
Network Science
Cheatsheet

Made by

Remy Cazabet

Graph Convolutional Networks

Disclaimer

Graph Convolutional Networks and Graph Neural Networks in

general are a recent �eld of research, with hundreds of pub-

lications in the last few years, and scores of new papers pub-

lished in every machine learning and network science confer-

ence. This class is thus only an introduction to the mechanism

underlying the most simple of these approaches.

Graph Convolutional Networks

Graph Convolutional Networksa (GCN) are Deep Neural Net-
works(NN) designed to work with graphs. They are based on the
principle of propagation on networks and are especially useful for
machine learning tasks such as node classi�cation, although they
can be adapted for other tasks. GCN are a subset of a more gen-
eral �eld of research called Graph Neural Networks(GNN)b

aS. Zhang et al. 2019.
bWu et al. 2020.

Arti�cial Neural Networks
Arti�cial Neural Networks are a family of machine learning algo-
rithms loosely inspired by biological neural network. They are
composed of basic units called neurons or perceptrons, that in-
dividually plays a role equivalent to a logistic classi�er: they can
be trained through examples to combine input features in order
to predict a value or a class. A neural network consists in stacking
such perceptrons in layers: the output of a perceptron is the input
of another one. All weights are trained simultaneously, allowing to
learn non-linear, complex functions.

Neural Network Training

Training a neural network is the same principle as training a lin-
ear/logistic regression: the goal is to �nd weights that minimize
the di�erence, for all pairs input features/target value in a train-
ing set, between the target value and the output of the NN when
provided the feature values.

Deep Neural Networks

Deep Neural Networks is a name for neural networks composed
of a large number of layers of neurons: for instance, a 4-10-2 neu-
ral network is composed of 3 layers, the �rst one composed of
4 neurons (receiving as input data features), whose outputs are
the input of 10 neurons in the second layer, whose output are the
input of 2 neurons in the third and last layer.

Fully Connected Layer

Several types of layers exist. The simplest one is called a Fully
connected layers, and is simply de�ned such as all the outputs of
each neuron in a layer are inputs of the neurons of the next layer.

Illustration of a Neural Network

A deep neural networks composed of 3 hidden layers. The input
is provided as 8 features, each of the hidden layer has 9 neurons,
and they are fully connected layers. The output consists of 3

output values.

Convolution Layer

Convolution layers are another type of layers in which inputs are
combined in a particular way, based on some relation known a pri-
ori between them. They are typically used on images: each pixel
of the image is a feature (e.g.: from 0 –white– to 255 –black), and
those pixels have a particular organization: each pixel has 4 (rook
adjacency])or 8(Queen adjacency) neighbors.
In a convolution layer, a higher level pixel is created for each in-
put pixel by combining its neighbors in a particularway. Thematrix
de�ning how to combine neighbors is called a kernel.

Illustration of a convolution

Example of kernels

a

ahttps://en.wikipedia.org/wiki/Kernel_(image_
processing)

Trainable kernels
In neural networks, the kernel used in a layer is not chosen a priori,
its weights are learned to minimize the global prediction error, as
any other weight.

Convolution - intuition
The intuition of stacking several convolution layers is to learn
higher levels of abstraction at every layer. Intuitively, the �rst layer
might recognize lines and curves, the second circles and simple
patterns, the third, eyes, letters or composed shapes, until the last
one can recognize animals or faces, for instance.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)


Images as graphs

Intuitively, the relation between pixels in an image can be repre-
sented by a graph: each pixel is represented by a node, and each
node is connected to neighboring pixels in the picture. The corre-
sponding graph is thus a regular grid.

The graph representing pixels of an image. From a

a
https://www.inference.vc/how-powerful-are-graph-convolutions-review-

of-kipf-welling-2016-2/

Graph Convolution

The concept of convolution can be extended to any graph. A
Graph convolutional layer computes a value for each node by
combining the values of its neighbors. Note that each node can
have a di�erent number of neighbors, thus instead of combining
directly the values of the neighbors, the kernel combines the av-
erage values of the neighbors, e.g, if each node has 10 features,
we compute �rst the average values of the neighbors and then
the kernel control how to combine those average values.

Convolution and di�usion
There is a strong relation between a graph convolutional layer and
di�usion in networks. Training a graph convolutional layer con-
sists in learning the best way for nodes to combine the features
of their neighbors to make predictions, according to the training
examples.

Stacking GCN layers

A single GCN layer combines, for each node, values of its direct
neighbors. With 2 layers, the value of a node is computed from
nodes at distances up to 2 in the graph. The more successive
layers, the farther in the graph a node can in�uence other nodes.
Remember that in most real graphs, the average shortest path is
small, thus 5 or 6 layers can be enough for most nodes to in�u-
ence most other nodes.

