COMMUNITY DETECTION
(GRAPH CLUSTERING)



EOMMUNITY DE | EC THEHS.

» Community detection Is equivalent to “clustering” in
unstructured data

» Clustering: unsupervised machine learning

» Find groups of elements that are similar to each other
- People based on DNA, apartments based on characteristics, etc.

» Hundreds of methods published since 1950 (k-means)
» Problem: what does “similar to each other’ means !



MUNITY DETECTICHS

MiniBatchKMeansAffinityPropagation = MeanShift SpectralClustering

Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




EOMMUNITY DE | EC THEHS.

¢ S

» Community detection: »

» FIind groups of nodes that are:
- Strongly connected to each other
- Weakly connected to the rest of the network
- |deal form: each community is |)A clique, 2) A separate connected component

» No formal definition
» Hundreds of methods published since 2003



WHY COMMUNITY
e T EC O

* One of the key properties of complex networks was

» High clustering coefficient
» (friends of my friends are my friends)

» Different from random networks. How to explain it ?
» Watts strogatz (spatial structure?)

* => |n real networks, presence of dense groups: communities

» Small, dense (random) networks have high density.

» Large networks could be interpreted as aggregation of smaller; denser
networks, with much fewer edges between them



SOME RIS TORS

* I he graph partitioning problem was a classic problem in graph
theory

gl ees |iike this:
» How to split a network in K egual parts such that there Is a minimal number of
edges between parts.

» Variants were proposed:
- What If partitions are not exactly same size !

- What if the number of parts is not exactly k ?



SOME RIS TORS

* Then in 2002, [Girvan & Newman 2002], introduction of the
problem of “community discovery'

» Observation that social networks are very often composed of groups
» The number and the size of these groups Is not known in advance
» Can we design an algorithm to discover automatically those groups ¢

Girvan, Michelle, and Mark EJ Newman. "Community structure in social and biological networks." Proceedings of the national academy of sciences 99.12 (2002): 7821-7826.



COMMUNITY STRUCTURE IN
REAL GRAFES

* If you plot the graph of your facebook friends, it looks like this
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COMMUNITY STRUCTURE IN
REAL GRAFTS

« Connections In the brain ?

A

O = Occipital

O = Central

O = Frontoparietal
@ = Default mode
[] = Rich club

Deactivations




COMMUNITY STRUCTURE IN
REAL GRAFTS

* Phone call communications in Belgium ?




FIRST METHOD BY GIRVAN &
NEWMAN

» | )Compute the betweenness of all edges
 2)Remove the edge of highest betweenness

» 3)Repeat untll all edges have been removed

» Connected components are communities

« => |t Is called a divisive method
* =>What you obtain Is a dendrogram

BEIEWATO cut this dendrogram at the best level ¢



NEWMAN

Cluster Dendrogram
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FIRST METHOD BY GIRVAN &
NEWMAN

* Introduction of the Modularity

* The modularity 1s computed for a partition of a graph

» (each node belongs to one and only one community)

* [t compares :
» The observed fraction of edges inside communities

» To the expected fraction of edges inside communities In a random network



MODULARITY

Original formulation



MODULARITY

Sum over all pairs of nodes



MODULARITY

— A’U'w — | ) )

| It In same community



MODULARITY

| If there Is an edge between them



MODULARITY

Probability of an edge In
a configuration model



MODULARITY

A aleo eeiaEiinee
as a sum by community

C]

S 1.

with L; = L(H (c;)) the number of edges inside community ¢ and
Ki =) ,ce Futhe sum of degrees of nodes in community 4.



MODULARITY

* Modularity compares the observed network to a null

model

» Usually the configuration model
- Multi-edges and loops are allowed
» Other models could be used, such as ER random graphs.

» Natural extension to weighted/multi-edge networks



FIRST METHOD BY GIRVAN &
NEWMAN

* Back to the method:

» Create a dendrogram by removing edges
» Cut the dendrogram at the best level using modularity

* =>|n the end, your objective Is... to optimize the Modularity,
right ¢

* Why not optimizing it directly !



MODULARITY OPTIMIZATION

* From 2004 to 2008: The golden age of Modularity

» Scores of methods proposed to optimize it

» Graph spectral approaches
» Meta-heuristics approches (simulated annealing, multi-agent...)
» Local/Gloabal approaches...

