
Network Science
Cheatsheet

Made by

Remy Cazabet

Machine Learning on Graphs

This class is about Machine Learning on graphs without us-

ing graph embedding and Graph Convolutional Networks. For

those techniques, see the next class.

Machine Learning

Machine learning(ML) involves computers discovering how they can
perform tasks without being explicitly programmed to do so. It in-
volves computers learning from data provided so that they carry out
certain tasksa . It is a subset of Arti�cial Intelligence.

ahttps://en.wikipedia.org/wiki/Machine_learning

Unsupervised ML

In unsupervised learning, the machine is presented with the data,
but without any examples. It should infer automatically the rules,
the organization of the data.
The best known example of unsupervised ML is the clustering
task. Community detection is a type of clustering on networks,
that we have already discuss, so this class will rather focus on Su-
pervised ML.

Supervised ML

Supervised learning is the machine learning task of learning a func-
tion thatmaps an input to an output based on example input-output
pairs.
After seeing enough examples structured as: input→ output, the
machine generalize a knowledge such as for any (unseen) input,
it will predict an output.
Examples: Given properties of an apartment, predict its energy
consumption or price. Given a picture, recognize objects in it.
Given a patient pro�le, predict e�ect of a drug. etc.

Link Prediction
Link prediction is a typical machine learning task on networks.
Example of applications are the prediction that an edgemight ap-
pear in the future (e.g., in dynamic networks), how likely it is that
a link that exist is missing in the network (e.g., missing synonyms
in wiktionary, missing gene-disease interactions, etc.), or for rec-
ommendation: pro�le recommendation in social medias, content
recommendation in online retailers or service providers (Net�ix,
Spotify, YouTube, etc.).
Link prediction can be based only on the network structure, or on
a mixture of network structure and node properties.

Link Prediction: intuition
How likely it is for an edge to appear between nodes can depend
on:

• Local factors: Friends of my friends being my friends,
edges might appear to friends of my friends

• Nodes properties/attributes: Nodes with high degrees
are statistically more likely to bond than nodes with few
edges. Age, political opinions, spatial proximity might be
correlated with edge existence (assortativiy, spatial net-
works, etc.)

• Meso-scale structure: Nodes belonging to the same (au-
tomatically discovered) communities might bemore likely
to connect, for instance.

Link Prediction: Heuristics
A �st approach to predict edges is not based onmachine learning,
but consists in de�ning heuristics based on di�erent features:

• Local factors: Friends of my friends being my friends,
edges might appear to friends of my friends

• Nodes properties/attributes: Nodes with high degrees
are statistically more likely to bond than nodes with few
edges. Age, political opinions, spatial proximity might be
correlated with edge existence (assortativiy, spatial net-
works, etc.)

• Meso-scale structure: Nodes belonging to the same (au-
tomatically discovered) communities might bemore likely
to connect, for instance.

Heuristic: Common neighbors (CN)

Hypothesis: the number of common neighbors is an indicator of
the probability to connect. Based on the "friend of my friend are
my friend", transitivity principle.

CN(u, v) = |N(u) ∩N(v)|

Heuristic: Jaccard Coe�cient (JC)
Hypothesis: The fraction of common neighbors might be more
relevant than the raw number of common neighbors.

JC(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

Heuristic: Hub Promoted (HP)
Hypothesis: the relation can be asymmetric: if one of the nodes
has a high fraction of its neighbors in common with the other, it
might be likely to connect with it, even if the contrary is not true
(e.g., all of my friends follow celebrity x, so I’m likely to follow x,
even if x has a large number of followers who are not my friend)

JC(u, v) =
|N(u) ∩N(v)|

min(|N(u)|, |N(v)|

Heuristic: Adamic Adar (AA)
Hypothesis: all neighbors are not worth the same, neighbors with
a small degree are more signi�cant than hubs (e.g., you and me
having two close friends in common is more signi�cant than fol-
lowing the same two celebrities with millions of followers.)