Graph Convolutional Layer: De�nition

The typical Graph Convolutional Layera is de�ned as follows:

f(H(l), A) = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
We will decompose this equation do understand what it does.

aKipf and Welling 2016a.

Feature MatrixH
Graph Convolution uses node features to make predictions on
nodes. Nodes features are represented by a Matrix H . Hi cor-
responds to the vector of features of node i. Features can be at-
tributes (age, political opinion, etc.) or structural properties (cen-
tralities, etc.). Matrix H is of shape n × d, with n the number of
nodes and d the number of features.

Feature Combination AH
The GCN layer consists for each node in combining its neighbors
features. AH is the simplest way of doing this combination, it
computes for each node a vector, corresponding to the sum of
the vectors of its neighbors. For instance, if each node originally
has 2 features, age and degree, after the AH operation, the vec-
tor H′i of node i is composed of 2 values, the sum of age of its
neighbors, and the sum of degrees of its neighbors. The matrix
H′ is thus of shape n× d.
To avoid nodes with high degrees having systematically higher
values, we usually use instead a normalized adjacencymatrix to
compute average values.

Adding self loops Â

Until now, we have said that a GCN combines the features of its
neighbors. However, in most cases, the features of the node itself
are also relevant. Let’s assume that we want to predict an indi-
vidual i revenue from available age and betweenness information.
Using the neighbors age and betweenness is meaningful, but us-
ing age and betweenness of i itself is probably relevant too. We
represent this by saying that each node is also a neighbor of itself,
i.e., in graph terms, we add a self-loop to each node. In matrix
term, we replaceA by Â = A+ I with I the identity matrix (values
on the diagonal are all 1, and all other values are 0).

Normalized Adjacency Matrix D̂− 1
2 ÂD̂− 1

2

In order to compute the average of neighbors features instead of
the sum, we can use a normalized adjacency matrix, by multiply-
ing it by the inverse of the Degree matrix D−1, i.e., a matrix such
asDii =

1
ki
, and all other values are 0.

D−1ÂH computes the average of neighbors features. However,
in many cases, it is more meaningful to use an average weighted
by the degree, i.e., neighbors with small degrees have more in-
�uence than neighbors of large degrees. As for heuristics like
Adamic Adar, it can be interpreted by doing a parallel with so-
cial networks: To infer a node revenue from age of neighbors, the
age of my close friends (low degrees) is probably most mean-
ingful that the age of the star (high degrees) I am following. This
weighted average is computed by the normalized Adjacencyma-
trix:

D−
1
2 ÂD−

1
2

D̂− 1
2 ÂD̂− 1

2 - visually

G

Â

D−1Â D−
1
2 ÂD−

1
2

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/
https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/


Weight MatrixW - Single layer

Let’s note H′ the result of the averaging of the neighbors fea-
tures. H′i is the vector of averaged values of node i. H′W com-
putes new features for each node by combining its neighbors fea-
tures. For instance, consider that we have d = 3 features, e.g.,
age, betweenness and degree. If we have a single GCN layer
and we want to predict a single variable, e.g., the revenue, then
W will be of shape d × 1, and each node i predicted values is
H′1iw1 +H′2iw2 +H′3iw3, withH′1i, H

′
2i, H

′
3i respectively the av-

erage age, betweenness and degree of the neighbors of i, and
w1, w2, w3 the same for every node.

Weight MatrixW sizes - Multiple layers

Inmost cases, GCN layers are chained one after the other. At each
level, a di�erent weight matrix is used, that we can note Wl for
level l.
The size of those matrices is determined as follows: The �rst di-
mension is the number of features in input of the layer. The sec-
ond dimension is the number of features wanted in output of the
layer. For instance, if we originally have 10 features for each node,
we can design a 3 layer neural network with weight matrix sizes:
W1 :10× 10,W2 :10× 5,W3 :5× 1.
This network �rst transforms the 10 original features in 10 new fea-
tures that are combinations of the neighbors features, then these
10 features are combined into 5, and �nally those 5 features are
combined into a single one.

Activation function σ
The last element of the GCN layer is the activation function σ. Ac-
tivation function are commonly used between layers in deep neu-
ral networks, to add non-linearity. With GCN, the most commonly
used is the ReLu(Recti�ed Linear Unit), which is de�ned as:

σ(x) =

{
x, x > 0

0, x ≤ 0

Intuitively, itmimics the behavior of biological neurons: if the value
is above a threshold, the network �res, and its value is propagated
to the the next layer, if not, the computed value is lost.

No feature
If no feature is available for nodes, it has been proposed to use
H = I . Since by de�nition AI = A, the average of neighbor’s
features of node i is Ai .

