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Malware spreading
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Spreading processes
Social contagion

Information spreading Rumour spreading
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Spreading processes

Why on networks?

• Spreading usually happen through interactions 
between agents

• Geographic vicinity
• Physical connection
• Social interaction
• etc.

• Network structure critically influence the 
dynamics of spreading processes
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 blog, Jooseery (2011)

Freese (2009)
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I’m not an epidemiologist!

Only an introduction,
Trust the experts
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

SI

SIS

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

SIR



Homogeneous mixing
Non-network approach

• Any individual can interact with any other
• The population has a finite size
• Individuals have an average number of contacts 

per unit of time

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. 
Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Thismodel requires
one parameter:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals can infect � contacts, but only
s = (1 � i) of them are indeed susceptible. more formally using
di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fraction: i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

Exponential outbreak

Saturation
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

Example: technology adoption
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.
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�
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fractiona :
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

aBarrat, Barthelemy, and Vespignani ����.



The SIS model

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

λ=2



The SIR model

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.



Spreading processes

Recovered

Infected

Susceptible

Time t

Fr
ac

tio
n 

of
 p

op
ul

at
io

n

0

1

0.5

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.



Spreading processes

Many other models exist:
SIRD, MSIR, SEIR

SEIS, MSEIRS
Variable contact rate

Voter
Majority rule

Etc.

Check for instance: 
https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-

models

https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models
https://ndlib.readthedocs.io/en/latest/reference/reference.html#diffusion-models
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Epidemic spreading on networks

The homogeneous mixing approach is clearly 
unrealistic: interactions are organized in networks

How much does it affect spreading?

β = τ becomes useless:̂c



Epidemic spreading on networks
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Homogeneous networks

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.
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Spreading Processes

Spreading - Di�usion

In many real world situations, networks can be seen as support
of spreading or di�usion processes. Typical examples are dif-
fusion of information, innovation, rumors, biological or computer
virus, adoption of ideas or products, etc. The support can be so-
cial networks of interactions, social media platforms of computer
networks, to name a few.
A typical way to model such a process is to assign properties to
nodes, categorical or numerical, to represent the current status of
the node relatively to the process (e.g., Susceptible, Infected).
We can also call such a process Dynamic On Networks, as op-
posed to Dynamics Of Networks.

SI - SIR - SIS
Three of the most popular models of di�usion in epidemiology
are the SI, SIR and SISmodels. Letters correspond to the states in
which individuals can be according to the model:

• Susceptible: Individual is not Infected

• Infected: Individual is Infected

• Recovered/Removed. Individual cannot be infected
again (Considered cured or dead)

All individuals are in one of the states allowed by the model, and
we de�ne:
s(t) Fraction of individuals in Susceptible state at time t
i(t) Fraction of individuals in Infected state at time t
r(t) Fraction of individuals in Recovered state at time t
i0 Initial(t = 0) fraction of infected individuals

SI
In the SI model, individuals can be only in two states, Suscepti-
ble and Infected. Susceptible ones can become Infected, and In-
fected individuals rest in this state inde�nitely. Parameters are:
⌧ Infectivity: probability that the contact between an

Infected individual and a Susceptible one results in
the infection of the Susceptible.

ĉ Contact rate: average number of contact per person
per time

� E�ective contact rate, � = ⌧ ĉ, number of newly
infected individuals by each infected individual in a
population in which everyone else is susceptible.

S I
�

SI - characteristics
Each of the i infected individuals infects in average � contacts,
but only s = (1 � i) of its contacts are indeed susceptible. More
formally using di�erential equations:

di
dt Rate of new infection: di

dt = �is = �(1� i)i

i(t) Infected fractiona : i(t) = i0e
�t

1�i0+i0e�t

s(t) Susceptible fraction: 1� i(t)

The process can be separated in three steps:

• At �rst, the fraction of infected individuals Grows expo-
nentially until a large fraction of the population is infected.
(i is small, di

dt ⇡ �i ) exponential)

• Due to saturation, the infection of the last individuals is
slow

• The growth is faster and faster until half the population is
infected (argmaxx,y(x(1� x)) : x = y = 0.5).

If � > 0, everyone is infected at the end of the process.

aBarrat, Barthelemy, and Vespignani ����.