AA(u, v) =
∑

w∈N(u)∩N(v)

1

log(kw)

Heuristic: Resource Allocation (RA)
Hypothesis: Similar to AA, but penalize more higher degrees.

AA(u, v) =
∑

w∈N(u)∩N(v)

1

kw

Heuristic: Preferential Attachment (PA)
Hypothesis: As known from the Con�guration Model, nodes with
higher degrees are more likely to be connected.

PA(u, v) = kukv

Note that unlike previous ones, this heuristic gives non-zero
scores to nodes at distances larger than 2.

https://en.wikipedia.org/wiki/Machine_learning

Heuristic: Other scores
Several other scores based on similar ideas have been proposed
in the literaturea(Sorenson Index, Salton Cosine Similarity, Hub
Depressed, Leicht-Holme-Nerman, etc.)
Which heuristic is the most appropriate for link prediction does
not have a straightforward answer.

aZhou, Lü, and Zhang 2009.

Heuristic: Distances
Another family of heuristics to assess node likelihood to connect
consists in using their network proximity as a proxy. Much as
nodes which are close in geographical space tends to connect
with higher probability, nodes located close in the topology of the
network are usually more likely to connect. It can be seen as an
extension of the principle of common neighbors to nodes at far-
ther distance.
Methods to measure the distance between nodes can consista in
using the shortest-path distance, the probability to reach a node
from another on a random walk, or the number of paths of a cho-
sen length l between them.

aLichtenwalter, Lussier, and Chawla 2010.

Heuristic: Community Structure

The community structure detected by an algorithm can be used
as a heuristic for link prediction. The exact way to rank edges from
more likely to less likely depends on the community detection al-
gorithm useda :
For methods optimizing a global quality function, such as Mod-
ularity or Infomap Information compression, the score between
each pair of nodes is proportional to the gain (or loss) in the global
score if this edge were added. For instance, with Modularity,
adding edges inside communities will tend to increase the global
score (edges considered likely), while edges between communi-
ties will decrease it (unlikely edges).
For methods based on Stochastic Block Models, the score asso-
ciated to a node is directly yielded by the model: the block matrix
can be interpreted as describing the probability of an edge to exist
between any two nodes belonging to a particular pair of blocks. In
degree-corrected SBM, edge probabilities depends both of their
blocks and of their degrees.

aGhasemian, Hosseinmardi, and Clauset 2019.

Heuristic: Spatial Networks

If a spatial model (Gravity, Radiation, etc.) has been �t on a spatial
graph, then the probability of any edge appearing is given by the
model, much as for SBM.
The logic is the same for any kind of node properties, although, if
there is no natural notion of distance of distance for these proper-
ties, it is more e�cient to let the machine learning algorithm learn
the best way to combine them.

From Heuristics to supervised ML

Heuristics can directly be used for link prediction, but, since they
capture di�erent types of properties (local/meso/global), using
only one of them means missing the information brought by the
others.
Supervised Machine Learning is the most e�cient way to com-
bine them: since we do not know a priori how to combine them,
and the optimal way to do so might depend on the network, we
let the computer learn how to do it.

Training for link prediction

Training a ML algorithm requires to constitute a training set, i.e., a
set of examples input→ output. For link predictions, an example is
composed of:

• Input: Heuristics associated to the node pair Output: 1 or
0 (Respectively, an edge exists or not between those 2
nodes in the original graph.)

Since we want to predict edges that are not yet on the network,
we start by removing t edges from the network, that will consti-
tute positive examples for training. We sample t other node pairs
that are not connected by an edge in the original graph: they are
negative examples.
Our training set is therefore composed of a balanced(50% nega-
tive, 50% positive) set of 2t examples.

