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Nodes and Edges structural indices,
Centrality, node similarity

Node Structural indices
Node structural indices, often called Node centrality, re�ect how
a node is characteristic of a given structural property. This is often
summarized as a measure of the node importance, however im-
portance and centrality are subjective/qualitative notions. Thus a
centrality, despite its name, do not necessarily measure how cen-
tral a node is, but rather how its position in the graph is typical of
the property captured by this index.

Degree Centrality

Degree centrality is the most straighforward centrality. It can be
interpreted as a measure of importance, of popularity, e.g., the
more friends I have in a social network, the more important I am in
this network.

Farness - Closeness
The closeness of a node measures how close a node is from all
other nodes, in term of shortest paths. To interpret it, we canmake
a parallel with a circle: the pointwhich is the closest to all the other
points of the circle is its center. The node of highest closeness is
the equivalent of the center of the circle for this graph. Its formu-
lation is easily understood as the inverse of the farness.

Farness: Average distance to all other nodes in the graph

Farness(u) =
1

N − 1

∑
v∈V \u

`u,v

Closeness: Inverse of the farness, i.e., how close the node is to all
other nodes in term of shortest paths.

Closeness(u) =
N − 1∑
v∈V \u `u,v

Harmonic Centrality

Harmonic centrality: is a variant of the closeness de�ned as the
average of the inverse of distance to all other nodes (Harmonic
mean). Well de�ned on disconnected network with 1

∞ = 0. Its
interpretation is the same as the closeness.

Harmonic(u) =
1

N − 1

∑
v∈V \u

1

`u,v

Clustering Coe�cient

This score, already de�ned, measure the triadic closure of a node.
A high score is often interpreted as beingwell embedded in a par-
ticular community (friends of my friends are my friends because
we all belong to the same group), a low score can be typical of a
bridge node, e.g., few connections between my friends because
they belong to di�erent social circles.

Katz centrality

Katz centrality is said to be ameasure of the in�uence potential of
a node. For a node u, it is de�ned as the sum, for all path length
distance `, of the number of nodes located at distance exactly ` of
u, discounted of a factor decreasing as ` increases. The intuition
is that, the more nodes can be accessed in few steps, the higher
the value. More formally, it is expressed as

CKatz(u) =
∞∑
`=1

N∑
v=1

α`(A`)vu

in which A`vu means the number of paths of length ` from v to u,
and α < 1

λi
a parameter smaller than the reciprocal of the largest

eigenvalue of A, allowing to compute with matrix form:

CKatz(u) = ((I − αAT )−1 − I)
−→
I

Note that in a directed network, Katz centrality must be inter-
preted as a votemechanism: a highest centrality of umeans that
more nodes can reach u quickly, and not that u can reach many
nodes quickly.

Centrality - Examples

(a) Degree (b) Clustering Coe�cent

(c) Closeness (d) Harmonic Centrality

(e) Betweenness Central-
ity

(f) Katz Centrality

(g) Eigenvector Centrality (h) PageRank



Betweenness centrality

The betweenness centrality measures how much the node plays
the role of a bridge. The highest the betweenness, the more the
node is essential to move quickly in the graph. More formally, the
betweenness of u is de�ned as the fraction of the shortest paths
between all pairs of nodes in the graph (but u) that go through
u. As a consequence, if we remove a node of high betweenness,
many shortest paths will become longer, and the graph harder to
navigate. The extreme situation is a node on the only path be-
tween otherwise disconnected components: if we remove this
node, some nodes becomes unreachable from others. Those
nodes thus tend to have high betweenness. It is de�ned as:

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

with σst the number of shortest paths between nodes s and t and
σst(v) the number of those paths passing through v.
The betweenness tends to grow with the network size. A normal-
ized version can be obtained by dividing by the number of pairs
of nodes, i.e., for a directed graph: Cnorm

B (v) =
CB(v)

(N−1)(N−2)
.

Eigenvector centrality

Eigenvector centrality is a recursive de�nition of importance: a
node is important if it is connected to other important nodes. In
practice, it is de�ned in the following way: the eigenvector cen-
trality Cu for every node u of the graph is such that if each node
sends its centrality score to its neighbors, then the sum of scores
received by each node will be equal to λCu (with λ a constant).
More formally,

Ct+1
u =

1

λ

∑
v∈Nin

u

Ctv (1)

with λ a normalisation constant. This recursive de�nition can be
interpreted in term of eigenvectors and eigenvalues, which is de-
�ned as Ax = λx, with x an eigenvector, λ the corresponding
eigeinvalue. The eigenvector centrality is de�ned as the leading
invector, i.e., the eigenvector associated with the highest eigen-
value, the only solution for which all centrality values are positive.
A simple way to compute this eigenvalue is called the power
method: one start with randomvalues on nodes, and iterate equa-
tion 1. After some time, it can be proven that the values converge
to the eigenvector centrality.

