
tends to compress the centrality scores into a narrow range. Comparing the harmonic scores to
degrees, we observe several di↵erences. For instance, the centrality of vertex 17, the only vertex in
group 1 that does not connect to the hub vertex 1, is lower than that of vertex 12, which has the
lowest degree but connects to the high-degree vertex 1. And, vertex 3 has a harmonic centrality
close to that of the main hubs 1 and 34, by virtue of it being “between” the two groups and thus
having short paths to all members of each.
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Relationship to degree-based centralities

In fact, degree-based centrality measures are related to geodesic-based measures like closeness and
harmonic centrality, although they do emphasize di↵erent aspects of network structure. For in-
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u

CB(u) = 2
5 * 6 + 1 + 1

2 + 1
2

11 * 10
=

64
110

Exact computation:

Floyd-Warshall:  O(n3) time complexity  
          O(n2) space complexity 

Approximate computation
 Dijskstra: O(n(m+n log n)) time complexity  
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Note that in a directed network, Katz centrality must be interpreted as a vote
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quickly, and not that u can reach many nodes quickly.
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The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
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BETWEENNESS CENTRALITY

(blue higher) (red higher)



EDGE - BETWEENNESS 

Can you guess the edge of
highest betweenness in 

the European rail network ?

Same definition as for nodes
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RECURSIVE DEFINITIONS

• Recursive importance:
‣ Important nodes are those connected to important nodes

• Several centralities based on this idea:
‣ Eigenvector centrality
‣ PageRank
‣ …



RECURSIVE DEFINITION

• We would like scores such as :
‣ Each node has a score (centrality), 
‣ If every node “sends” its score to its neighbors, the sum of all scores received 

by each node will be equal to its original score

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes, i.e., kin = 0. Those nodes have by de�nition a, eigenvector central-
ity of � at t+�, and thus send a value of � at t+�, which might in turn result in
a score of � for its successors, and so on and so forth.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:

C
t+1
u

= ↵

X

v2Nin
u

C
t

v

kout
v

+ � (�)

with, by convention, � = 1,↵ a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Edge Structural indices
Edges situation in the network can also be described using srtuctural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

• With  a normalisation constantλ



RECURSIVE DEFINITION

• This problem can be solved by what is called the power 
method:
‣ 1) We initialize all scores to random values
‣ 2)Each score is updated according to the desired rule, until reaching a stable 

point (after normalization)

• Why does it converge?
‣ Perron-Frobenius theorem (see next slide)
‣ =>True for undirected graphs with a single connected component



EIGENVECTOR CENTRALITY

• What we just described is called the Eigenvector centrality

• A couple eigenvector ( ) and eigenvalue ( ) is defined by the 
following relation: 
‣  is a column vector of size n, which can be interpreted as the scores of nodes

• What Perron-Frobenius algorithm says is that the power 
method will always converge to the leading eigenvector, i.e., the 
eigenvector associated with the highest eigenvalue

x λ
Ax = λx

x



Eigenvector Centrality
Some problems in case of directed network:
• Adjacency matrix is asymmetric
• 2 sets of eigenvectors (Left & Right)
• 2 leading eigenvectors 

• Use right eigenvectors : consider nodes that 
are pointing towards you 

17

Eigenvector centrality — Bonacich centrality 
I am important if my friends are important too

Vertex A is connected but 
has only outgoing link 
= Its centrality will be 0 

Vertex B has outgoing and 
ingoing 

But Ingoing comes from A 
= Its centrality will be 0 

Only in strongly connected component 

Acyclic networks (citation network) do not have strongly connected 
component 

-Vertex A is connected but has only outgoing link = Its centrality will be 0 

-Vertex B has outgoing and an incoming link, but incoming link comes from A 
= Its centrality will be 0 
-etc.

But problem with source nodes (0 in-degree)

Solution: Only in strongly connected component 
Note: Acyclic networks (citation network) do not have strongly connected component 



PageRank Centrality
• Eigenvector centrality generalised for directed networks

PageRank
The Anatomy of a Large-Scale Hypertextual Web Search Engine!

