NETWORK DIFFUSION

Spreading processes
Dynamic ON networks
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Spreading processes

Biological epidemic spreading

Spread of Bubonic Plague
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Spreading processes

Malware spreading
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Microsoft Malware Protection Center

Botnet infections (2010) Mobile malware (2011)



Spreading processes

Social contagion

Wikipedia
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Protest diffusion (Arabian spring)

Adoption spreading (Skype)

Karsai et.al. (2014)



Spreading processes

Why on networks?

(1102) Aieasoor ‘60jq add

- Spreading usually happen through interactions
between agents

« Geographic vicinity

(6002) @so8.4

 Physical connection
» Social interaction
- efc.

* Network structure critically influence the
dynamics of spreading processes
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Dynamical Processes on
complex Networks
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Only an introduction,
Trust the experts
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Spreading processes

S|l - SIR - SIS

Three of the most popular models of diffusion in epidemiology
are the Sl, SIR and SIS models. Letters correspond to the states in
which individuals can be according to the model:

- Susceptible: Individual is not Infected
- Infected. Individual is Infected

- Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and

we define:
s(t) Fraction of individuals in Susceptible state at time ¢

i(t) Fraction of individuals in Infected state at time ¢
r(t) —raction of individuals in Recovered state at time ¢
10 nitial(t = 0) fraction of infected individuals




Spreading processes
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Homogeneous mixing

Non-network approach

- Any individual can interact with any other
« The population has a finite size

* Individuals have an average number of contacts
per unit of time

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
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S| model

T Infectivity: probability that the contact between an
Infected individual and a Susceptible one results in
the infection of the Susceptible.

Contact rate: average number of contact per person
per time

B Effective contact rate, 3 = 7¢, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

Bl

:00 . :00
® ®
o2 oS0

o

=)
®
O




I

The S| model

Each of the i infected individuals infects in average g contacts,
but only s = (1 — ¢) of its contacts are indeed susceptible. More
formally using differential equations:

d Rate of new infection: & = Bis = B(1 — )i
i(t) Infected fraction?: i(t) = 1_;;346_%.06 =

s(t) Susceptible fraction: 1 — i(¢)

The process can be separated in three steps:

- At first, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected. Saturation
(i is small, % ~ Bi = exponential)

- Due to saturation, the infection of the last indivi~~Ie ibl

slow ' ' '
- The growth is faster and faster until half the popu 0.9 I-
infected (argmax,, ,(z(1 —x)) : . =y = 0.5). 9 0.8 L _
©
If 5> 0, everyone is infected at the end of the process. 2 0.7 _
o
L
9Barrat, Barthelemy, and Vespignani 2008. S 06 -
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The S| model

Example: technology adoption

CONSUMPTION SPREADS FASTER TODAY
'I

PERCENT OF U.S. HOUSEHOLDS

100%
80 P /
“ REFRIGERATOR A
ELECTRICITY ,#~nu= A
td ’
60 " - ,I,
z S & CLOTHES
’ [/ WIAS o
. WASHE AIR CONDI- i
/’ TIONING ) '
40 , 4
TELEPHONE .-=7 - CLOTHES :""’F\' : !
- ’ r.l:“"FF; L) S" : v /l ' -
2l WASHER i + M INTERNE
20 FA ot ’,' ,’
Pt - MICROWAVE J - CELLPHONE
g " d P
L L o d? ,
1915 1930 1945 1960 1975 1990 2005
HBR.ORG

1900
SOURCE MICHAEL FELTON, THE NEW YORK TIMES



I

The SIS model

Additionally to 3, the SIS model reduires another parameter:
L4 recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.
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The SIS model

Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di Rate of new infection: 5i(1 — i) — pi = (8 — u — Bi)
i(t) | Infected fraction”: (1 — %) 1%5;_“ :;t

For large times, i(t) — 1 — % L.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters u
and g.

9Barrat, Barthelemy, and Vespignani 2008.
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The SIS model

A ratio or (Ry)
In the SIS model, an important notion is the A ratio, also called Rp.

o= 7

!

R can be understood as the average number of individuals that ‘ A=2
will be infected by an infected individual, in a population in which l
all other nodes are Susceptible. R is a property of the model
and do not change with time. ‘
Looking at the Rg is important in the early stage of the epidemic: /* *\

- If Rg > 1, there will be an outbreak ‘ ‘ ‘ ‘

-+ if Ry < 1, the epidemic will disappear naturally.

If R isjustabove 1, the outbreak also can stop naturally by chance
In the early stage.