» => 2008: the Louvain algorithm



LOUVAIN ALGORITHM

* Simple, greedy approach
» Easy to implement
» Fast

* Yields a hierarchical community structure

» Beat state of the art on all aspects (when introduced)
» Speed
» Max modularity obtained
» Do not fall in some traps (see later)



LOUVAIN ALGORITHM

» Fach node start In 1its own community

B Pt untll convergence

» FOR each node:

- FOR each neighbor:
it adding node to its community increase modularity, do it

* When converged, create an induced network

» Each community becomes a node
» Edge welight Is the sum of weights of edges between them

* Irick: Modularity 1s computed by community

» Global Modularity = sum of modularities of each community

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



LOUVAIN ALGORITHM

Move nodes

Level 1
Level 2
Mave nadec

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



RESOLUTION LIMIT

* Modularity == Definition of good communities !

» 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]

» Resolution limit of Modularity

BB cc ARl example

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.
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RESOLUTION LIMIT

Let's consider a ring of cliques
~ &K Cligues are as dense as possible

Single edge between them:
& | =>As separated as possible

Any acceptable algorithm=>tach cligue I1s a community



RESOLUTION LIMIT

But with modularity:
Small graphs=> OK

Large graphs=>
The max of modularity obtained
by merging cliques




RESOLUTION LIMIT

» Discovery that Modularity has a “favorite scale™”

* For a graph of given density and size:

» Communities cannot be smaller than a fraction of nodes
» Communities cannot be larger than a fraction of nodes

- Modularity optimisation will never discover

» Small communities in large networks
» Large communities in small networks



RESOLUTION LIMIT

» Multi-resolution modularity

ieii—al.z * Ze — la?

A = Resolution parameter

More a patch than a solution...



OTHER WEAKNESSES

* Modularity has other controversial/not-intuitive properties:

» Global measure => a difference in one side of the network can change
communities at the other end (imagine a growing clique ring...)

» Unable to find no community:

- Network without community structure: Max modularity for partitions driven by random
noIse

» lo this day, Louvain and modularity remain most used

methods

» Results are usually “good”/useful
» Some newer methods gain popularity (SBM, Leiden,...)



ALTERNATIVES

» 1000+ Algorithms published, and counting

* What unfortunately many methods still do:

» They define their own criteria of good communities without being grounded
on existing literature

» They show empirically on a few networks using a single validation method that
their method Is better than Louvain

» Common saying:‘no algorithm is better than other; it depends
on the type of network™(no free-lunch theorem) or"it
depends on the objective’ (I don't really agree, open to
discussion)



ALTERNATIVES

* Most serious alternatives (in my opinion)

» Infomap (based on information theory —compression)
» Stochastic block models (bayesian inference)

* [hese methods have a clear definition of what are good
communities. [ heoretically gsrounded



INFOMAP

* [Rosvall & Bergstrom 2009]

* Find the partition minimizing the description of any random
walk on the network

* We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.



INFOMAP

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 11
0011 1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1011 10 111 000 10 111 000 111 10 011 10 000 111 10 111 10 10
1110100010111 11100111 11101111101 1110 0000 10100 0000

1110100010111 010010110 11010 10111 1001 0100 1001 10111 000110011100111 1101111101011 111 01 101 01 0001 0 110 111
10010100 1001 0100 0011 0100 0011 011011011 0110 0011 0100 11100011 110111 1011 10 111 000 10 000 111 0001 0 111 010 10

1001 10111 0011 0100 0111 10001 1110 10001 0111 0100 10110 1010 010 1011 110 00 10 011 10

m 1110 00011

Description
Random Without

L With communities
walk Communities

Huffman coding: short codes for frequent items
Prefix free: no code is a prefix of another one (avoid fix length/separators)




The Infomap method
Finding the optimal partition M:

« Shannon’s source coding theorem (Shannon’s entropy)
for a probability distribution P = {pi} such that £, pi = 1, the L(P) — H(P) = _ Zpl logpl.
I

lower limit of the per-step code-length is

- Minimise the expected description length of the random walk
Sum of Shannon entropies of multiple codebooks weighted by the rate of usage

probability of within modules movements

ility of |
probability of between modules of a RW, i.e. the rate of usage of the

movements of a RW, i.e. the rate of
module codebook

usage of the index codebook \ - / |
LM) = g~H(2) + 2, pLH(P)

/ Pom X

Exoected decrvotion Entropy of movement between o ,
P Typ modules, i.e. the frequency weighted Entropy of moyement inside modules, i.e. the
length of partition M frequency weighted average length of

average length of codewords q s in th AUl debook
. codewords in the module codeboo
Algorithm

1. Compute the fraction of time each node is visited by the random walker (Power-
method on adjacency matrix)

2. Explore the space of possible partitions (deterministic greedy search algorithm - similar to
Louvain but here we join nodes if they decrease the description length)

3. Refine the results with simulated annealing (heat-bath algorithm)



INFOMAP

gRl@rstim Up:

» Infomap defines a quality function for a partition different than modularity
» Any algorithm can be used to optimize it (like Modularity)

» Advantage:

» Infomap can recognize random networks (no communities)



OCHAS 11C BLOCK MOE S

» Stochastic Block Models (SBM) are based on statistical models
of networks

* They are In fact more general than usual communities.