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International 
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.!

Wednesday, November 14, 12



PageRank Centrality
• Eigenvector centrality generalised for directed networks

PageRank
The Anatomy of a Large-Scale Hypertextual Web Search Engine!

Brin, S. and Page, L. (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. In: Seventh International 
World-Wide Web Conference (WWW 1998), April 14-18, 1998, Brisbane, Australia.!

Wednesday, November 14, 12



PageRank Centrality
(Side notes)

-“We chose our system name, Google, because it 
is a common spelling of googol, or  and fits well with our goal of building very large-
scale search “

10100

-“[…] at the same time, search engines have migrated from the academic domain to the 
commercial. Up until now most search engine development has gone on at 
companies with little publication of technical details. This causes search 
engine technology to remain largely a black art and to be advertising 
oriented (see Appendix A). With Google, we have a strong goal to push 
more development and understanding into the academic realm.”

-“[...], we expect that advertising funded search engines will be inherently biased towards the 
advertisers and away from the needs of the consumers."



PageRank Centrality

Sergey Brin received his B.S. degree in mathematics and computer science
from the University of Maryland at College Park in 1993. Currently, he is a
Ph.D. candidate in computer science at Stanford University where he received
his M.S. in 1995. He is a recipient of a National Science Foundation Graduate
Fellowship. His research interests include search engines, information
extraction from unstructured sources, and data mining of large text collections
and scientific data. 

 
Lawrence Page was born in East Lansing, Michigan, and received a B.S.E.
in Computer Engineering at the University of Michigan Ann Arbor in 1995.
He is currently a Ph.D. candidate in Computer Science at Stanford University.
Some of his research interests include the link structure of the web, human
computer interaction, search engines, scalability of information access
interfaces, and personal data mining. 

8 Appendix A: Advertising and Mixed Motives
Currently, the predominant business model for commercial search engines is advertising. The goals of
the advertising business model do not always correspond to providing quality search to users. For
example, in our prototype search engine one of the top results for cellular phone is "The Effect of
Cellular Phone Use Upon Driver Attention", a study which explains in great detail the distractions and
risk associated with conversing on a cell phone while driving. This search result came up first because
of its high importance as judged by the PageRank algorithm, an approximation of citation importance on
the web [Page, 98]. It is clear that a search engine which was taking money for showing cellular phone
ads would have difficulty justifying the page that our system returned to its paying advertisers. For this
type of reason and historical experience with other media [Bagdikian 83], we expect that advertising
funded search engines will be inherently biased towards the advertisers and away from the needs of the
consumers. 

Since it is very difficult even for experts to evaluate search engines, search engine bias is particularly
insidious. A good example was OpenText, which was reported to be selling companies the right to be
listed at the top of the search results for particular queries [Marchiori 97]. This type of bias is much
more insidious than advertising, because it is not clear who "deserves" to be there, and who is willing to
pay money to be listed. This business model resulted in an uproar, and OpenText has ceased to be a
viable search engine. But less blatant bias are likely to be tolerated by the market. For example, a search
engine could add a small factor to search results from "friendly" companies, and subtract a factor from
results from competitors. This type of bias is very difficult to detect but could still have a significant
effect on the market. Furthermore, advertising income often provides an incentive to provide poor

(Side notes)



PAGERANK

• 2 main improvements over eigenvector centrality: 
‣ In directed networks, problem of source nodes

-  => Add a constant centrality gain for every node
‣ Nodes with very high centralities give very high centralities to all their neighbors 

(even if that is their only in-coming link)
- => What each node “is worth” is divided equally among its neighbors (normalization by the 

degree)

=>
With by convention =1 and  a parameter (usually 0.85) controlling the 

relative importance of 
β α

β

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:

C
t+1
u

= ↵

X

v2Nin
u

C
t

v

kout
v

+ � (�)

with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|

|Nu [ Nv| � 2

Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :

�
cos
xy

=
x.y

|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

�
cos
uv

=
|Nu \ Nv|p

kukv

Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv

N

which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.

Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,

C
t+1
u

=
1

�

X

v2Nin
u

C
t

v
(�)

with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:
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with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =

|Nu \ Nv|
|Nu [ Nv| � 2

High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|

|Nu [ Nv| � 2

Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :

�
cos
xy

=
x.y

|x||y|
This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

�
cos
uv

=
|Nu \ Nv|p

kukv

Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv

N

which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).

Assortativity - Homophily
A network is said to be assortative or to demonstrate homophily if its nodes
tend to connect more with other nodes that are similar than to nodes that
are di�erent.
Similarity in this casemust be understood in termof nodes properties. Some
typical examples can be age, gender, language, political beliefs, etc.
Homophily is considered a common feature of many networks, in particular
social networks, as re�ected in the aphorism Birds of a feather �ock together.
Some networks can also demonstrate heterophily, or disassortativity, i.e., a
greater number of connections with nodes that are di�erent (for instance, in
a sentimental relationship network, women tend to connect more with men
than with other women).

Note on interpreting homophily
Homophily can be a link creation mechanism (nodes have a preference to
connect with similar ones, so the network end up to be assortative), or a
consequence of in�uence phenomenons (because nodes are connected,
they tend to in�uence each other and thus become more similar).
Without access to the dynamic of the network and its properties, it is not
possible to di�erentiate those e�ects.



PAGERANK

Matrix interpretation
Principal eigenvector of the “Google Matrix”:
First, define matrix S as:

-Normalization by columns of A
-Columns with only 0 receives 1/n

-Finally, Gij = αSij + (1 − α)/n



PageRank - as Random Walk
Main idea: The PageRank computation can be interpreted as a Random Walk 
process with restart

Teleportation probability: the parameter α gives the probability that in the next step of 
the RW will follow a Markov process or with probability 1-α it will jump to a random node

Pagerank score of a node thus corresponds to the probability of this random walker to be on 
this node after an infinite number of hops.



PAGERANK

• Then how do Google rank when we do a research?

• Compute pagerank (using the power method for scalability)

• Create a subgraph of documents related to our topic

• Of course now it is certainly much more complex, but we don’t really know:   
“Most search engine development has gone on at companies with little publication of technical 
details. This causes search engine technology to remain largely a black art” [Page, Brin, 1997]



OTHERS

• Many other centralities have been proposed

• The problem is how to interpret them ?

• Can be used as supervised tool:
‣ Compute many centralities on all nodes
‣ Learn how to combine them to find chosen nodes
‣ Discover new similar nodes
‣ (roles in social networks, key elements in an infrastructure, …)
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� Nodes and Edges structural indices

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N � 1

X

v2V \u
`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.

Closeness(u) =
N � 1

P
v2V \u `u,v

Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.

Harmonic(u) =
1

N � 1

X

v2V \u

1

`u,v

Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
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this graph. Its formulation is easily understood as the inverse of the farness.
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Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
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in which A
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:
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�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:
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with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph
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Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.
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Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as
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in which A
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:
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with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
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Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.
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as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.
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this graph. Its formulation is easily understood as the inverse of the farness.
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the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as
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in which A
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm
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Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as

CKatz(u) =
1X

`=1

NX

v=1

↵
`(A`)vu

in which A
`

vu
means the number of paths of length ` from v to u, and

↵ <
1
�i

a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
T )�1 � I)

�!
I

Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
X

s 6=v 6=t2V

�st(v)

�st

with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .
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Try again :)

Degree
Betweenness

Closeness
Eigenvector



Try again :)

A: Degree
B:Closeness

C: Betweenness
D: Eigenvector



Caveats of centrality measures

• Each centrality measures is a proxy of an 
underlying network process

• If this process is irrelevant for the actual network 
than the centrality measure makes no sense

• E.g. If information does not pass via the 
shortest paths in a network, betweenness 
centrality is irrelevant



Node similarity

Similarity between nodes based on their neighborhood

How much two nodes are similarly connected

• What does it mean that they have 3 neighbours in common?

