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Community Structure

Blocks and Communities: De�nition
The general idea of blocks and communities is that nodes of a
network can be grouped together in homogeneous sets, based
on the network topology. The problem of automatically discover-
ing those groups is one of the most studied problem of network
science, but also one of the most di�cult to properly de�ne.

Partitions/Overlap

Wemust di�erentiate two types of node grouping:

1. A Partition of a graph is a division of its nodes such as each
of them belongs to one and only one group.

2. Overlapping communities/blocks allow, on the contrary,
nodes belonging to several groups. Unless speci�ed dif-
ferently, they also allow nodes to belong to no group.

Algorithms searching partitions are much more common than
those searching for overlapping groups, due to the increased
complexity of the later task. Overlapping community detection
is, nevertheless, an active �eld of research.

Community structure

The idea of having a network structured in communities is de�ned
as an analogy with communities in social networks. Communi-
ties are therefore de�ned (informally) as groups of nodes that are
strongly connected between themselves (high internal density)
and more weakly connected to the rest of the network low exter-
nal density.
This de�nition however cannot be translated unambiguously into
a mathematical formulation. The problem of community detec-
tion, or community discovery, is therefore complex to de�ne.

Block structure
The general idea of the block structure is that the probability to
observe an edge between two nodes is a function of the blocks
they belong to. Usually, no assumption is made apriori about
those probabilities: they can be high between nodes belonging
to the same blocks or to di�erent blocks, and can di�er for each
pair of block.

De�nition
C a community partition, or, more generally, a set of set

of nodes
ci community i, a set of nodes

Modularity

The most famous quality function to measure the quality of par-
titions is called the Modularity. Introduced ina, it is de�ned for a
partition C and a graph G as the di�erence between the fraction
of observed internal edges and the expected fraction of internal
edges if G were rewired according to a con�guration model, i.e.,
preserving the degrees of nodes.
More formally,
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with Li = L(H(ci)) the number of edges inside community i and
Ki =

∑
u∈ci

ku the sum of degrees of nodes in community i.
The original formulation of modularity, often found in the litera-
ture, is:
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with δ(cu, cv) the kronecker delta between communities, i.e.,
δ(cu, cv) = 1 if nodes u and v belongs to the same community,
0 otherwise.

aGirvan and Newman 2002.

Modularity: null model

The modularity as expressed above compares the number of
edges inside communities to the expected number of edges in
a null model, i.e., a randomized version of the graph. In the orig-
inal version, this null model is the con�guration model (as easily
recognized in the kukv

2L
of the original formula).

Variants of themodularity have been proposed using di�erent null
modelsa, for instance an ER null model, or a gravity model to take
into account the e�ect of geographic distanceb

aJutla, Jeub, and Mucha 2011.
bExpert et al. 2011.

Modularity: resolution limit

It is important to remember that the Modularity is (only a) quality
function, not ade�nition of the quality of communities. An impor-
tant drawback of Modularity is known as the limit of resolutiona .
It says that partitions of maximal modularity are biased toward a
particular scale, i.e., for a graph of a give size (#nodes, #edges),
communities smaller or larger than a certain size cannot be found.
The typical example of this limit is the clique-ring structure (set of
cliques connected by a single edge), in which the expected par-
tition is to have one community by clique, while the solution of
highest modularity put several cliques in the same community,
when we increase the number of cliques.

aFortunato and Barthelemy 2007.

Modularity and random networks

Another well known limitation of a Modularity maximization ap-
proach is that it �nds communitieswith high scores in randomnet-
works: since it is not adjusted for chance, random �ucutations in
a random network are mistaken for meaningful structure in the
network.

Multi-resolution Modularity

A simple solution has been proposed to the limit of resolution,
consisting in adding a resolution parameter λ to tune the desired
resolutiona, i.e., (Li − 1

2
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i ) becomes (Li − λ 1
2
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i ). It raises or
shrinks the expected number of edges inside communities. It re-
quires, however, to choose a proper value for λ, i.e., to choose ar-
bitrarily a scale for communities.

aReichardt and Bornholdt 2006.



Mod. maximization: Girvan Newman
Several of the most popular community detection algorithms
have as objective to discover the partition of highest modularity.
This is a di�cult problem, and thus existing approaches are based
on heuristics.
The original method by Girvan and Newmana �rst builds a den-
drogram by iteratively removing the edge of highest between-
ness. It is called a divise approach: At the top of the dendrogram,
there is a single community, then 2, 3, 4 etc., until each node is
in its own community. Modularity is used as a criterium to cut the
dendrogram.

aGirvan and Newman 2002.

Mod. maximization: Louvain method
The Louvain methoda is certainly themost usedmethod for com-
munity detection. Its objective is to optimize the modularity using
a greedy, agglomerative approach:
Step 1: Optimizing modularity at a hierarchical level

• Each node starts in its own community

• Repeat until convergence:

1. FOR each node, compute the gain in modularity of
adding it to the community of each of its neighbors

2. choose the decision that increases the most the
modularity (the best decision can be to keep the
node in the same community)

Step 2: Global algorithm

• Repeat until convergence:

1. Optimize modularity for the current hierarchical
level according to Step 1

2. Move to a higher hierarchical level by computing
an induced network: each community becomes
a node, the weight of the edge between nodes/-
communities i and j corresponds to the number of
edges between nodes of ci and nodes of cj .