* The model Is:

» Each node belongs to | and only | community
» To each pair of communities, there Is an associated density (probability of each
EeSERiO eXiST)



Stochastic block models

Stochastic Block Models (SBM)

A stochastic block model is a random graph model defined by:

% number of blocks

b n X 1 vector such as b; describes the index of the
block of node <.

E k x k stochastic block matrix, such as E;; gives

the number of edges between blocks ¢ and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).

Generating networks
1. Take N disconnected nodes

2. Connect each u,v € V nodes with probability M-, -x)

Properties:
« Every vertices in a same module are statistically equivalent
 Vertices in a module are connected by a random graph

- Emergent degree distribution is a combination of Poisson distributions



OCHAS 11C BLOCK MOE S

B EIRCan represent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

Adjacency Matrix Blockmodel Graph Adjacency Matrix Blockmodel
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OCHAS 11C BLOCK MOE S

B ERG R represent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

* This is very powerful and potentially relevant

* Problem: Often hard to interpret in real situations.
» SBM can be “constrained’: we impose that intra d.>inter d.



OCHAS 11C BLOCK MOE S

« Main weakness of SBM:

» Number of clusters must be specified (avoid trivial solution)

- Usual approach to solve 1t

» Similar to k-means in clustering: try different k and measure improvement
(elbow-method)

» Not satisfying

[ZO | & [ReDelre]

Non-parametric SBM
» Bayesian inference
» Minimum Description Length (MDL) (Occam’s razor)




OCHAS 11C BLOCK MOE S

Bayesian Formulation

Priors
PA,k,e,b) = P(A|k,e,b)P(k|e,b)P(e|b)P(b)
P(A|D) B
P(b|A) = Posterior distribution
P(A)

A: adjacency matrix
MGiealieciseguence

e: Matrix of edges between blocks
b: partitions




OCHAS 11C BLOCK MOE S

R @Rstin LiD:

» SBM have a convincing definition of communities
» In practice, inference slower than louvain/infomap
» But more powerful

» Can also say If there is no community

» And also suffer from a form of resolution limit

» Less often used, but regain popularity since works by Peixoto.



EVALUATION OF
COMMUNITY STRUCTURE



EVALUATION

* lwo main approaches:

» Intrinsic/Internal evaluation
- Partrtion quality function
- Individual Community quality function
» Comparison of observed communities and expected communities

- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION



INTRINSIC EVALUATION

» Partition quality function
» Already defined: Modularity, graph compression, etc.

» Quality function for individual community

» Internal Clustering Coefficient

| Epye |
t
S ondlctiance: —
| |E0ut|+|Ein| | E |5 s
- Fraction of external edges # of links to nodes inside

(respectively, outside) the
community



COMPARISON WITH
GROUND TRUTH



SYNTHETIC NETWORKS

e Planted Partition models:

» Another name for SBM with manually chosen parameters
- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

» Problem: how to choose parameters?

- Erther oversimplifying (all nodes same degrees, all communities same #nodes, all intern
densities equals...)

- Or ad-hoc process (sample values from distributions)



SYNTHETIC NETWORKS




SYNTHETIC NETWORKS

* LFR Benchmark [Lancichinetti 2008]

» High level parameters:
- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of external edges of each node
» Varying the mixing parameter makes community more or less well defined

REREEently/ the most popular



SYNTHETIC NETWORKS

LFR Benchmark Networks with 200 Nodes

p=0.1
#Edges=2206

1=0.3
#Edges=2628

#Edges= 2462

e

—



SYNTHETIC NETWORKS

* Pros of synthetic generators:

» We know for sure the communities we should find
» We can control finely the parameters to check robustness of methods

- For instance, resolution limit. ..

RO GRS

» Generated networks are not realistic: simpler than real networks
- LFR:High CC, scale free, but all nodes have the same mixing coefficient, no overlap, ...

- SBM: depend a lot on parameters, random generation might lead to unexpected ground
truth (it I1s possible to have a node with no connections to other nodes of its own
community...)



REAL NETWORKS WITH GT

* In some networks, ground truth communities are known:

» Social networks, people belong to groups (Facebook, Friendsters, Orkut,
students In classes...)

» Products, belonging to categories (Amazon, music...)