Eigenvector centrality cannot in general be computed on directed
networks, because of source nodes, i.e., kin = 0. Those nodes
have by de�nition a, eigenvector centrality of 0 at t+1, and thus
send a value of 0 at t+2, which might in turn result in a score of 0
for its successors, and so on and so forth.

Pagerank centrality

Pagerank centrality is famous for being the method originally
used by google to rank web-pages: all pages containing the re-
searched words are ordered according to their Pagerank score in
the graph of theWWW, in which nodes are webpages and edges
are hyperlinks.
It is a variant of the Eigenvector centrality, solving the problem of
source nodes.
Pagerank introduces two improvements: 1) at each step t, each
node gain a small constant value. 2) The values sent are divided
equally among successors (normalization by degree). Equation 1
thus becomes:

Ct+1
u = α

∑
v∈Nin

u

Ctv
koutv

+ β (2)

with, by convention, β = 1,α ∈ [0, 1] a parameter.
Pagerank centrality can also be expressed as the leading eigen-
vector of the so-called Google matrix G, de�ned asGij = αSij +
(1− α)/n, with Sij the adjacency matrix normalized by column.

Pagerank & RandomWalk

Pagerank can be interpreted in term of randomwalks. If you con-
sider a randomwalkermoving fromnodes to nodes following ran-
domly chosen out-going links, which starts on a randomnode and
moves an in�nite number of times. Consider that at each step,
this random walker can teleport to any other node with a prob-
ability /alpha instead of following an outgoing edge. Then, the
probability for this random walker to be on each particular node
corresponds to its Pagerank score.
We can note that the average length of a walk before restart is
α

1−α . The typical value α = 0.85 thus means that random walkers
move in average 5.7 times before restart, a typical value of aver-
age distance in real graphs.

Edge Structural indices

Edges situation in the network can also be described using struc-
tural properties, most of them being similar to node centralities.

Edge Clustering

Edge Clustering Ce of an edge (u, v) is the fraction of the neigh-
bors of at least one of the two nodes which are neighbors of both
of them, i.e.,

Ce(u, v) =
|Nu ∩Nv |
|Nu ∪Nv | − 2

High clustering edges are said Integrative, low values nodes are
said Dispersive.

Edge Betweenness

Edge betweenness Is de�ned exactly as node betweenness, but
counting shortest paths going through each edge instead of each
node, i.e.,

CB(u, v) =
∑

s 6=t∈V

σst(u, v)

σst

with σst the number of shortest paths between nodes s and t and
σst(u, v) the number of those paths passing through edge (u, v).

Node Similarity

When studying a network, one might be interested in compar-
ing nodes between themselves, for instance to discover the most
similar nodes in the network, or to assess if two nodes they are
interested in share a similar network location.

A �rst approach is to de�ne the similarity between nodes u and v,
σu,v as: σu,v = |Nu ∩Nv |.

A weakness of this approach is that high degree nodes tends to
be considered similar to low degree nodes. A variant consists in
normalizing by nodes degrees, thus computing the Jaccard Co-
e�cient of neighborhoods:

σu,v =
|Nu ∩Nv |
|Nu ∪Nv | − 2

Cosine Similarity

Cosine similarity σcos is a standardmethod to compare vectors. It
is de�ned for two vectors x, y as :

σcos
xy =

x.y

|x||y|

This score can be used to measure the similarity between nodes
neighborhoods by using as vector xu of node u the row of the
adjacency matrix corresponding to this node, i.e., xu = Au .
Cosine similarity of nodes then simpli�es to:

σcos
uv =

|Nu ∩Nv |√
kukv



Pearson coe�cient
Pearson coe�cient is a standardmeasure of correlation between
variablesX and Y , which is de�ned as :

rX,Y =
cov(X,Y )

σXσY

with cov the covariance and σ the standard deviation.
Much as for Cosine Similarity, we can adapt thismeasure to nodes
similarities by considering A’s rows as discrete variables. The re-
sult can be understood intuitively by observing that the numerator
becomes:

cov(u, v) = |Nu ∩Nv | −
kukv

N

which can be interpreted as the number of common neighbors
minus the expectednumber of commonneighbors in a random-
ized network, given nodes degrees.

cov(u, v) = 0means that the number of common neighbors is ex-
actly what we would expect by chance given their degrees, while
positive values means that they have more than expected (resp.
for negative values).


