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� Networks as matrices

Matrices in short
Matrices are mathematical objects that can be thought as tables of num-
bers. The size of a matrix is expressed as m ⇥ n, for a matrix with m rows
and n columns. The order (row/column) is important.
Mij is a notation representing the element on rowm and column j .

A - Adjacency matrix
The most natural way to represent a graph as a matrix is called the Adja-
cency matrix A. It is de�ned as a square matrix, such as the number of
rows (and the number of columns) is equal to the number of nodes N in
the graph. Nodes of the graph are numbered from � to N , and there is an
edge between nodes i and j if the corresponding position of thematrixAij

is not 0.

• A value on the diagonal means that the corresponding node has a
self-loop

• the graph is undirected, thematrix is symmetric: Aij = Aji for any
i, j .

• In an unweighted network, and edge is represented by the value 1.

• In a weighted network, the value Aij represents the weight of the
edge (i, j)

Typical operations on A

Some operations on Adjacency matrices have straightforward interpreta-
tions and are frequently used

MultiplyingAby itself allows to know the number ofwalks of a given length
that exist between any pair of nodes: A2

ij
corresponds to the number of

walks of length � from node i to node j, A3
ij

to the number of walks of
length �, etc.

Multiplying A by a column vector W of length 1 ⇥ N can be thought as
setting the i th value of the vector to the ith node, and each node sending its
value to its neighbors (for undirected graphs). The result is a column vector
with N elements, the ith element corresponding to the sum of the values
of its neighbors in W . This is convenient when working with random walks
or di�usion phenomenon.

Spectral properties of A
Spectral Graph Theory is a whole �eld in itself, and beyond the scope of
this class. A few elements for those with a linear algebra background:

• The adjacency matrix of an undirected simple graph is symmetric,
and therefore has a complete set of real eigenvalues and an orthog-
onal eigenvector basis.

• The set of eigenvalues of a graph is the spectrum of the graph.

• Eigenvalues are denoted as �0  �1  �2  . . .�n

• The largest eigenvalue �0 lies between the average and maximum
degrees

• The number of closed walks of length k inG equals
P

n

i
= 0�k

i

• A graph is bipartite if and only if its spectrum is symmetric (i.e., if �
is an eigenvalue, then so is��

• IfG is connected, then the diameter ofG is strictly less than its num-
ber of distinct eigenvalues

Graph Laplacian
The Graph Laplacian, or Laplacian Matrix of a graph is a variant of the Ad-
jacency matrix, often used in Graph theory and Spectral Graph Theory.
It is de�ned as D � A, with D the Degree matrix of the graph, de�ned as a
N ⇥ N matrix withDii = ki and zeros everywhere else.

Intuitively, Laplace operator is a generalization of the second derivative, and
is de�ned in discrete situations, for each value, as the sum of di�erences be-
tween the value and its "neighbors". e.g., in time, the �nd derivative accelera-
tion is the di�erence between current speed and previous speed. In a B&W
picture, it’s the di�erence between the greylevel on current pixel and the
greylevel of � or � closest pixels, and perform edge detection. On a graph,
with W a column vector representing values on nodes, LW computes for
each node the di�erence to neighbors.

Spectral properties of L
Eigenvalues of the Laplacian havemany applications, such as spectral clsu-
tering, graph matching, embedding, etc. AssumingG undirected with eigen-
values �0  �1  �2  . . .�n , here are some interesting properties:

• The smallest eigenvalue �i equals �

• The number of � eigenvalues gives the number of connected com-
ponents

RandomWalk matrix
Another useful matrix of a graph is the RandomWalk Transition Matrix R.
It is the column normalized version of the adjacency matrix. Rij can be un-
derstood as the probability for a random walker located on node i to move
to j .

Matrix notation - Example
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A - AdjacencyMat.
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0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 0 0
0 1 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 0
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D - Degree Matrix
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3 0 0 0 0 0
0 5 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 3
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L - Laplacian
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3 �1 0 0 �1 �1
�1 5 �1 �1 �1 �1
0 �1 2 �1 0 0
0 �1 �1 2 0 0
�1 �1 0 0 4 �1
�1 �1 0 0 �1 3
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3 2 1 1 3 2
2 5 1 1 3 2
1 1 2 1 1 1
1 1 1 2 1 1
3 3 1 1 4 3
2 2 1 1 3 3
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