Network Science
 Cheatsheet

-

Made by Remy Cazabet

1 Network basics

Networks: Graph notation

Graph notation: $G=(V, E)$
V
E
$u \in V$

$(u, v) \in E$$|$| set of vertices/nodes. |
| :--- |
| set of edges/links. |
| a node. |
| an edge. |

Network - Graph notation

Graph

Graph notation
$G=(V, E)$
$V=\{1,2,3,4,5,6\}$
$E=\{(1,2),(1,6)$
$(1,5),(2,4),(2,3),(2,5)$
$(2,6),(6,5),(5,5),(4,3)\}$

Types of networks

Simple graph: Edges can only exist or not exist between each pair of node Directed graph: Edges have a direction: $(u, v) \in V$ does not imply $(v, u) \in$ Weighted graph: A weight is associated to every edge

Other types of graphs (multigraphs, multipartite, hypergraphs, etc.) are introduced in sheet ??

Counting nodes and edges

```
N/n | size: number of nodes |V|
    N/n
    L max 
        Undirected network: (
    Directed network: ( 
```


Node-Edge description

N_{u}	$\left.\begin{array}{l}\text { Neighbourhood of } u \text {, nodes sharing a link with } u \\ \text { D }\end{array}\right)$
k_{u}	

k_{u}	Degree of u, number of neighbors $\left\|N_{u}\right\|$.

N_{u} out	Successors of u, nodes such as $(u, v) \in E$ in a directed
$N_{u}^{\text {out }}$	

 \(N_{u}^{i n} \quad \begin{aligned} & \text { graph } \\ & \text { Predecessors of } u \text {, nodes such as }(v, u) \in E \text { in a directed }\end{aligned}\)
 Predece
 graph

$k_{u}^{\text {out }}$	Oraph
$N_{u n}$	Out-degree of u, number of outgoing edges $\left\|N_{u}^{\text {out }}\right\|$.

 \(k_{u}^{i n} \quad\) In-degree of \(u\), number of incoming edges \(\left|N_{u}^{i n}\right|\)
 \begin{tabular}{l|l}
 $w_{u, v}$ \& Weight of edge (u, v).

s_{u} \& Strength of u, sum of weights of adjacent edges, $s_{u}=$
\end{tabular}

 \(\sum_{v} w_{u v}\).

Network descriptors - Nodes/Edges

$\langle k\rangle \quad \begin{aligned} & \text { Average degree: Real networks are sparse, i.e., typically } \\ & \langle k\rangle \ll n . \text { Increases slowly with network size, e.g., } d \sim\end{aligned}$ $\langle k\rangle \ll n$. Increases slowly with network size, e.g., $d \sim$ $\log (m)$

$$
\langle k\rangle=\frac{2 m}{n}
$$

$d / d(G)$
Density: Fraction of pairs of nodes connected by an edge in

$$
d=L / L_{\max }
$$

Paths - Walks - Distance

Walk: Sequences of adjacent edges or nodes (e.g., 1.2.1.6.5 is a valid walk) Path: a walk in which each node is distinct.
Path length number of edges encountered in a path
Path length: number of edges encountered in a path
Weighted Path length: Sum of the weights of edges on a path
Shortest path: The shortest path between nodes u, v is a path of minimal path length. Often it is not unique.
Weighted Shortest path: path of minimal weighted path length.
$\ell_{u, v}$: Distance: The distance between nodes u, v is the length of the short$\ell_{u, v}$: Distan
est path

Network descriptors - Paths

| $\ell_{\max }$ | Diameter: maximum distance between any pair of nodes |
| :--- | :--- | $\langle\ell\rangle \quad$ Average distance:

$$
\langle\ell\rangle=\frac{1}{n(n-1)} \sum_{i \neq j} d_{i j}
$$

Degree distribution

The degree distribution is considered an important network property. They can follow two typical distributions:

Bell-curved shaped (Normal/Poisson/Binomial)
Scale-free, also called long-tail or Power-law
A Bell-curved distribution has a typical scale: as human height, it is centered on an average value. A Scale-free distribution has no typical scale: as huthe most frequent, while a few very large values can be found (hubs, large degree nodes).

