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Scale-Free Networks

Scale-Free: De�nition
A network is said to be Scale-Free when its degree distribution
follows a Power-Law distribution, or can be approximated by a
Power-Law distribution.

Power-Law (PL)- ApproximateDistribution

A Power-Law distribution is de�ned as follows:

P (k) ∼ k−α =
1

kα

α is called the exponent of the distribution.
Intuitively, the more α is large, the more large values are rare. For
instance, with α = 0, it corresponds to a uniform distribution (any
degree is equivalently probable). With α = 1, the probability of a
node taken at random to have degree k is ∼ 1

k
. Usually, a distri-

bution is considered scale free when 2 ≤ α ≤ 3, as we will see.

PL - Boundaries
Inmost settings, the Power-Lawdegree distribution exists only for
a certain range of degrees.
This makes sense in real networks: few people have 0 or 1 social
contacts, for instance, few websites have no incoming nor outgo-
ing hypertext links, or we wouldn’t even be aware of them. Thus
there is a lower bound kmin from which the distribution exists.
Similarly, real networks represent entities of the real world, which
are in �nite numbers, therefore the number of elements itself is
a limit. But in many situations, even lower thresholds exist: So-
cial networks often impose a limit to the number of connections
to avoid spammers, time and space also typically impose limits to
what is possible or not in a network. An upper bound kmax can
be used to limit the distribution.

Power-Law - Exact Distribution
For a distribution to be properly de�ned, the sum of all probability
must be equal to one, we therefore add a normalization constant
C to ensure this property.∫

P (k) = 1 =

∫
Ck−α = C

∫
k−α

From which we can de�ne C :

C =
1∫∞

kmin
k−αdk

= (α− 1)kα−1
min

And �nally, the exact de�nition of the Power-Law degree distribu-
tion with lower bound:

P (k) = (α− 1)kα−1
min k

−αP (k) =
α− 1

kmin

(
k

kmin

)−α

Power-Law - Plotting

A famous property of the Power-Law distribution is that it looks
like a line when plotted in a log-log plot, i.e., a plot in which the
x-axis (degrees) and the y-axis (frequency of degrees) are repre-
sented using a logarithmic scale.

Power-Law distributions in linear scale for degrees [1-10]
(100 000 samples)

Power-Law distributions in linear scale for degrees [1-100000]
(100 000 samples). The distribution is so heterogeneous that is

is not readable.

Power-Law distributions in log-log scale for degrees [1-100000]
(100 000 samples).

Power-Law - Long tail

Compared with other well-known distributions such as Poisson
or exponential distribution, a key di�erence is what is called the
long-tail property: very large values are rare, but possible. We
can observe this long tail by comparing with other distributions
on log-log plots.

Comparing power-law with Poisson distributions

Comparing power-law with Exponential distributions

SF networks - universality

Scale-Free networks are widely studied because they are consid-
ered to be very frequent in the real world. Some important papers
discovered the existence of Power-Law degree distribution in a
variety of large real networks, notably:

1. The World Wide Web (webpages) (Barabási and Albert
1999)

2. The internet (physical network) (M. Faloutsos, P. Faloutsos,
and C. Faloutsos 1999)

3. Airline connections (Guimera and Amaral 2004)

4. Scienti�c collaborations (Newman 2001)

5. Romantic interactions (Liljeros et al. 2001)

It must be noted, however, that many real world networks are not
scale-free. A typical counter-example is a road-network, in which
nodes correspond to intersection and edges to roads: for practical
reasons, intersections with large degrees do not make sense.



Why is it called scale free

Because they have no (typical) scale!
It is de�ned in opposition to Poisson and other Bell-Shaped distri-
butions, which are centered around their average value. Let’s
take a typical example: The height of humans follow a Bell-
shaped distribution: the average height is 1.65m, and most hu-
mans are quite close to this value, there is a typical scale of
human height. On the contrary, human wealth distribution fol-
lows approximately a power-law a : a few humans are extremely
wealthy (Billions of $), while more than half the world population
posses less than 10 000$. As a consequence, the average human
wealth (70 000$) is not at all representative of human wealth.

ahttps://en.wikipedia.org/wiki/Distribution_of_
wealth

Central moments
The �rst two central moments of a distribution are the mean 〈k1〉
and the variance 〈k2〉. They are de�ned as