The SIR model

Additionally to 3, the SIR model requires another parameter:
v recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

BT
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Spreading processes

1
Susceptible
c
T 9
SIR - characteristics T K
>
Intuitively, the fraction of infected individuals is now reduced by Q.
Y o Recovered
those switching to the recoved state, more formally: o 05
Ha .
ds dz dr
%——5’&8,%—513—’%%—’)’2 g
Q
- The initial steps of the outbreak still follow an exponential ©
growth L
- The fraction of infected nodes reach a peak and then de- /'
creases 0 Infected

- The fraction of recovered saturates below 1 Time t

- The fraction of susceptible do not necessarily reach O

- The A ratio is defined as A = %
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Spreading processes

Many other models exist:

SIRD, MSIR, SEIR

SEIS, MSEIRS

Variable contact rate
Voter
Majority rule
Ftc.

Check for instance:
https://ndlib.readthedocs.io/en/latest/reference/reference.ntml#diffusion-
models



https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models
https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models

Spreading on
Networks
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Epidemic spreading on networks

'he homogeneous mixing approach Is clearly
unrealistic: Interactions are organized In networks

40 - &Y

How much does 1t affect spreading!

¢ becomes useless: f=r



Epidemic spreading on networks
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Homogeneous networks

Homogeneous | |
Mixing | % | Rateofnew infection: & = Bis = B(1 — i)i

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ¢ = k.
For instance, the SI model becomes:

di

. : k 1 _ . .

— = Bk)(1 — )i

Note that in practice, there are a few differences, such as a switch

from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER random graph =>approximation still holds,

(k= (k))



Epidemic spreading on heterogeneous networks

- In degree heterogeneous networks the k = <k)
approximation does not hold

- Solution: Degree Block Approximation

- Assumption: all nodes with the same degree are
statistically equivalent

 Look for infection/susceptible node densities in the
degree groups
Uk
Sk

- Calculate the global average by a sum considering
the degree distribution

Z:ZP(k)Zk S:ZP(k)Sk

k



Epidemic spreading on heterogeneous networks

Homogeneous di — BN — 2
Networks dt Bk )

Heterogeneous Degrees - S

For the SI model, we know that all nodes are infected in the end,

but what may vary Is speed of the process.
The speed of diffusion by degree block can be expressed as:

dig,
— = Bk(1 — )0
- Bk(1 — ix)Oy
with ©; being the fraction of infected neighbors of a node with

degree k.




Epidemic spreading on heterogeneous networks

+ Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

- Inreal networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have different
degrees in their neighborhood.

Or = S, P(K|k)iy

* Assume: no degree-degree correlations in the network

¥P(') K Pk
S KPR (k)

P(k'|k) =

And: / Ny
_ Zk/ k P(k )Zk

Ok =O (&)
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S| process on heterogeneous networks

Heterogeneous Degrees - Sl - time scale

From previous equations, it can be shown® that the time scale r

of the process, i.e., a measure inversely proportional to its speed,
& (k)

ST = BR —(R) |

Thus, for a given average degree (k) and a given 3, the more het-
erogeneous the degrees, the faster the diffusion.

If the degree distribution follows a power law of exponent o < 3,
we have seen that (k2) diverge towards infinity, thus 7 tends to-
ward O, thus the diffusion is nearly instantaneous.




S| process on heterogeneous networks
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SIS process on heterogeneous networks

Heterogeneous Degrees - )

For SIS and SIR models, it can also be shown? that the epidemic
threshold X\ (or Rg) is not reached when \ = @ > 1 as in ho-

mogeneous networks, but when A > %

This means that in a very heterogeneous network, an outbreak
can start even if )\ is very small, and below 1. Intuitively, even if



Community structure and spreading

~—(A) Structural Trapping—
Multiple

(B) Social Reinforcement
Multiple |

. Exposures ] ::
Q

(C) Homophily

\

\}
\
\

(D) Retweet Network

English

Fox News

#foxnews

Example:
Opinion diffusion

(Competing diffusion processes)

(A) Structural trapping: dense communities with few outgoing links naturally trap information flow. (B) Social reinforcement.
people who have adopted a meme (black nodes) trigger multiple exposures to others (red nodes). In the presence of high
clustering, any additional adoption is likely to produce more multiple exposures than in the case of low clustering, inducing
cascades of additional adoptions. (C) Homophily: people in the same community (same color nodes) are more likely to be
similar and to adopt the same ideas.

Stegehuis, C., Van Der Hofstad, R., & Van Leeuwaarden, J. S. (2016). Epidemic spreading on complex networks with community structures. Scientific reports, 6, 29748.



Experiments



SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.

Network parameters. n = 1000, (k) = 5.

SBM parameters Number of blocks |C| = 100. We vary L™,
the fraction of all edges that are inside blocks. When L™
0.01,p"" ~ p°*t = 0.005. When L** = 0.9,p*™ = 0.5, p°u?
0.0005

SIR parameters. 6 = 0.2,y = 0.5. The initial number of infected
nodes is 5, all of them in the same community structure.

0

We observe that the more marked the communities, the less
efficient the spreading process.