• It is relative to their degree (different meaning for nodes with 3 or 100 neighbours)

➡Normalisation to penalise nodes with small degrees

We can define it using existing measures:

• Cosine Similarity

• Pearson Coefficient



Cosine similarity
Number of common neighbours:

3

Node similarity

» number of common neighbours

nij =
X

k

AikAkj

» What does it mean to have 3 vertices in 
common? 

» Need a normalisation.

Cosine similarity between two non-zero vectors:

5

Cosine similarity

» number of common neighbours

nij =
X

k

AikAkj

» Use varying degree of the nodes  
» cosine / Salton’s cosine

x.y = |x||y| cos ✓

cos ✓ =
x.y

|x||y|

Vectors are the rows of adjacency matrix

6

Cosine similarity
» number of common neighbours

�ij = cos ✓ =

P
k AikAkj

pP
k A

2
ik

qP
k A

2
jk

Ai,j = 0/1

A2
ij = Aij

X

k

A2
ik =

X

k

Ajk = ki

with properties for adjacency vectors as
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ik =

X
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Cosine similarity
» number of common neighbours

�ij = cos ✓ =

P
k AikAkj

pP
k A

2
ik

qP
k A

2
jk

Ai,j = 0/1

A2
ij = Aij

X

k

A2
ik =

X

k

Ajk = ki

Cosine similarity:

7

Cosine similarity
» number of common neighbours

�ij =

P
k AikAkjp
kikj

=
nijp
kikj

» divided by the geometric mean of their degree

Number of common 
neighbours normalised 
by the geometric mean 
of their degrees

∑
k

A2
ik = ∑

k

Aik = ki



Pearson coefficient

12

=
X

k

(Aik � hAii)(Ajk � hAji)

» n times the cov(A_i , A_j) of two rows 
» normalize the cov by the cosine so that max value 

is 1

rij =
cov(Ai, AJ)

�i�J

=

P
k(Aik � hAii)(Ajk � hAji)pP

k(Aik � hAii)2
pP

k(Ajk � hAji)2rij =
cov(Ai, Aj)

σiσj

cov: covariance, expected product of deviations from individual expected values
: std deviation, square root of the expected squared deviation from the meanσ

Correlation between rows of the adjacency matrix

• r(i,j)=0 - if the number of common neighbours exactly as many as we 
would expect by chance

• r(i,j)>0 - if nodes have more neighbours in common than expected

• r(i,j)<0 - if nodes have fewer neighbours in common than expected

Properties

10

Pearson coefficient
» Actual number in common  minus expected 

number
X

k

AikAjk � kikj
n

=
X

k

AikAjk � 1

n

X

k

Aik

X

l

Ajl

=
X

k

AikAjk � nhAiihAji

=
X

k

(AikAjk � hAiihAji)

=
X

k

(Aik � hAii)(Ajk � hAji)

11

=
X

k

(Aik � hAii)(Ajk � hAji)

» 0 
» number in common exactly what we would 

expect 
» > 0 

» i & j have more neighbours in common 
» < 0 

» i & j have fewer neighbours in common

=

Intuition, numerator: Number of common neighbours compared to the 
expected number of common neighbours



ASSORTATIVITY - HOMOPHILY



Homophily - Assortative mixing
"birds of a feather flock together"
• Property of (social) networks that nodes of the same attitude tends to be connected with 

a higher probability than expected

• It appears as correlation between vertex properties of x(i) and x(j) if (i,j)∈E

Vertex properties
• age
• gender
• nationality
• political beliefs
• socioeconomic status
• habitual place
• obesity
• …

? Connected people of the same political opinion are connected because they were a priori similar 
(homophily) or they become similar after they become connected (social influence)?

