Network Science
 Cheatsheet

at université DE LYON

2 Networks as matrices

Matrices in short

Matrices are mathematical objects that can be thought as tables of numMatrices are mathematical objects that can be thought as tables of num-
bers. The size of matrix is expressed as $m \times n$, for a matrix with m rows and n columns. The order (row/column) is important
$M_{i j}$ is a notation representing the element on row m and column j.

A - Adjacency matrix

The most natural way to represent a graph as a matrix is called the Adjacency matrix A. It is defined as a square matrix, such as the number of rows (and the number of columns) is equal to the number of nodes N in the graph. Nodes of the graph are numbered from 1 to N, and there is an edge between nodes i and j if the corresponding position of the matrix $A_{i j}$ is not 0

A value on the diagonal means that the corresponding node has a self-loop
the graph is undirected, the matrix is symmetric: $A_{i j}=A_{j i}$ for any i, j.
In an unweighted network, and edge is represented by the value 1. In a weighted network, the value $A_{i j}$ represents the weight of the edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpretations and are frequently used

Multiplying A by itself allows to know the number of walks of a given length that exist between any pair of nodes: $A_{i j}^{2}$ corresponds to the number of walks of length 2 from node i to node $j, A_{i j}^{3}$ to the number of walks of length 3 , etc. Multiplying A by a column vector W of length $1 \times N$ can be thought as setting the i th value of the vector to the i th node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector with N elements, the i th element corresponding to the sum of the values of its neighbors in W. This is convenient when working with random walks or diffusion phenomenon

Spectral properties of A

Spectral Graph Theory is a whole field in itself, and beyond the scope of this class. A few elements for those with a linear algebra background

- The adjacency matrix of an undirected simple graph is symmetric, and therefore has a complete set of real eigenvalues and an orthogonal eigenvector basis.
The set of eigenvalues of a graph is the spectrum of the graph.
Eigenvalues are denoted as $\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{n}$
The largest eigenvalue λ_{0} lies between the average and maximum degrees
The number of closed walks of length k in G equals $\sum_{i}^{n}=0 \lambda_{i}^{k}$
A graph is bipartite if and only if its spectrum is symmetric (i.e., if λ is an eigenvalue, then so is $-\lambda$
If G is connected, then the diameter of G is strictly less than its number of distinct eigenvalues

Graph Laplacian

The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Adjacency matrix, often used in Graph theory and Spectral Graph Theory It is defined as $D-A$, with D the Degree matrix of the graph, defined as a $N \times N$ matrix with $D_{i i}=k_{i}$ and zeros everywhere else

Intuitively, Laplace operator is a generalization of the second derivative, and is defined in discrete situations, for each value, as the sum of differences between the value and its "neighbors". e.g., in time, the $2^{\text {nd }}$ derivative accelerapicture it's the diffe between current speed and previous speed. In a B\&W greylevel of 4 or 8 closest pixels, and perform edge detection. On a graph, with W a column vector representing values on nodes, $L W$ computes for each node the difference to neighbors.

Spectral properties of L

Eigenvalues of the Laplacian have many applications, such as spectral clsu tering, graph matching, embedding, etc. Assuming G undirected with eigen values $\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \ldots \lambda_{n}$, here are some interesting properties:

- The smallest eigenvalue λ_{i} equals 0

The number of O eigenvalues gives the number of connected components

Random Walk matrix

Another useful matrix of a graph is the Random Walk Transition Matrix R derstool as normalized version of the adjacency matrix. $R_{i j}$ can be un to j.

Matrix notation - Example

A-Adjacency Mat
$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0\end{array}\right)$

D - Degree Matrix

$\left(\begin{array}{llllll}3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$

A^{2}

Random W. mat.

$\left(\begin{array}{cccccc}0 & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{5} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{5} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{5} & 0 & 0 & \frac{1}{4} & 0\end{array}\right)$