〈km〉 =
∫ ∞
kmin

kmp(k)dk = (α− 1)kα−1
min

∫ ∞
kmin

k−α+mdk

From this, we can conclude that central moments are de�ned
only ifα > m+1, otherwise they diverge towards in�nity, they are
not properly de�ned.
Thus:

1. 〈k2〉 = α−1
α−2

kmin, if and only if α ≥ 2

2. 〈k3〉 = α−1
α−3

k2min, if and only if α ≥ 3

Divergence in practice

In practice, one can always compute the mean and variance of
a provided, observed degree distribution. So what does it mean
that they diverge?
The problem arises when we are not certain to observe the whole
network. Usually, a large sample of a population has the same
mean and variation than thewhole population, and the largest the
sample, the more precise the value.
But in a power law, moments are dominated by the largest val-
ues in the long tail: some rare values are so large that they shift the
moments. So themore data we observe, the higher themoments.

Divergence: consequences

The consequence of divergingmoments is that if the distribution
follows a power law, then if the exponent is below 2, you should
now rely on the mean degree or the variance. If the exponent is
between 2 and 3, you can (relatively) rely on the mean, but not
on the variance. Be careful though, even if α > 2, the mean con-
verges slowly, i.e., you need a very large sample for your mean to
be close to the real value.

Fitting power laws

When confronted with a power law degree distribution, we might
want to �t the distribution, i.e., to �nd the exponent of the distri-
bution. A naive and simpleway to do it is to plot the distribution on
a log-log plot and to �nd the slope of the line, either graphically
or through least-square regression on the log-transformed values
of degrees and frequencies.
This however su�ers froma strongbias: values in the tail are based
on a few samples, and introduce noise.
The most appropriate method is to use Maximum Likelihood Es-
timation (MLEa), taking into account min and max-boundaries, as
described inb

ahttps://towardsdatascience.com/a-gentle-
introduction-to-maximum-likelihood-estimation-
9fb�27ea12f

bGoldstein, Morris, and Yen 2004.

Exponent limits

In real networks, we consider that we should haveα ≥ 2, because
a lower exponent would mean that the distribution is so skewed
that we expect to �nd nodes with a degree larger than the size of
the network.
Furthermore, if the exponent is too large, large degree nodes be-
comes so rare, that the network would need to be enormous to
observe such a node. For instance, with α = 5, we need to ob-
serve N = 1012 nodes to expect to observe a single node of size
1000.

Exponent and shortest-paths

Random networks with Poisson degree distribution already have
a short average distance. However, it is possible to de�ne classes
of networks with even smaller average distance based on the ex-
ponent α:

• α = 2: The biggest hub degree is of orderO(N), thusmost
nodes are at distance 2. The average path length can be
considered a small constant, independent of N

• 2 < α < 3: Ultra Small World: 〈`〉 = log logN
log(α−1)

• α = 3: 〈`〉 = logN
log logN

• α > 3: 〈`〉 = logN , the network behaves approximately
like an ER network.

Scale-free network controversy

There is an on-going debate in the network science community
over the prevalence of scale-free networks. For some authorsa,
most real networks follow to some extent a power-law degree
distribution, while, for some others, scale-free networks are rareb .
The controversy has been studiedc and can be interpreted as
di�erences between scienti�c approaches: one popular among
(some) physicists (scale-freeness is the sign of a universal law) and
another one common among statisticians (scale-freeness is an
empirical characterization).

aBarabási and Bonabeau 2003.
bBroido and Clauset 2019.
cJacomy 2020.

SF networks: what to do
Is your network Scale-Free? The �rst question youmight ask your-
self is: why do you need to know?.

• If the goal is to characterize a network, then plotting the
degree distribution might be more useful than �tting a
power-law exponent to it

• If the goal is to show that the distribution is broad, signi�-
cantly di�erent from a bell-shaped distribution, then plot-
ting the distribution might be enough

• If the goal is to show that the distribution is approximately a
power-law, for instance because an algorithm complexity
or a proof can be made for such cases, then �tting a line
on a log-log plot and talking about power-law-ishmight be
enough

• If on the contrary it is scienti�cally important to argue that
the network is, without doubts, a scale-free networks, then
you need to be fully aware of the controversy and to posi-
tion your work relatively to it.

https://en.wikipedia.org/wiki/Distribution_of_wealth
https://en.wikipedia.org/wiki/Distribution_of_wealth
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