• Homophily can be a link creation mechanism 
or consequence of social influence (and it is 
difficult to distinguish)

Highschool network 

colored by race (J Moody)



Homophily - Assortative mixing

• Contrary of homophily, where dissimilar nodes are tend to be connected

Dissasortative mixing

Examples
• Sexual networks
• Predator - prey 

ecological networks



Homophily - Assortative mixing
To quantify homophily Discrete properties

2

women
black hispanic white other ai

m
en

black 0.258 0.016 0.035 0.013 0.323
hispanic 0.012 0.157 0.058 0.019 0.247

white 0.013 0.023 0.306 0.035 0.377
other 0.005 0.007 0.024 0.016 0.053

bi 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix eij and the values of ai and
bi for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

effect on network structure and behavior. The outline
of the paper is as follows. In Section II we study the
effects of assortative mixing by discrete characteristics
such as language or race. In Section III we study mixing
by scalar properties such as age and particularly vertex
degree; since degree is itself a property of the network
topology, the latter type of mixing leads to some novel
network structures not seen with other types. In Sec-
tion IV we give our conclusions. A preliminary report of
some of the results in this paper has appeared previously
as Ref. 22.

II. DISCRETE CHARACTERISTICS

In this section we consider assortative mixing accord-
ing to discrete or enumerative vertex characteristics.
Such mixing can be characterized by a quantity eij , which
we define to be the fraction of edges in a network that
connect a vertex of type i to one of type j. On an undi-
rected network this quantity is symmetric in its indices
eij = eji, while on directed networks or bipartite net-
works it may be asymmetric. It satisfies the sum rules

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj , (1)

where ai and bi are the fraction of each type of end of an
edge that is attached to vertices of type i. On undirected
graphs, where the ends of edges are all of the same type,
ai = bi [75].

For example, Table I shows data on the values of eij

for mixing by race among sexual partners in a 1992 study
carried out in the city of San Francisco, California [23].
This part of the study focused on heterosexuals, so this
is a bipartite network, the two vertex types representing
men and women, with edges running only between ver-
tices of unlike types. This means that in this case the
ends of an edge are different and the matrix eij is asym-
metric. As the table shows, mixing is highly assortative
in this network, with individuals strongly preferring part-
ners from the same group as themselves.

A. Measuring discrete assortative mixing

To quantify the level of assortative mixing in a network
we define an assortativity coefficient thus:

r =

∑

i eii −
∑

i aibi

1 −
∑

i aibi
=

Tr e − ‖ e2 ‖

1 − ‖ e2 ‖
, (2)

where e is the matrix whose elements are eij and ‖x ‖
means the sum of all elements of the matrix x. This
formula gives r = 0 when there is no assortative mixing,
since eij = aibj in that case, and r = 1 when there is
perfect assortative mixing and

∑

i eii = 1. If the network
is perfectly disassortative, i.e., every edge connects two
vertices of different types, then r is negative and has the
value

rmin = −

∑

i aibi

1 −
∑

i aibi
, (3)

which lies in general in the range −1 ≤ r < 0. One
might ask what this value signifies. Why do we not sim-
ply have r = −1 for a perfectly disassortative network?
The answer is that a perfectly disassortative network is
normally closer to a randomly mixed network than is a
perfectly assortative network. When there are several dif-
ferent vertex types (e.g., four in the case shown in Table I)
then random mixing will most often pair unlike vertices,
so that the network appears to be mostly disassortative.
Therefore it is appropriate that the value r = 0 for the
random network should be closer to that for the perfectly
disassortative network than for the perfectly assortative
one.

A quantity with properties similar to those of Eq. (2)
has been proposed previously by Gupta et al. [25]. How-
ever the definition of Gupta et al. gives misleading results
in certain situations, such as, for example, when one type
of vertex is much less numerous than other types, as is the
case in Table I. In this paper therefore we use Eq. (2),
which doesn’t suffer from this problem. The difference
between the two measures is discussed in more detail in
Appendix A.

Using the values from Table I in Eq. (2), we find that
r = 0.621 for the network of sexual partnerships, imply-
ing, as we observed already, that this network is strongly
assortative by race—individuals draw their partners from
their own group far more often than one would expect on
the basis of pure chance.