The result of Louvain algorithm is therefore a hierarchy of com-
munities.

aBlondel et al. 2008.

Louvain Algorithm

Illustration of the Louvain algorithm froma

aTraag, Waltman, and Eck 2019.

Louvain method strengths and weak-
nesses
The main reason explaining the popularity of the Louvain method
to this day is its scalability: The algorithm is very scalabel in prac-
tice on real graphs, for several reasons: 1)It is a greedy approach,
2) By checking only the interest of moving to neighbor’s commu-
nities, it bene�ts from the sparsity of networks, 3)Modularity gains
of a partition change can be computed locally, using its de�nition
as a sum of independent values for each community.
Another advantage of the Louvain method is that results at lower
hierarchical levels can naturally mitigate the problem of the res-
olution limit, for instance on the ring clique example, Louvain �nd
each clique in its community at the �rst level, and only in a second
level yield the problematic partition.
However, it has also be showna that the greedy nature of the al-
gorithm could lead to having counter-intuitive structures, such as
disconnected communities. The authors thus introduced a variant
of the algorithm called Leiden, solving this problem.

aTraag, Waltman, and Eck 2019.

Infomap

Infomapa is a method based on an objective function di�erent
from theModularity. Its objective is toMinimize thedescription of
an average random walk in the network, i.e. maximize the com-
pressionof thedescription of such awalk. More formally, the code
length to minimize for partition C is described as:

H(C) = qH(y) +

|C|∑
i

piH(�i)

with q the probability for a move to be between modules,H(y)
the information required to encode a move between modules, pi

the probability for amove to be inside community i andH(�i) the
information required to encode a move inside community i.
A greedy optimization algorithm, similar in nature to the one of
Louvain, is then used to minimize this description length.
ComparedwithModularity, themain advantageof this approach is
that it does not �nd communities in random networks. It is known
also to su�er from a resolution limit, although not exactly similar
to the one of Modularity.

aRosvall and Bergstrom 2008.

Infomap Algorithm

Illustration of the Infomap Algorithm by the authorsa .

aRosvall and Bergstrom 2008.

Stochastic Block Models (SBM)
A stochastic block model is a random graph model de�ned by:
k number of blocks
b n × 1 vector such as bi describes the index of the

block of node i.
E k × k stochastic block matrix, such as Eij gives

the number of edges between blocks i and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).



SBM inference
The objective of a community/block detection algorithm based
on the SBM principle is thus to perform SBM inference, i.e., to �nd
the parameters of the SBM that best explain the observed graph,
usually in term of maximizing the likelihood. Said di�erently, we
search –among a certain class of models– the model that has the
highest probability to generate the observed graph. Note that for
an observed graph, for each partition in blocks b, there is a single
block matrix E that is relevant to consider, that can be found sim-
ply by counting the number of edges actually present between
blocks in the graph.
More formally, the objective is:

b := argmax
b

P (A|b)

Note that with this formulation, it is not possible to infer the num-
ber of clusters k, since the trivial solution in which each node be-
longs to its own block, with E = A has a maximal probabity (1) to
generate the observed graph. The desired number of clusters is
thus a necessary parameter of this type of SBM inference.

SBM infering the number of blocks

Recently, new approachesa have been proposed to infer also
automatically the number of blocks. They adopt an approach
from Information Theory called the Minimum Description Length
(MDL), whose principle is to �nd the descriptionwhich reduces the
total cost of describing a graph, by minimizing both 1)The quan-
tity of information needed to encode the graph, knowing that it
is generated by a given model, and 2)The quantity of informa-
tion needed to encode the model itself. Intuitively, a model with
few blocks requires little information to be described, contrary to
a model with many blocks. But a model with many blocks is more
constrained, the graphs it generates are more speci�c, and there-
fore can be described at a lesser cost, knowing the model.
More formally, we can decompose the probability of observing a
graph and a model as:

P (A, k, e, b) = P (A|k, e, b)P (k|e, b)P (e|b)P (b)

with the last three probabilities being priors. Said di�erently, we
can de�ne the number of bits required to encode a model as
L = −log2P (k, b), the number of bits necessary to encode a
graph knowing the model as S = −log2P (A|k, b) and thus the
total cost to minimize as S + L.
The objective thus becomes:

b := argmin
b
−log2P (k, b)− log2P (A|k, b)

aPeixoto 2019.

