Network Science Cheatsheet

Made by Remy Cazabet

Counting nodes and edges

T

Network descriptors - Paths

 ℓ_{\max} | Diameter: maximum *distance* between any pair of nodes. $\langle \ell \rangle$ | Average distance:

$$\langle \ell \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij}$$

1 Network basics

Networks:	Graph notation
Graph notation : G	= (V, E)
V	set of vertices/nodes.
E	set of edges/links.
$u \in V$	a node.
$(u, v) \in E$	an edge.

Network - Graph notation	
Graph	Graph notation
	$G = (V, E)$ $V = \{1, 2, 3, 4, 5, 6\}$ $E = \{(1, 2), (1, 6),$ $(1, 5), (2, 4), (2, 3), (2, 5),$ $(2, 6), (6, 5), (5, 5), (4, 3)\}$

Node-Edge description Neighbourhood of *u*, nodes sharing a link with *u*. N_u **Degree** of u, number of neighbors $|N_u|$. k_u N_u^{out} **Successors** of u, nodes such as $(u, v) \in E$ in a directed graph N_u^{in} **Predecessors** of u, nodes such as $(v, u) \in E$ in a directed graph k_u^{out} **Out-degree** of u, number of outgoing edges $|N_u^{out}|$. k^{in} **In-degree** of u, number of incoming edges $|N_{u}^{in}|$ Weight of edge (u, v). $w_{u,v}$ **Strength** of u, sum of weights of adjacent edges, $s_u =$ s_u $\sum_{v} w_{uv}$.

Netw	ork descriptors - Nodes/Edges
$\langle k angle$	Average degree: Real networks are sparse, i.e., typicall $\langle k\rangle \ll n.$ Increases slowly with network size, e.g., $d \sim \log(m)$
	$\langle k angle = rac{2m}{n}$

d/d(G) **Density**: Fraction of pairs of nodes connected by an edge in G.

 $d = L/L_{\rm max}$

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., **1.2.1.6.5** is a valid walk) Path: a walk in which each node is distinct. Path length: number of edges encountered in a path Weighted Path length: Sum of the weights of edges on a path Shortest path: The shortest path between nodes u, v is a path of minimal path length. Often it is not unique.

Weighted Shortest path: path of minimal weighted path length. $\ell_{u,v}$: Distance: The distance between nodes u, v is the length of the shortest path

Degree distribution

The degree distribution is considered an important network property. They can follow two typical distributions:

- Bell-curved shaped (Normal/Poisson/Binomial)
- Scale-free, also called *long-tail* or *Power-law*

A Bell-curved distribution has a *typical scale*: as human height, it is centered on an average value. A Scale-free distribution has no typical scale: as human wealth, its average value is not representative, low values (degrees) are the most frequent, while a few very large values can be found (hubs, large degree nodes).

Subgraphs

subgraph H(W): subset of nodes W of a graph G = (V, E) and edges connecting them in G, i.e., subgraph $H(W) = (W, E'), W \subset V, (u, v) \in E' \iff u, v \in W \land (u, v) \in E$ **Clique**: subgraph with d = 1**Triangle**: clique of size 3 **Connected component**: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph **Strongly Connected component**: In directed networks, a subgraph in which any two vertices are connected to each other by paths **Weakly Connected component**: In directed networks, a subgraph in which

Weakly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

Types of networks

Simple graph: Edges can only exist or not exist between each pair of node. **Directed graph**: Edges have a direction: $(u, v) \in V$ does not imply $(v, u) \in$

Weighted graph: A weight is associated to every edge.

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Triangles counting

 δ_u - Triads of u: number of triangles containing node u

 Δ - **Number of triangles in the graph** total number of triangles in the graph, $\Delta = \frac{1}{3} \sum_{u \in V} \delta_u.$

Each triangle in the graph is counted as a triad once by each of its nodes.

 δ^{\max}_u - **Triad potential of** *u*: maximum number of triangles that could exist around node *u*, given its degree: $\delta^{\max}_u = \tau(u) = \binom{k_i}{2}$ Δ^{\max} - **Triangle potential of G**: maximum number of triangles that could exist in the graph, given its degree distribution: $\Delta^{\max} = \frac{1}{3} \sum_{u \in V} \delta^{\max}(u)$

Cores and Shells

Many real networks are known to have a **core-periphery** structure, i.e., there is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.

k-core: The k-core (core of order k) of G(V, E) is the largest subgraph H(C) such as all nodes have at least a degree k, i.e., $\forall u \in C, k_u^H \leq k$, with k_u^H the degree of node u in subgraph H.

coreness: A vertex u has coreness k if it belongs to the k-core but not to the k + 1-core.

c-shell: all vertices whose coreness is exactly *c*.

Clustering Coefficents - Triadic closure

The clustering coefficient is a measure of the triadic closure of a network of a node neighborhood. The triadic closure is a notion coming from social network analysis, often summarized by the aphorism *The friends of my friends are my friends*.

 C_u - **Node clustering coefficient**: density of the subgraph induced by the neighborhood of u, $C_u = d(H(N_u)$. Also interpreted as the fraction of all possible triangles in N_u that exist, $\frac{\delta u}{\delta \max}$

 $\langle C \rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C} = \frac{1}{N} \sum_{u \in V} C_u$.

Be careful when interpreting this value, since all nodes contributes equally, irrespectively of their

degree, and that low degree nodes tend to be much more frequent than hubs, and their C value

is very sensitive, i.e., for a node u of degree 2, $C_u \,\in\, 0\,,\, 1,$ while nodes of higher degrees tend

to have more contrasted scores

 C^g - Global clustering coefficient: Fraction of all possible triangles in the graph that do exist, $C^g=\frac{3\Delta}{3\mathrm{Max}}$

Vocabulary

Singleton: node with a degree k=0 Hub: node u with $k_u \gg \langle k \rangle$

Bridge: Edge which, when removed, split a connected component in two. **Self-loop**: Edge which connects a node to itself.

Complete network: $L = L_{max}$ Sparse network: $d \ll 1, L \ll L_{max}$ Connected Graph: Graph composed of a single connected component

Small World Network

A network is said to have the **small world** property when it has some structural properties. The notion is not quantitatively defined, but two properties are required:

- Average distance must be short, i.e., $\langle \ell \rangle \approx \log(N)$
- Clustering coefficient must be high, i.e., much larger than in a random network , e.g., $C^g \gg d$, with d the network density

This property is considered characteristic of *real* networks, as opposition to random networks. It is believed to be associated to particular properties (robustness to failures, efficient information flow, etc.), and to be the consequence of emergent mechanisms typical of *complex systems*.