SIR - Scale Free

In this experiment, we compare an ER network to Configuration
Models with power law degree distributions.
Network parameters:n = 1000, (k) = 5. We vary the exponent of
the distribution, while keeping (k) = 5 constant.
SIR parameters. 6 = 0.2,y = 0.5. The Initial number of infected
nodes is 5, all of them in the same community structure.

175 A

150

125

0 40 50

The highest the exponent of the degree distribution, the faster is
the diffusion.




SIR - Spatial effect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the 1 dimensional
space. If p = 1, each node is connected to exactly k random
nodes.

Network parameters:n = 1000, (k) = 5

SIR parameters. 0 = 0.2,y = 0.5. The initial number of infected
nodes is 5, being 5 direct neighbors.

step

The more nodes tend to be connected to direct neighbors in
space, the slower the diffusion.




Applications



Applications

- Model fitting (to better know an observed diffusion)
- Predicting future trends
 Epidemic control

» Vaccine, etc. => Which nodes/edges to target?

- Example of strategy: friend paradox
« Vaccine contacts of random nodes instead of random nodes

{ 9Cohen, Havlin, and Ben-Avraham 2003. J




Recent example

Preprint
Mobility network models of COVID-19 explain inequities and
inform reopening

Chang, S., Pierson, E., Koh, P. W., Gerardin, J., Redbird, B., Grusky, D., & Leskovec, J. (2020). Mobility network
models of COVID-19 explain inequities and inform reopening. Nature, 1-8.

Serina Chang'?, Emma Pierson'*?, Pang Wei Koh'?, Jaline Gerardin®, Beth Redbird*?,
David Grusky®’ & Jure Leskovec'®™

'Department of Computer Science, Stanford University, Stanford, CA, 94305, USA. ?Microsoft Research, Cambridge, MA, 02142, USA. *Department of Preventive Medicine, Northwestern
University, Chicago, IL, 60611, USA. “Department of Sociology, Northwestern University, Evanston, IL, 60208, USA. °Institute for Policy Research, Northwestern University, Evanston, IL,
60208, USA. ®Department of Sociology, Stanford University, Stanford, CA, 94305, USA. ‘Center on Poverty and Inequality, Stanford University, Stanford, CA, 94305, USA. 8Chan Zuckerberg
Biohub, San Francisco, CA, 94158, USA. °These authors contributed equally: Serina Chang, Emma Pierson, Pang Wei Koh. ®e-mail: jure@cs.stanford.edu



Mobility network models of COVID-19 explain inequities and
inform reopening

Serina Chang'?, Emma Pierson"?°, Pang Wei Koh'?, Jaline Gerardin®, Beth Redbird*>,
David Grusky®’ & Jure Leskovec'?™

'Department of Computer Science, Stanford University, Stanford, CA, 94305, USA. *Microsoft Research, Cambridge, MA, 02142, USA. *Department of Preventive Medicine, Northwestern
University, Chicago, IL, 60611, USA. “Department of Sociology, Northwestern University, Evanston, IL, 60208, USA. °Institute for Policy Research, Northwestern University, Evanston, IL,
60208, USA. °Department of Sociology, Stanford University, Stanford, CA, 94305, USA. ‘Center on Poverty and Inequality, Stanford University, Stanford, CA, 94305, USA. 8Chan Zuckerberg
Biohub, San Francisco, CA, 94158, USA. °These authors contributed equally: Serina Chang, Emma Pierson, Pang Wei Koh. ®e-mail: jure@cs.stanford.edu



Applications

Data: SafeGraph, a company that aggregates anonymized
location data from mobile applications

Period: March 1- May 2 - 2020

Time scale: Hourly movements



Applications

Data type: CBG -> POI

CBG: Census Block Group (small Area, 600-3000 people)
POI: Point of Interest

Access to location and type

Restaurant

Grocery store
Religious Establishment
etc.



Applications

Population: 98 Million people (anonymized)
CBG: 59945
POl 55,/58

Hourly Edges: 5.4 Billion

Split my metropolitan Erea
Chicago, New York, etc.
Fach an independent model



Applications

Model: SEIR

| with infectons Exposed:
Susceptible gy Exposed
Infected but not aware
Disease |progresses in and not COﬂtaglOUS

infected |person

Person
recovers after
disease has
completed its
course

Recovered Infectious



Applications

Model: SEIR

5O NE),,, - Binom(ES), 1/5;) 2)
N(Stc)ﬁECfPois(N—" > /l(t) ) + Binom(s, 1) (1)
o NO,. ~Binom(1?,1/6), (3)

where )l“) is the rate of infection at POl p; at time ¢; w\", the ij-th entry
of the v151t matrix from the mobility network (Methods M2), is the
number of visitors from CBG¢;to POl p;attime ¢; /1“) isthe baserate of
infection thatis independent of visiting POls; o, is the mean latency

period; and §,is the mean infectious period.