SI - Sketch

SI - Application

An example in which this model can be appropriate is for di�usion
of innovation: being infected means buying or using a new ser-
vice, product or technology whose usage becomes widespread
in society, e.g., television, cell-phone, internet, Net�ix, etc.

SIS
When modeling real viruses, it is often useful to consider that
infected individuals can recover, i.e., go back to the susceptible
state, without becoming immune, such as for common cold or in-
�uenza. This can be modeled using the SISmodel.
Additionally to �, the SIS model requires another parameter:

µ recovery rate: probability that an Infected individual
go back to the susceptible state per unit of time.

S I
�
�

SIS - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the susceptible state, more formally:

di
dt Rate of new infection: �i(1� i)�µi = i(��µ��i)

i(t) Infected fraction:
⇣
1� µ

�

⌘
Ce(��µ)t

1+Ce��µ)t

For large times, i(t) ! 1� µ
� , i.e., the fraction of infected individu-

als stabilize around a value which depends only of parameters µ
and �.

Homogeneous
Mixing

ER random graph =>approximation still holds, 
( )k ≈ ⟨k⟩



Epidemic spreading on heterogeneous networks
• In degree heterogeneous networks the k ≃ ⟨k⟩ 

approximation does not hold

• Solution: Degree Block Approximation
• Assumption: all nodes with the same degree are 

statistically equivalent
• Look for infection/susceptible node densities in the 

degree groups

• Calculate the global average by a sum considering 
the degree distribution

i =
X

k

P (k)ik s =
X

k

P (k)sk

Node class with degree k=1

Node class with degree k=2

Node class with degree k=3

i =
X

k

P (k)ik
s =

X

k

P (k)sk
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SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.

S I
�

R
�

SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

SIS - Sketch

� ratio or (R0)

In the SIS model, an important notion is the � ratio, also calledR0 .

R0 =
�

µ

R0 can be understood as the average number of individuals that
will be infected by an infected individual, in a population inwhich
all other nodes are Susceptible. R0 is a property of the model
and do not change with time.
Looking at the R0 is important in the early stage of the epidemic:

• if R0 > 1, there will be an outbreak

• if R0 < 1, the epidemic will disappear naturally.

IfR0 is just above �, the outbreak also can stop naturally by chance
in the early stage.

SIR
In many spreading situations, infected individuals can themselves
switch to a new state, usually called Recovered, which can repre-
sent either an acquired immunization or its removal (death, com-
puter failure, etc.). In any case, Recovered individuals cannot in-
fect nor be infected.
Additionally to �, the SIR model requires another parameter:

� recovery rate: probability that an Infected individual
switch to the Recovered state per unit of time.
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SIR - characteristics
Intuitively, the fraction of infected individuals is now reduced by
those switching to the recoved state, more formally:

ds

dt
= ��is,

di

dt
= �is� �i,

dr

dt
= �i

• The initial steps of the outbreak still follow an exponential
growth

• The fraction of infected nodes reach a peak and then de-
creases

• The fraction of recovered saturates below �

• The fraction of susceptible do not necessarily reach �

• The � ratio is de�ned as � = �
�

SIR - sketch

Other non-network models
Epidemic modeling is a large and rich scienti�c topic, thus those
models are nowadays considered toymodels, too simple tomodel
real epidemics. Most used model thus include other factors,
such as natural population dynamic (birth, natural death, etc. for
long term dynamics), population segmentation (tau might di�er
among subsets of populations, e.g., elderly, maried couples, etc.),
populationmixing (ĉmight vary between members of a subpop-
ulation and another), etc.

Network models
A natural way to add more details to a spreading process is, in-
stead of considering an homogeneous population, or a population
composed of homogeneous subpopulations, to study the di�u-
sion on a network representing the structure of the population.
ĉ has no meaning in networks (its role is played by the network
structure), so by convention we use � = ⌧ the probability for a
node to infect each of its neighbor at each step.

Homogeneous Networks

If we consider an homogeneous random network in which all
nodes have degree exactly k, then we can consider the spreading
on this network as similar to the non-network models, with ĉ = k.
For instance, the SI model becomes:

di

dt
= �hki(1� i)i

Note that in practice, there are a few di�erences, such as a switch
from a continuous to a discrete setting, but they have no conse-
quences on large graphs.