» Other resources with defined groups (Wikipedia articles, Political groups for
vote data...)

* Some websites have collected such datasets, e.g.
» http://snap.stanford.edu/data/index.ntml|



http://snap.stanford.edu/data/index.html

REAL NETWORKS WITH GT

e Pros of GT communities:

» Retain the full complexity of networks and communities

R@GnS:

» No guarantee that communities are topological communities.

» In fact, they are not: some GT communities are not even a single connected
EONNPONENL. . .

» Currently, controversial topic

» Some authors say It Is non-sense to use them for validation
» Some others consider It necessary



REAL NETWORKS WITH GT

* Example: the most famous of all networks: Zackary Karate
Club

) (@)
(L
SN )
oZAloN\wdo
§ 7/ \\'G It your algorithm find the right
Q"ng@," ® 0" communities,

“i‘ 24D W Then it is wrong...
e X ®
— N




MEASURING PARTITION
SIMILARITIES

B itaetc or G, we get:

» Reference communities
» Communities found by algorithms

* How to measure their similarity ¢
» NMI => AM|
» AR|



MEASURING PARTITION
SIMILARITIES

H(Y

 NMI: Normalized Mutual Information

» Classic notion of Information Theory: Mutual Information

» How much knowing one variable reduces uncertainty about the other
» Or how much in common between the two variables

- s (20

VoY 2o X z) p(y)

* Normalized version: NM|
» O independent, |: identical

MI(U,V)—-E{MI(U,V)}

e Adjusted fOI” chance: aNMI A O max {H(U), H(V)} — E{MI(U,V))




MEASURING PARTITION
SIMILARITIES

I(X;Y)=) > p(z,y)log (1,2()();;))

/

For all pairs of clusters (yx)

Probability for a node picked at random to belong to both|x and y

Probably for a node picked at random to belong to x



ALGORITHMS COMPARATIVE
FUNALTSIS

Rank | Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gee 32

All methods Overlapping only

Coscia, Michele. "Discovering Communities of Community Discovery." arXiv preprint arXiv:1907.02277 (2019).



BTHER MESO-5CATR
ORGANIZATIONS



MESO-SCALE

* MACRO properties of networks:

» degree distribution, density, average shortest path...

@RS roperties of hetworks:

» Centralities

« MESO-scale: what Is In-between

» Community structure

» Overlapping Community Structure
» Core-Periphery

» Spatial Organization (another class)



CORE-PERIPHERY

» Already introduced In the first class, k-cores, etc.

Figure 4 -~ Core/Periphery Network

R — —

Core-periphery structure in networks  adjacency matrix
core periphery

core

inner core

. .. ...... . o .....
periphery R X
edge (source colour)

o
@® outer core
@

—

S — —



OVERLAPPING COMMUNITIES

* In real networks, communities are often overlapping

» Some of your High-School friends might be also University Friends
» A colleague might be a member of your family

s

» Overlapping community detection is considered much harder

» And Is not well defined

» Difference between “attributes” and overlapping

communities !
» Community of Women, Community of | /7-19yo, Community of fans of...



OVERLAPPING COMMUNITIES

 Many algorithms

» Adaptations of modularity, random walks, label propagations. ..
» Original methods

» Many local methods (local criterium), unlike global optimization for non-
overlapping methods.



OVERLAPPING COMMUNITIES

« Motif-based definitions:

» Cliques
= Of a given size

- Maximal cligues
» N-cliques
- Set of nodes such as there is at least a path of length <=N between them
- Generalization of cliques for N> |
- Computationally expensive



Link clustering - overlapping communities
Link graphs

- Links are replaced by nodes which are connected if the original
links share a node

N o

=

n, e o
B %

- Community detection on link graphs allows for overlapping
communities



K-CLIQUE PERCOLATION

R@idEr ridme: CPM, C-finder)
* Parameter: size k of atomic cliques
» | )Find all cliques of size k

» 2)merge Iteratively all cliques having k-1 nodes iIn common



K-CLIQUE PERCOLATION

9
10

2 5 7 Cliques for k=3:
1 {1,2,3},{1, 3,4},{2, 5, 6}
{5,6,7},15,6,8},{6, 7,8}

{5,7,8},{5, 7,9}

3 4 6 8
k-clique Communities: {2,5.6} {1.2,3}
{1, 2, 3, 4}
{2, 5,6,7,8, 9} {5,6,7}_ {5,6,8}

(57.9) (1.34)

(5,7,8} {6,7,8}




HIERARCHICAL
COMMUNITIES

Lancichinetti, Andrea, et al. "Finding statistically significant communities in networks." PloS one 6.4 (2011): e18961.
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