Variants of the SBM
Group inference using SBM is a very active �eld of research, and
many variants have been proposed, including degree-corrected,
nested, Overlapping, Mixed membership SBM, etc.
An introduction to the state of the art can be found for instance
ina .
A python library b exists to apply recent methods to observed
graphs.

aLee and Wilkinson 2019.
bhttps://graph-tool.skewed.de

Evaluation of Community structures

Since there isn’t a unique accepted de�nition of what are good
communities, the evaluation of the quality of a partition or set of
communities is not a trivial task.
There are two main approaches:

• Internal evaluation consists in using quality functions (e.g.,
Modularity) to give a score for a pair partition/graph

• External evaluation consists in comparing a computer
partition to a ground truth reference partition.

Internal evaluation can be used to evaluate the quality of commu-
nities found on a network of interest, while External evaluation is
mostly used to asses the quality of algorithms on benchmarks, to
evaluate their performance before using them on a real network.

Internal Evaluation - Global
Several quality functions exist to evaluate the quality of a com-
munity partition of a graph. They can therefore be understood
as di�erent de�nitions of community structures. While some
methods try directly to optimize one of those quality functions,
someothermethods are basedondi�erent principles (e.g., clique-
based communities, consensus reaching based on game-theory,
etc.). Quality functions can therefore be used a posteriori to assess
the quality of communities they found.
The most popular are:

• Modularity

• Information compression, as in Infomap or SBM

• Surprisea evaluates the departure of the observed parti-
tion from the expected distribution of nodes and links into
communities given a null model, and is therefore related
to Modularity

aAldecoa and Marin 2013.

Internal Evaluation - By community

Some quality functions are de�ned at the level of individual com-
munities, instead of having one score for the whole partition.
Those individual scores can however be combined to provide a
global score, for instance using a weighted average. Some of the
most popular area :

• Conductance, the fraction of all stubs of nodes in the
community that points outside of it

• ODF, Out Degree Fraction, the average for every node of
its fraction of neighbors inside the community

• Internal Transitivity, the clustering coe�cient inside the
community

• Scaled density, the ratio of the node density to the total
graph density

aleskovec2010empirical

External Evaluation
Partitions obtained by a given method can be compared with a
ground truth. This approach is used on real networks, with a
ground truth coming from metadata (e.g., classes in a network of
social interactions between students), and on synthetic networks,
with communities known by construction.
Although this is still discussed in the literature, it is mostly ac-
cepted that the evaluation on real networks using this approach is
problematica, because there is no guarantee that the labels used
as ground truth are indeed related to the topological structure of
the network, which is what communities are about.
Most popular methods for partitions comparisons are:

• NMI, Normalized Mutual Information, and its adjusted for
chance variant, AMI.

• ARI, Adjusted Rand Index

But more generally, any method for cluster comparison can be
usedb

aPeel, Larremore, and Clauset 2017.
bDao, Bothorel, and Lenca 2020.



Overlapping communities

For many types of networks, the real organization of networks is
thought to be overlapping, i.e., each node can belong to several
communities. Think for instance of your personal social network:
some of your family members might also be part of a group of
friends, or some of your friends from high school might also be
part of your friends from university, which are otherwise distinct
groups.
Detecting overlapping clusters is considered harder than non-
overlapping ones, for at least two reasons: the search space (num-
ber of possible solutions) is much larger (and even in�nite), and
de�ning what good communities are is even harder, since there
isn’t the natural limit for each edge to be either internal or exter-
nal.
A large number of methods have nevertheless been proposeda .
Extensions of non-overlapping quality functions have been pro-
posed, such as the overlapping Modularityb, or overlapping NMIc,
but they are not as widely used as their more constrained coun-
terparts.

aXie, Kelley, and Szymanski 2013.
bNicosia et al. 2009.
cMcDaid, Greene, and Hurley 2011.

Other meso-scale structures
Beyond the usual community structure, other types of network
structural organizations have been proposed and studied. Some
of the most widely known are:

• Link communities, in which communities are de�ned as
sets of links. Searching for (non-overlapping) partitions of
edges yield a structure in which nodes naturally belong
to several groups, i.e., a community can corresponds to
familial edges, another to professional edges, etc. (Ahn,
Bagrow, and Lehmann 2010)

• Fuzzy communities, in which nodes belong to (often sev-
eral) communitieswith a certain probability or strength (Liu
2010)

• Core-Periphery structure, already de�nedwhenwe intro-
duced the notion of k-cores

• Nestedness, corresponding to a network with a hierarchi-
cal organization such as elements with few connections
tends to be connected to a subset of the neighbors of a
parent node. (Pawar 2014)

• Spatial organization, in which the probability of observ-
ing an edge between nodes depends on their distance.
(Barthélemy 2011)

Meso-scale organization

Going Further

Surveys: (Fortunato 2010) (Fortunato and Hric 2016)
On community detection approaches: (Rosvall, Delvenne, et al.
2019)
On stochastic Block Models:Funke and Becker 2019
Survey overlapping communities: (Xie, Kelley, and Szymanski
2013)
Community detection in dynamic networks (Rossetti and Cazabet
2018)
On ground Truth and community detection: (Peel, Larremore, and
Clauset 2017)
Community detection in neuroscience (Betzel 2020)
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