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� Nodes and Edges structural indices,
neighborhoods similarity

Node Structural indices
Node structural indices, often called Node centrality, re�ect how a node is
characteristic of a given structural property. This is often summarized as
a measure of the node importance, however importance and centrality are
subjective/qualitative notions. Thus a centrality, despite its name, do not
necessarily measure how central a node is, but rather how its position in the
graph is typical of the property captured by this index.

Degree Centrality
Degree centrality is the most straighforward centrality. It can be interpreted
as a measure of importance, of popularity, e.g., the more friends I have in a
social network, the more important I am in this network.

Farness - Closeness - Harmonic centrality
The closeness of a nodemeasures how close a node is from all other nodes,
in term of shortest paths. To interpret it, we canmake a parallel with a circle:
the point which is the closest to all the other points of the circle is its center.
The node of highest closeness is the equivalent of the center of the circle for
this graph. Its formulation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph
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Closeness: Inverse of the farness, i.e., how close the node is to all other
nodes in term of shortest paths.
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Harmonic centrality: A variant of the closeness de�ned as the average of
the inverse of distance to all other nodes (Harmonic mean). Well de�ned
on disconnected network with 1

1 = 0. Its interpretation is the same as the
closeness.
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Clustering Coe�cient
This score, already de�ned, measure the triadic closure of a node. A high
score is often interpreted as being well embedded in a particular commu-
nity (friends of my friends aremy friends because we all belong to the same
group), a low score can be typical of a bridge node, e.g., few connections be-
tween my friends because they belong to di�erent social circles.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Centrality (f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank

Katz centrality
Katz centrality is said to be a measure of the in�uence potential of a node.
For a node u, it is de�ned as the sum, for all path length distance `, of the
number of nodes located at distance exactly ` of u, discounted of a fac-
tor decreasing as ` increases. The intuition is that, the more nodes can be
accessed in few steps, the higher the value. More formally, it is expressed
as
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a parameter smaller than the reciprocal of the largest eigenvalue
ofA, allowing to compute with matrix form:

CKatz(u) = ((I � ↵A
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Note that in a directed network, Katz centrality must be interpreted as a vote
mechanism: a highest centrality of u means that more nodes can reach u

quickly, and not that u can reach many nodes quickly.

Betweenness centrality
The betweenness centrality measures how much the node plays the role
of a bridge. The highest the betweenness, the more the node is essential
to move quickly in the graph. More formally, the betweenness of u is de-
�ned as the fraction of the shortest paths between all pairs of nodes in the
graph (but u) that go through u. As a consequence, if we remove a node of
high betweenness, many shortest paths will become longer, and the graph
harder to navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this node, some
nodes becomes unreachable from others. Those nodes thus tend to have
high betweenness. It is de�ned as:

CB(v) =
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with �st the number of shortest paths between nodes s and t and �st(v)
the number of those paths passing through v.
The betweenness tends to grow with the network size. A normalized ver-
sion can be obtained by dividing by the number of pairs of nodes, i.e., for a
directed graph: Cnorm

B
(v) =

CB(v)
(N�1)(N�2) .



Eigenvector centrality
Eigenvector centrality is a recursive de�nition of importance: a node is im-
portant if it is connected to other important nodes. In practice, it is de�ned
in the following way: the eigenvector centrality Cu for every node u of the
graph is such that if each node sends its centrality score to its neighbors,
then the sum of scores received by each node will be equal to �Cu (with �

a constant). More formally,
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with � a normalisation constant. This recursive de�nition can be interpreted
in term of eigenvectors and eigenvalues, which is de�ned asAx = �x, with
x an eigenvector, � the corresponding eigeinvalue. The eigenvector cen-
trality is de�ned as the leading invector, i.e., the eigenvector associated with
the highest eigenvalue, the only solution for which all centrality values are
positive.
A simple way to compute this eigenvalue is called the power method: one
start with random values on nodes, and iterate equation �. After some time,
it can be proven that the values converge to the eigenvector centrality.

Eigenvector centrality cannot in general be computedondirectednetworks,
because of source nodes, i.e., kin = 0. Those nodes have by de�nition a,
eigenvector centrality of � at t+�, and thus send a value of � at t+�, which
might in turn result in a score of � for its successors, and so on and so forth.

Pagerank centrality
Pagerank centrality is famous for being the method originally used by
google to rank web-pages: all pages containing the researched words are
ordered according to their Pagerank score in the graph of the WWW, in
which nodes are webpages and edges are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of source
nodes.
Pagerank introduces two improvements: �) at each step t, each node gain
a small constant value. �) The values sent are divided equally among suc-
cessors (normalization by degree). Equation � thus becomes:
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with, by convention, � = 1,↵ 2 [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigenvector of the
so-called Google matrix G, de�ned as Gij = ↵Sij + (1 � ↵)/n, with Sij

the adjacency matrix normalized by column.

Pagerank & RandomWalk
Pagerank can be interpreted in term of random walks. If you consider a
random walker moving from nodes to nodes following randomly chosen
out-going links, which starts on a random node and moves an in�nite num-
ber of times. Consider that at each step, this random walker can teleport to
any other node with a probability /alpha instead of following an outgoing
edge. Then, the probability for this random walker to be on each particular
node corresponds to its Pagerank score.
We can note that the average length of a walk before restart is ↵

1�↵
. The

typical value ↵ = 0.85 thus means that random walkers move in average
�.� times before restart, a typical value of average distance in real graphs.

Edge Structural indices
Edges situation in the network can also be described using structural prop-
erties, most of them being similar to node centralities.
Edge Clustering C

e of an edge (u, v) is the fraction of the neighbors of at
least one of the two nodes which are neighbors of both of them, i.e.,

C
e(u, v) =
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High clustering edges are said Integrative, low values nodes are said Disper-
sive.
Edge betweenness Is de�ned exactly as node betweenness, but counting
shortest paths going through each edge instead of each node, i.e.,

CB(u, v) =
X

s 6=t2V

�st(u, v)

�st

with �st the number of shortest paths between nodes s and t and �st(u, v)
the number of those paths passing through edge (u, v).

Node Similarity
When studying a network, one might be interested in comparing nodes be-
tween themselves, for instance to discover the most similar nodes in the
network, or to assess if two nodes they are interested in share a similar net-
work location.

A �rst approach is to de�ne the similarity between nodes u and v, �u,v as:
�u,v = |Nu \ Nv|.

A weakness of this approach is that high degree nodes tends to be consid-
ered similar to low degree nodes. A variant consists in normalizing by nodes
degrees, thus computing the Jaccard Coe�cient of neighborhoods:

�u,v =
|Nu \ Nv|
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Cosine Similarity
Cosine similarity�cos is a standardmethod to compare vectors. It is de�ned
for two vectors x, y as :
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This score can be used to measure the similarity between nodes neighbor-
hoods by using as vector xu of node u the row of the adjacency matrix cor-
responding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:
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Pearson coe�cient
Pearson coe�cient is a standard measure of correlation between variables
X and Y , which is de�ned as :

rX,Y =
cov(X,Y )

�X�Y

with cov the covariance and � the standard deviation.
Much as for Cosine Similarity, we can adapt this measure to nodes similari-
ties by consideringA’s rows as discrete variables. The result can be under-
stood intuitively by observing that the numerator becomes:

cov(u, v) = |Nu \ Nv| �
kukv
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which can be interpreted as the number of common neighbors minus the
expected number of common neighbors in a randomized network, given
nodes degrees.

cov(u, v) = 0 means that the number of common neighbors is exactly
what we would expect by chance given their degrees, while positive val-
ues means that they have more than expected (resp. for negative values).