Weight initialization

The objective of the machine learning process is to learn the
weight matrix W . W is typically initialized with random values,
generated by a Normal distribution centered on 0. Negative val-
ues are required to bene�t from the ReLU activation function.

Forward and Backward steps

We call Forward step the computation of layers in sequence, for
�xed values ofWl .
We call Backward step the update ofWl matrices. These updates
are done using a technique called back-propagation, whose ob-
jective is to minimize the di�erence (error) between the result of
the forward step and the objective result (known from the training
set)

Example of a forward step

Let’s look at the forward step of a simple network. The graph
structure is the Zackary Karate Club. We consider no features,
and thus use H = I . We set 2 GCN layers: l1 converts from n
dimensions to 5 dimensions, l2 converts from 5 dimensions to 2
dimensions.

First Layer

Second Layer

Forward step embedding

After the forward propagation,withoutweight learning, we obtain
in our example a result that can be interpreted as a 2 dimensional
embedding.

We can note, despite random weights, that the forward process
seems to capture some network structure.

Weight learning - Backpropagation

To learn the weight matrices, one requires:

• Examples of desired outputs for somenodes (ground truth
label)

• A loss function, i.e., a function to measure the di�erence
between the true labels and the labels produced by the
forward step

At each step, a gradient descent approach is used: knowing the
derivative of the loss function, weights are updated in the direc-
tion that reduces the loss, such as a new forward step with those
updated weights would produce a result closer to the true labels.

Example: ZKC node clustering

The Zackary Karate Club(ZKC) is a famous network dataset. It
represents social relations in a Club of Karate, that were collected
before the two instructors decide to separate, each creating his
own club, attracting approximately half the students of the orig-
inal club. It is often used as a toy application case for commu-
nity detection/Network clustering, were the task is to identify the
students that will follow each teacher, from the social graph ob-
served before the split.



ZKC as a semi-directed Problem
To formalize the ZKC task as a classi�cation problem, we label
each of the two instructors (nodes 0 and 33) with opposed labels
(0 and 1). Starting with the same setting as earlier, i.e., I matrix
as features, we optimize the weights of the 2 GCN layers in or-
der to minimize the di�erence between the labels of the teachers
and the output of the Graph Neural Network. Note that we kept
a vector of size 2 in output, with opposite objectives (for the �rst,
instructors labels are (0,1), for the second, (1,0).)

Trained weights

Trained weights of �rst and second layers, and output vectors (2
dimensions).

Note that for the �rst and last nodes(instructors), vectors in
output correspond to the objective (respectively,(1,0) and (0,1)).

Clustering

Illustration of usages of the vectors obtained after training of the
GCN.

Top Left: Values of the �rst computed feature. Top Right: Values
of the second computed feature. Bottom: clustering obtained by
assigning each node to the feature for which it has the highest

value (example of heuristic).

Going Further

Python library: DGL (https://www.dgl.ai)
Survey GCN: (S. Zhang et al. 2019)(S. Zhang et al. 2018)
Survey Graph Neural Networks (GNN): (Zhou et al. 2018)(Wu et al.
2020)
General presentation of GNN: (Xu et al. 2018
Variational graph Auto-Encoders (Kipf and Welling 2016b)
Link Prediction with GNN (M. Zhang and Chen 2018)
DCRNN: Convolutionnal Recurrent GNN (Li et al. 2017

References

[1] Thomas N Kipf and Max Welling. “Semi-supervised classi�-
cation with graph convolutional networks”. In: arXiv preprint
arXiv:1609.02907 (2016).

[2] Thomas N Kipf and Max Welling. “Variational graph auto-
encoders”. In: arXiv preprint arXiv:1611.07308 (2016).

[3] Yaguang Li et al. “Di�usion convolutional recurrent neu-
ral network: Data-driven tra�c forecasting”. In: arXiv preprint
arXiv:1707.01926 (2017).

[4] Zonghan Wu et al. “A comprehensive survey on graph neu-
ral networks”. In: IEEE Transactions on Neural Networks and
Learning Systems (2020).

[5] Keyulu Xu et al. “How powerful are graph neural networks?”
In: arXiv preprint arXiv:1810.00826 (2018).

[6] Muhan Zhang and Yixin Chen. “Link prediction based on
graph neural networks”. In: Advances in Neural Information
Processing Systems 31 (2018), pp. 5165–5175.

[7] Si Zhang et al. “Graph convolutional networks: a compre-
hensive review”. In:Computational Social Networks6.1 (2019),
p. 11.

[8] Si Zhang et al. “Graph convolutional networks: Algorithms,
applications and open challenges”. In: International Con-
ference on Computational Social Networks. Springer. 2018,
pp. 79–91.

[9] Jie Zhou et al. “Graph neural networks: A review of methods
and applications”. In: arXiv preprint arXiv:1812.08434 (2018).

https://www.dgl.ai