Subgraphs

subgraph $H(W)$: subset of nodes W of a graph $G=(V, E)$ and edges connecting them in G, i.e., subgraph $H(W)=\left(W, E^{\prime}\right), W \subset V,(u, v) \in$ $E^{\prime} \Longleftrightarrow u, v \in W \wedge(u, v) \in E$
Clique: subgraph with $d=$
Triangle: clique of size 3
Connected component: a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertros in the supergraph
trongly Connected component: In directed networks, a subgraph in which any two vertices are connected to each other by paths
符y two vertices are component: In directed networks, a subgraph in which any two vertices are connected to each other by paths if we disregard directions

Triangles counting

δ_{u} - Triads of u : number of triangles containing node u
Δ-Number of triangles in the graph total number of triangles in the graph $\Delta=\frac{1}{3} \sum_{u \in V} \delta_{u}$.
Each triangle in the graph is counted as a triad once by each of its nodes.
$\delta_{u}^{\max }$ - Triad potential of u : maximum number of triangles that could exist around node u, given its degree: $\delta_{u}^{\max }=\tau(u)=\binom{k_{i}}{2}$
$\Delta^{\max }$ - Triangle potential of G : maximum number of triangles that could exist in the graph, given its degree distribution: $\Delta^{\max }=\frac{1}{3} \sum_{u \in V} \delta^{\max }(u)$

Clustering Coefficents - Triadic closure

The clustering coefficient is a measure of the triadic closure of a network of a node neighborhood. The triadic closure is a notion coming from social network analysis, often summarized by the aphorism The friends of my friends are my friends.
C_{u} - Node clustering coefficient: density of the subgraph induced by the neighborhood of $u, C_{u}=d\left(H\left(N_{u}\right)\right.$. Also interpreted as the fraction of all possible triangles in N_{u} that exist, $\frac{\delta_{u}}{\delta{ }^{m a x}}$
$\langle C\rangle$ - Average clustering coefficient: Average clustering coefficient of all nodes in the graph, $\bar{C}=\frac{1}{N} \sum_{u \in V} C_{u}$.

Be careful when interpreting this value, since all nodes contributes equally. irespectively of their degree, and that low degree nodes tend to be much more frequent than hubs, and their C value is very sensitive, i.e. for a node u of degree $2 . C_{u} \in 0,1$, while nodes of higher degrees tend to have more contrasted scores.
C^{g} - Global clustering coefficient: Fraction of all possible triangles in the graph that do exist, $C^{g}=\frac{3 \Delta}{\Delta^{\text {max }}}$

Cores and Shells

Many real networks are known to have a core-periphery structure, i.e. here is a densely connected core at its center and a more peripheral zone in which nodes are loosely connected between them and to the core.
k-core: The k-core (core of order k) of $G(V, E)$ is the largest subgraph $H(C)$ such as all nodes have at least a degree k, i.e., $\forall u \in C, k_{u}^{H} \leq k$ with k_{u}^{H} the degree of node u in subgraph H
coreness: A vertex u has coreness k if it belongs to the k-core but not to the $k+1$-core
c-shell: all vertices whose coreness is exactly c.

Vocabulary

Singleton: node with a degree $k=0$
Hub: node u with $k_{u} \gg\langle k\rangle$
Bridge: Edge which, when removed, split a connected component in two Self-loop: Edge which connects a node to itself.

Complete network: $L=L_{\text {max }}$
Connected Graph: Graph composed of a single connected component

Small World Network
A network is said to have the small world property when it has some structural properties. The notion is not quantitatively defined, but two propertie are required:

- Average distance must be short, i.e., $\langle\ell\rangle \approx \log (N)$
- Clustering coefficient must be high, i.e., much larger than in a random network, e.g., $C^{g} \gg d$, with d the network density
This property is considered characteristic of real networks, as opposition to random networks. It is believed to be associated to particular properties (robustness to failures, efficient information flow, etc.), and to be the consequence of emergent mechanisms typical of complex systems.