As another example of the application of Eq. (2), con-
sider the network studied by Girvan and Newman [16]
representing the timetable of American college football
games, in which vertices represent universities and col-
leges, and edges represent regular season games between
teams during the year in question. Colleges are grouped
into “conferences,” which are defined primarily by geog-
raphy, and teams normally play more often against other
teams in their own conference than they do against teams
from other conferences. In other words, there should be
assortative mixing of colleges by conference in the sched-
ule network. For the 2000 season schedule studied in
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m
en
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hispanic 0.012 0.157 0.058 0.019 0.247
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bi 0.289 0.204 0.423 0.084

TABLE I: The mixing matrix eij and the values of ai and
bi for sexual partnerships in the study of Catania et al. [23].
After Morris [24].

effect on network structure and behavior. The outline
of the paper is as follows. In Section II we study the
effects of assortative mixing by discrete characteristics
such as language or race. In Section III we study mixing
by scalar properties such as age and particularly vertex
degree; since degree is itself a property of the network
topology, the latter type of mixing leads to some novel
network structures not seen with other types. In Sec-
tion IV we give our conclusions. A preliminary report of
some of the results in this paper has appeared previously
as Ref. 22.

II. DISCRETE CHARACTERISTICS

In this section we consider assortative mixing accord-
ing to discrete or enumerative vertex characteristics.
Such mixing can be characterized by a quantity eij , which
we define to be the fraction of edges in a network that
connect a vertex of type i to one of type j. On an undi-
rected network this quantity is symmetric in its indices
eij = eji, while on directed networks or bipartite net-
works it may be asymmetric. It satisfies the sum rules

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj , (1)

where ai and bi are the fraction of each type of end of an
edge that is attached to vertices of type i. On undirected
graphs, where the ends of edges are all of the same type,
ai = bi [75].

For example, Table I shows data on the values of eij

for mixing by race among sexual partners in a 1992 study
carried out in the city of San Francisco, California [23].
This part of the study focused on heterosexuals, so this
is a bipartite network, the two vertex types representing
men and women, with edges running only between ver-
tices of unlike types. This means that in this case the
ends of an edge are different and the matrix eij is asym-
metric. As the table shows, mixing is highly assortative
in this network, with individuals strongly preferring part-
ners from the same group as themselves.

A. Measuring discrete assortative mixing

To quantify the level of assortative mixing in a network
we define an assortativity coefficient thus:

r =

∑

i eii −
∑

i aibi

1 −
∑

i aibi
=

Tr e − ‖ e2 ‖

1 − ‖ e2 ‖
, (2)

where e is the matrix whose elements are eij and ‖x ‖
means the sum of all elements of the matrix x. This
formula gives r = 0 when there is no assortative mixing,
since eij = aibj in that case, and r = 1 when there is
perfect assortative mixing and

∑

i eii = 1. If the network
is perfectly disassortative, i.e., every edge connects two
vertices of different types, then r is negative and has the
value

rmin = −

∑

i aibi

1 −
∑

i aibi
, (3)

which lies in general in the range −1 ≤ r < 0. One
might ask what this value signifies. Why do we not sim-
ply have r = −1 for a perfectly disassortative network?
The answer is that a perfectly disassortative network is
normally closer to a randomly mixed network than is a
perfectly assortative network. When there are several dif-
ferent vertex types (e.g., four in the case shown in Table I)
then random mixing will most often pair unlike vertices,
so that the network appears to be mostly disassortative.
Therefore it is appropriate that the value r = 0 for the
random network should be closer to that for the perfectly
disassortative network than for the perfectly assortative
one.

A quantity with properties similar to those of Eq. (2)
has been proposed previously by Gupta et al. [25]. How-
ever the definition of Gupta et al. gives misleading results
in certain situations, such as, for example, when one type
of vertex is much less numerous than other types, as is the
case in Table I. In this paper therefore we use Eq. (2),
which doesn’t suffer from this problem. The difference
between the two measures is discussed in more detail in
Appendix A.

Using the values from Table I in Eq. (2), we find that
r = 0.621 for the network of sexual partnerships, imply-
ing, as we observed already, that this network is strongly
assortative by race—individuals draw their partners from
their own group far more often than one would expect on
the basis of pure chance.