ER Networks
In ER random graphs, for large graphs, we have seen that k ⇡ hki,
thus the same model description still holds, with the approxima-
tion being better for larger networks.

Heterogeneous Degrees - Degree blocks

We have seen that most real networks have an heterogeneous
degree distribution. To study analytically the e�ect of this prop-
erty, a method is to use a degree block approximation: we
consider all nodes with a given degree as an homogeneous
groups(degree block), and analyze each of these groups sepa-
rately.
ik, sk, rk : fractions of nodes of degree k that are infected, suscep-
tible, recovered, respectively.
The global average is the average for all degree block, weighted
by the fraction of nodes in each block. i =

P
k P (k)ik with P (k)

the fraction of nodes having degree k.
The same holds for global s and r.

Heterogeneous Degrees - SI

For the SI model, we know that all nodes are infected in the end,
but what may vary is speed of the process.
The speed of di�usion by degree block can be expressed as:

dik
dt

= �k(1� ik)⇥k

with ⇥k being the fraction of infected neighbors of a node with
degree k.

Homogeneous
Networks
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Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From⇥k , it can be showna that the time scale ⌧ of the process, i.e.,
a measure inversely proportional to its speed, is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.

aBarrat, Barthelemy, and Vespignani ����.

Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From⇥k , it can be showna that the time scale ⌧ of the process, i.e.,
a measure inversely proportional to its speed, is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.

aBarrat, Barthelemy, and Vespignani ����.

Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

• Assume: no degree-degree correlations in the network

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected ⇥k =

P
k0 P (k0|k)ik0 , with P (k0|k) the probability

that a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.

aBarrat, Barthelemy, and Vespignani ����.

Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = 5.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = 5. We vary the exponent of
the distribution, while keeping hki = 5 constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = 5
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.



SI process on heterogeneous networks

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
k00 k00P (k00)

=
k0P (k0)

hki

And:

⇥k = ⇥ =

P
k0 k0P (k0)i0k

hki

Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.

aBarrat, Barthelemy, and Vespignani ����.

Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
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=
k0P (k0)
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And:
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Heterogeneous Degrees - SI - time scale

From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.
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⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:
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From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes
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SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
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SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
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The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.

Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
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From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = k.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = k. We vary the exponent of
the distribution, while keeping hki = k constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = k
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.



Community structure and spreading

(A) Structural trapping: dense communities with few outgoing links naturally trap information flow. (B) Social reinforcement: 
people who have adopted a meme (black nodes) trigger multiple exposures to others (red nodes). In the presence of high 
clustering, any additional adoption is likely to produce more multiple exposures than in the case of low clustering, inducing 
cascades of additional adoptions. (C) Homophily: people in the same community (same color nodes) are more likely to be 
similar and to adopt the same ideas.

Stegehuis, C., Van Der Hofstad, R., & Van Leeuwaarden, J. S. (2016). Epidemic spreading on complex networks with community structures. Scientific reports, 6, 29748.

Example:
Opinion diffusion

(Competing diffusion processes)
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Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)

P
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From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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Heterogeneous Degrees - �

For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = 5.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = 5. We vary the exponent of
the distribution, while keeping hki = 5 constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = 5
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.



Heterogeneous Degrees - ⇥k

⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:

P (k0|k) =
k0P (k0)
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From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes

aBarrat, Barthelemy, and Vespignani ����.

SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = 5.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = 5. We vary the exponent of
the distribution, while keeping hki = 5 constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = 5
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.
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⇥k represents the fraction of infected neighbors of a node with
degree k. If the network is homogeneous, ⇥k(t) = i(t). If the
graph is heterogeneous, nodes with di�erent degrees have di�er-
ent probabilities of being infected: higher degree nodes are, by
de�nition, more exposed, since they have more chances of being
infected at each step.
This is important for two reasons:

• Due to the friendship paradox, nodes are more likely to be
connected to large nodes than to small ones

• In real networks, we have seen that there is often a degree
assortativity, thus nodes of a given degree have di�erent
degrees in their neighborhood.