ML algorithm: Classi�ers

Supervised Machine Learning is usually split between methods
that predict numerical values (Regression), and thosewho predict
to which category an element belongs, among several choices
(Classi�cation). Link prediction is usually made with classi�cation
algorithms(Two classes: Edge or Not-Edge).
A wide variety of such algorithms exist, from simple Linear Re-
gression to deep neural networks. Implementations and descrip-
tion of algorithms can be found, for instance, in the popular scikit-
learn librarya . Good places to start are Logistic classi�ers and De-
cision Trees.

ahttps://scikit-learn.org/stable/supervised_
learning.html

Classi�er results
A trained Classi�er is a model which, presented a set of features,
yields a probability to belong to a particular class. While in other
applications, we consider themost likly class as the answer, in link
prediction, most of the time, we are interested in the probability it-
self.
We use this probability to rank pairs of nodes, from the most to
the least likely of being connected by an edge.

Evaluation in Machine Learning

In the Machine Learning scienti�c �eld, the evaluation of the ef-
fectiveness of algorithms is a central question. The evaluation is
usually done as follows: The original set of observations is split in
2, the training set and the evaluation set. The model is trained
on the training set, without access to the evaluation set, and the
performance of the trained model is evaluated on the evaluation
set.

Evaluation in Link prediction

Link prediction evaluation is a little special, since we do not start
with a set of observations, but a single observation of a graph. We
cannot really split the graph, so we consider pairs of nodes as ob-
servations, although this introduces biases: the graph on which
we train is not the same as the one used for validation: they have
di�erent number of edges, some nodes have di�erent degrees,
etc.
Note also that the original graph is split in 3: the training set (sam-
ple of node pairs), the test set (sample of node pairs) and the origi-
nal graphwithout edges of the training and test sets, used to com-
pute the features/heuristics.

Balanced training

Training and Test sets must be composed of positive and nega-
tives examples, respectively node pairs between which an edge
must and must not be predicted. For link prediction, the problem
is that the set of all node pairs is usually extremely unbalanced.
Networks are sparse, thus it is common in large graphs to have
only one edge every 10,000 node pairs.

• The balanced of the training set can be chosen freely:
What we care is to have a well-trained model, whatever
the means. It is usually balanced because it is more e�-
cient and convenient.

• The test set on the contrary must respect the original bal-
ance between edges and non-edges: the method must
be tested in real conditions, not on an arti�cially simpli�ed
problem.

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/supervised_learning.html

Classi�cation evaluation: Precision@k

Precision@k is de�ned as the fraction of positive examples among
the k pairs of nodes of highest score according to the classi�er.
The weakness of this approach is that the result depends on the
chosen k.

Classi�cation evaluation: Average preci-
sion
Average precision, also known as Area Under the Precision/Re-
call Curve, is de�ned as the average Precision@k for all k.

Classi�cation evaluation: AUC/AUROC
AreaUnder the Receiver Operating Characteristic Curve (AUROC),
often simply abbreviated as AUC (Area Under the Curve), is de-
�ned as the area under the curve de�ned with False Positives on
the horizontal axis and True Positives on the vertical axis. It has
an intuitive probabilistic interpretation: the AUROC score corre-
sponds to the probability, if we take two pairs of nodes are ran-
dom, one a positive example and the other a negative one, that
the positive example is ranked higher than the negative one.
The score thus lies between 0 and 1, and a score of 0.5 corre-
sponds to a random prediction.
The main advantage over previous scores is that in theory, its
value does not dependon the balance of the validation test, which
is technically di�cult to ensure for large graphs.
AUC is currently the most used evaluation score, although some
limitations have been raiseda .

aYang, Lichtenwalter, and Chawla 2015.

Machine Learning for nodes

The other main application of ML on graphs is to predict some
node properties, being numerical values(regression) or cate-
gories(classi�cation).
Among applications, we can cite the �lling of missing values (e.g.,
speed limits in a road network, categories of Wikipedia article,
etc.), the prediction of unknown/hidden attributes (e.g., in mar-
keting, knowing the genre, political opinion, age, salary, etc.), or
the detection of particular nodes (spammers, bots, fake accounts,
etc.)