As another example of the application of Eq. (2), con-
sider the network studied by Girvan and Newman [16]
representing the timetable of American college football
games, in which vertices represent universities and col-
leges, and edges represent regular season games between
teams during the year in question. Colleges are grouped
into “conferences,” which are defined primarily by geog-
raphy, and teams normally play more often against other
teams in their own conference than they do against teams
from other conferences. In other words, there should be
assortative mixing of colleges by conference in the sched-
ule network. For the 2000 season schedule studied in

No assortative mixing : r=0 ( )
Perfectly assortative: r=1

Perfectly disassortative: -1<r<0

eij = aibj



Homophily - Assortative mixing
To quantify homophily Scalar properties

r=0, no assortative mixing,
r>0 assortative mixing,
r<0 disassortative mixing
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

5

10 20 30 40 50

age of husband  [years]

10

20

30

40

ag
e 

of
 w

ife
  [

ye
ar

s]

-5 0 5 10 15 20 25

age difference  [years]

0

50

100

150

200

nu
m

be
r

FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we
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In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑
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exy = 1,
∑
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exy = ax,
∑
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exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

Pearson correlation coefficient of properties
at both extremities of edges

: fraction of edges joining nodes with values x and yexy



Degree-degree correlation

• A particular type of application is the degree correlation:
• Are important nodes connected to other important nodes with a higher probability than 

expected?
• The degree can be used as any other scalar property

PEARSON-CORRELATION 
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normalization: 

� 

σr
2 =max jk(e jk − q jqk ) = jk(qkδ jk − q jqk )

jk
∑

jk
∑

� 

−1≤ r ≤1

If there are degree correlations, ejk will differ from qjqk. The magnitude of the correlation is 
captured by <jk>-<j><k> difference, which is:  

� 

jk(e jk − q jqk )
jk
∑

<jk>-<j><k> is expected to be:  
 positive for assortative networks,  
 zero for neutral networks, 
 negative for dissasortative networks  

To compare different networks, we should normalize it with its maximum value; the 
maximum is reached for a perfectly assortative network, i.e. ejk=qk�jk  

� 

r =
jk(e jk − q jqk )

jk
∑

σr
2

� 

r ≤ 0 disassortative 
neutral 
assortative 

� 

r = 0

� 

r ≥ 0

7

network type size n assortativity r error σr ref.

social































physics coauthorship undirected 52 909 0.363 0.002 a
biology coauthorship undirected 1 520 251 0.127 0.0004 a
mathematics coauthorship undirected 253 339 0.120 0.002 b
film actor collaborations undirected 449 913 0.208 0.0002 c
company directors undirected 7 673 0.276 0.004 d
student relationships undirected 573 −0.029 0.037 e
email address books directed 16 881 0.092 0.004 f

technological











power grid undirected 4 941 −0.003 0.013 g
Internet undirected 10 697 −0.189 0.002 h
World-Wide Web directed 269 504 −0.067 0.0002 i
software dependencies directed 3 162 −0.016 0.020 j

biological















protein interactions undirected 2 115 −0.156 0.010 k
metabolic network undirected 765 −0.240 0.007 l
neural network directed 307 −0.226 0.016 m
marine food web directed 134 −0.263 0.037 n
freshwater food web directed 92 −0.326 0.031 o

TABLE II: Size n, degree assortativity coefficient r, and expected error σr on the assortativity, for a number of social,
technological, and biological networks, both directed and undirected. Social networks: coauthorship networks of (a) physicists
and biologists [43] and (b) mathematicians [44], in which authors are connected if they have coauthored one or more articles
in learned journals; (c) collaborations of film actors in which actors are connected if they have appeared together in one or
more movies [5, 7]; (d) directors of Fortune 1000 companies for 1999, in which two directors are connected if they sit on the
board of directors of the same company [45]; (e) romantic (not necessarily sexual) relationships between students at a US high
school [46]; (f) network of email address books of computer users on a large computer system, in which an edge from user A
to user B indicates that B appears in A’s address book [47]. Technological networks: (g) network of high voltage transmission
lines in the Western States Power Grid of the United States [5]; (h) network of direct peering relationships between autonomous
systems on the Internet, April 2001 [48]; (i) network of hyperlinks between pages in the World-Wide Web domain nd.edu, circa
1999 [49]; (j) network of dependencies between software packages in the GNU/Linux operating system, in which an edge from
package A to package B indicates that A relies on components of B for its operation. Biological networks: (k) protein–protein
interaction network in the yeast S. Cerevisiae [50]; (l) metabolic network of the bacterium E. Coli [51]; (m) neural network of
the nematode worm C. Elegans [5, 52]; tropic interactions between species in the food webs of (n) Ythan Estuary, Scotland [53]
and (o) Little Rock Lake, Wisconsin [54].