Param. | Description Value (Source)
O mean latency period 96 hours2*:63
Or mean infectious period 84 hou;s%f‘




Applications

For a particular PO
Infection rate at t depends on:
-Fraction of infected visitors at ¢
-Transmission rate

-Transmission rate f at t depends on;
-Size of the PO

-Number of visitors at t

-Shared learnt parameter

We model the infection rate at POl p; at time ¢, )l(t) ﬂ(t) I“’/V(t)
asthe productofits transmissionrate ﬁg)and proportlon oflnfectlous

individuals /¢ )/ V(t ) whereV(t) =y w(‘)lsthe totalnumber of visitorsto
p;attimet. We model the transmlssmn rate at POl p;at time t as

V(t)
ﬁ(t) =y- d _b (8)

where a, is the physical area of p;, and ¢ is a transmission constant
(shared acrossall POIs) that we fit to data. The inverse scaling of trans-
mission rate with area a, lS a standard simplifying assumption®. The



Applications

Each CBG has its own model
Prevalence of each state varies by SBG,
c.f. degree blocks

(a) Mobility networks in Chicago metro area
March 2, 2020 (Monday), 1pm Epidemiological model

R Q@

I/V,/ = # visits from c;to p;in hour ¢

Points of L
interest (POls) | - = -

Census block
roups (CBGs) 1 |

sdl s |85
~ =~ | | =
Eq E; E3
Points of ——L -
interest (POIs) | -~ = = II £ £ (X X )
Ry Ry (B3

Census block
[roups (CBGs)




Applications

Only 3 parameters to learn, constant over
time:
-Scaling in PO (size*visitors*®?) (proxy p)
-CBG transmission rate (f3)
-Inrtial proportion of exposed individuals

Fit using RMSE

(minimizing the root of the mean square error)

=>Run various simulations with different sets of parameters to find those generating a
diffusion as close as possible from observed data.



Applications

Daily confirmed cases

(c)

Prediction of future trends

Out-of-sample fit
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3.0k- 'Model
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04-15
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Model fit for Chicago metro area

Full fit

—e— Model predictions
| —=— Reported cases

04-15
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(d) Model fits for other metro areas (full fit)
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Applications

Magnitude of mobility reduction Timing of mobility reduction
no reduction 30Kk - 7 days later
—~ 30k] —o— 25% of actual 3 days later
~ 0 —e— 0 days (actual)
o —e— 50% of actual
S o5k actual 25k1 —e— 3 days earlier
& —e— 7 days earlier
What if o 20
n 20k
c
o
' +J
O 15k 1
Scenarios 8 151
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0.0- . . .
0.0 ! | | 03-01 03-15 03-29 04-12 04-26
03-01 03-15 03-29 04-12 04-26 Date
e e (d) Predicted increase in infections from reopening
_ . " different POI categories on May 1, 2020
(C) Capping hourly visits at x% of Full-Service Restaurants - F

POI maximum occupancy Fitness Centers
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Applications

(d)

=
N

o
&

Per capita mobility

o
W

0.2

&
o

o
n

Explaining social phenomenon:
Bottom income population

more affected than
top Income population

Chicago metro area:
per capita mobility over time

—— bottom income decile
—— top income decile

03-01

03-15

03-29 04-12  04-26
Date

Mobillity Is less reduced by
lockdown
=>More essential workers
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Explaining social phenomenon:
Bottom income population
more affected than
top Income population

(e) Chicago metro area:
transmission rates by category
1.47 Religious Organizationgy
1.2

FulServie Restaurangl More risks In essential
Hotels & Motels, S-to reS,

Cafes & Snack Bars

Fitness Centers nOtably due _tO Sma”er;

[EY
o

=
o)

Avg transmission rate,
bottom income decile

I(-)lgréware SS,I;c(o{%ss o ®
rf>cery ¢Limited-Service Restaurants
o5 o more crowded local stores
0.2 ¢
Other Gengral scog®

0.04

y=X

0.00 025 050 0.75 1.00 1.25
Avg transmission rate,
top income decile



Applications

Policies guidance!

(C) Chicago metro area:
predicted infections by category

Full-Service Restaurants 1
Religious Organizations -
Grocery Stores -
Limited-Service Restaurants 1
Cafes & Snack Bars 1
Hardware Stores 1
Automotive Parts Stores 1
Offices of Physicians -
Other General Stores -
Fitness Centers 1

Hotels & Motels -

Used Merchandise Stores
Gas Stations

Sporting Goods Stores
Pharmacies & Drug Stores
Pet Stores

Hobby & Toy Stores
Convenience Stores
Department Stores

New Car Dealers

—— bottom income decile
—— top income decile

0 500 1000 1500 2000 - 2500
Cumulative infections (per 100k)

Risks come from different
Sources for different populations