Non-network approaches

If there are several properties on nodes, some of these proper-
ties can be used as input to predict another one as output. For
instance individuals age, genre, and political opinions could be
used to predict (e�ciently or not) the revenue of these same indi-
viduals, if we can collect training examples.

Centrality as attributes

A simple approach to improve the prediction consists in integrat-
ing some network properties computed on the node in the pre-
diction. For instance, additionally to age, genre and opinions, one
could integrate the degree, betweenness, closeness, clustering
coe�cient, etc. of a node in the prediction of its revenue.

Neighbors attributes as ego attributes

Following the popular saying "Tell me who your friends are and
I will tell you who you are", we can use the network to observe
what are the most common features of the neighbors of a target
node to predict its own features. For instance, the revenues of
your neighbors in the graph might be useful to predict your own
revenue. Furthermore, the most common political opinion, or the
average age of the neighbors can also be a useful hint.
In practice, a simple way to do this consistsa in computing, for
each node feature, the average value of those features in the
neighborhood of nodes. A simple ML model can then be used
as if those properties were the nodes own properties.

aBhagat, Cormode, and Muthukrishnan 2011.

RandomWalk attributes estimation
A generalization of the previous approach consists in evaluating
the distribution of attributes not only among the direct neighbors
of the target nodes, but more generally among nodes that are
close from it in the graph. A simple way to achieve this is to sam-
ple attributes using random walks. Several methods exista, for
instance for a numerical attribute, the estimated value ỹu[c] for
attribute c for node u can be expressed as the average value en-
countered by a random walk of distance t. More formally:

ỹu[c] =
∑
v∈V

ptuvv[c]

with ptij the probability to encounter node v from node u after a
random walk of distance t, and v[c] the value of label c for node v

aBhagat, Cormode, and Muthukrishnan 2011.

Going Further

Python Library: scikit-learn
Surveys: (Lichtenwalter, Lussier, and Chawla 2010) (Al Hasan et al.
2006) (Lü and Zhou 2011)
Model stacking: (Ghasemian, Hosseinmardi, Galstyan, et al. 2020)
Evaluation of link prediction: (Yang, Lichtenwalter, and Chawla
2015)
Node Classi�cation: (Bhagat, Cormode, and Muthukrishnan 2011)
Under�t and Over�t of community-based link prediction:
(Ghasemian, Hosseinmardi, and Clauset 2019)

References

[1] MohammadAl Hasan et al. “Link prediction using supervised
learning”. In: SDM06: workshop on link analysis, counter-
terrorism and security. Vol. 30. 2006, pp. 798–805.

[2] Smriti Bhagat, Graham Cormode, and S Muthukrishnan.
“Node classi�cation in social networks”. In: Social network
data analytics. Springer, 2011, pp. 115–148.

[3] Amir Ghasemian, Homa Hosseinmardi, and Aaron Clauset.
“Evaluating over�t and under�t in models of network com-
munity structure”. In: IEEE Transactions on Knowledge and
Data Engineering (2019).

[4] Amir Ghasemian, Homa Hosseinmardi, Aram Galstyan, et al.
“Stacking models for nearly optimal link prediction in com-
plex networks”. In: Proceedings of the National Academy of
Sciences 117.38 (2020), pp. 23393–23400.

[5] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla.
“New perspectives and methods in link prediction”. In: Pro-
ceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2010, pp. 243–252.

[6] Linyuan Lü and Tao Zhou. “Link prediction in complex net-
works: A survey”. In: Physica A: statistical mechanics and its
applications 390.6 (2011), pp. 1150–1170.

[7] Yang Yang, Ryan N Lichtenwalter, and Nitesh V Chawla.
“Evaluating link prediction methods”. In: Knowledge and In-
formation Systems 45.3 (2015), pp. 751–782.

[8] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. “Predicting
missing links via local information”. In: The European Physi-
cal Journal B 71.4 (2009), pp. 623–630.

scikit-learn