B. Models of assortative mixing by degree

In Ref. 22 we studied the ensemble of graphs that have
a specified value of the matrix ejk and solved exactly for
its average properties using generating function methods
similar to those of Section II B. We showed that the phase
transition at which a giant component first appears in
such networks occurs at a point given by det(I−m) = 0,
where m is the matrix with elements mjk = kejk/qj . One
can also calculate exactly the size of the giant component,
and the distribution of sizes of the small components be-
low the phase transition. While these developments are
mathematically elegant, however, their usefulness is lim-
ited by the fact that the generating functions involved
are rarely calculable in closed form for arbitrary speci-
fied ejk, and the determinant of the matrix I−m almost
never is. In this paper, therefore, we take an alternative
approach, making use of computer simulation.

We would like to generate on a computer a random
network having, for instance, a particular value of the
matrix ejk. (This also fixes the degree distribution, via
Eq. (23).) In Ref. 22 we discussed one possible way of
doing this using an algorithm similar that of Section II C.
One would draw edges from the desired distribution ejk

and then join the degree k ends randomly in groups of k
to create the network. (This algorithm has also been

discussed recently by Dorogovtsev et al. [40].) As we
pointed out, however, this algorithm is flawed because
in order to create a network without any dangling edges
the number of degree k ends must be a multiple of k for
all k. It is very unlikely that these constraints will be
satisfied by chance, and there does not appear to be any
simple way of arranging for them to be satisfied without
introducing bias into the ensemble of graphs. Instead,
therefore, we use a Monte Carlo sampling scheme which is
essentially equivalent to the Metropolis–Hastings method
widely used in the mathematical and social sciences for
generating model networks [55, 56]. The algorithm is as
follows.

1. Given the desired edge distribution ejk, we first
calculate the corresponding distribution of excess
degrees qk from Eq. (23), and then invert Eq. (22)
to find the degree distribution:

pk =
qk−1/k
∑

j qj−1/j
. (27)

Note that this equation cannot tell us how many
vertices there are of degree zero in the network.
This information is not contained in the edge dis-
tribution ejk since no edges connect to degree-zero
vertices, and so must be specified separately. On
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If there are no degree correlations, kannd(k) is independent of k. 

No degree 
correlations: 

� 

kannd (k) =
′ k ek ′ k 

′ k 
∑

ek ′ k 
′ k 
∑ =

′ k qkq ′ k 
′ k 
∑

qk

= ′ k q ′ k 
′ k 
∑ = ′ k k ' p(k')

< k >′ k 
∑ =

k 2

k

kannd (k): average degree of the first 
neighbors of nodes with degree k. 

� 

kannd
v =

4 + 3+ 3+1
4

� 

kannd (k) = ′ k P( ′ k | k)
′ k 
∑ =

′ k ek ′ k 
′ k 
∑

ek ′ k 
′ k 
∑

Average nearest-neighbour degree
• More detailed characterisation of degree-degree correlations
• kannd: average nearest neighbours degree 

• kannd can be written as: 

• where P(k’|k) is the conditional probability that an edge of a 
node with degree k points to a node with degree k’

R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. E 65, 066130 (2001)

• If there are no degree correlations:

• kannd is independent of k (nodes of any degrees should have the same 
nearest neighbors degree) 

• If the network is assortative knn(k) is a positive function
• If the network is disassortative knn(k) is a negative function 

kannd(k) = . . . =
⟨k2⟩
⟨k⟩