We can thus de�ne ⇥k as the probability to be connected to
nodes of a given degree and or their respective probability of be-
ing infected⇥k =

P
k0 P (k0|k)i0k , with P (k0|k) the probability that

a node with degree k connects to a node with degree k0 .
For simplicity, we assume no degree-degree correlation.
P (k0|k) can then be expressed as the fraction of all edge stubs
attached to nodes of degree k0, indepedent of the k under study:
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From previous equations, it can be showna that the time scale ⌧
of the process, i.e., a measure inversely proportional to its speed,
is ⌧ = hki

�(hk2i�hki) .
Thus, for a given average degree hki and a given �, themore het-
erogeneous the degrees, the faster the di�usion.
If the degree distribution follows a power law of exponent ↵ < 3,
we have seen that hk2i diverge towards in�nity, thus ⌧ tends to-
ward �, thus the di�usion is nearly instantaneous.
This can be understood as follows: if a node is connected to nearly
every other node, then it has an extremely high probability to be-
come infected immediately, and can then infect the rest of the
network extremely quickly.
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For SIS and SIR models, it can also be showna that the epidemic
threshold � (or R0) is not reached when � = �hki

µ > 1 as in ho-

mogeneous networks, but when � > hki
hk2i .

This means that in a very heterogeneous network, an outbreak
can start even if � is very small, and below �. Intuitively, even if
people recover faster than they spread the virus in average, some
nodes (hubs) will nevertheless become infected, and since they
can infect many others, the contagion will spread.
Fortunately, it can also be shown that such an outbreak will stop
way before reaching all nodes
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SIR - Experimental

When analytical solutions cannot be simply derived, empirical
simulations can be used to observe the e�ect of network prop-
erties on di�usion processes.
In particular, these properties can be used to asses the e�ect
of typical heterogeneity: degree-heterogeneity, belonging to
blocks, spatial heterogeneity, etc.

SIR - Community Structure

In this experiment, we compare an ER network to Stochastic Block
Models.
Network parameters: n = 1000, hki = 5.
SBM parameters Number of blocks |C| = 100. We vary Lin,
the fraction of all edges that are inside blocks. When Lin =
0.01, pin ⇡ pout = 0.005. When Lin = 0.9, pin = 0.5, pout ⇡
0.0005
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

We observe that the more marked the communities, the less
e�cient the spreading process.

SIR - Scale Free
In this experiment, we compare an ER network to Con�guration
Models with power law degree distributions.
Network parameters:n = 1000, hki = 5. We vary the exponent of
the distribution, while keeping hki = 5 constant.
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, all of them in the same community structure.

The highest the exponent of the degree distribution, the faster is
the di�usion.

SIR - Spatial e�ect - WS

In this experiment, we compare an ER network to Watts Strogatz
random graphs, varying the probability of rewiring edges. It can
be understood as a model of spatial proximity: with p = 0, each
node is connected only to its direct neighbors in the � dimensional
space. If p = 1, each node is connected to exactly k random
nodes.
Network parameters:n = 1000, hki = 5
SIR parameters: ✓ = 0.2,� = 0.5. The initial number of infected
nodes is �, being � direct neighbors.

The more nodes tend to be connected to direct neighbors in
space, the slower the di�usion.
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Applications

• Model fitting (to better know an observed diffusion)
• Predicting future trends
• Epidemic control

• Vaccine, etc. => Which nodes/edges to target?

• Example of strategy: friend paradox
• Vaccine contacts of random nodes instead of random nodes

Application of di�usion models

Di�usion models can be used for several applications:

• Model �tting: better understand an actual epidemic by �t-
ting parameters on real observations

• Predicting trends of evolution

• Control of epidemics: Given an epidemicmodel and a sup-
porting network, �nd an optimal solution to control (accel-
erate or slow-down) the epidemic.

Optimal node/edge removal

One way to slow-down an epidemic consist in removing
nodes(e.g., vaccination). The problem can be formulated as
a budget constrained removal, i.e., if we can remove only x
nodes/edges, which one should we choose? Based on theoreti-
cal and experimental results, heuristic solutions consist in remov-
ing: highest degree nodes, highest betweeness nodes/edges
(isolating communities), long-distance edges (shortcuts) in spatial
networks.

Friendship paradox and node removal

It has been proposeda that the friendship paradox could be used
to apply budget-constrained high degree nodes preferential vac-
cination in real networks where �nding such nodes is not possible
because the whole network is unknown: instead of targeting ran-
dom individuals, one could vaccinate random contacts of random
individuals, thus greatly increasing the average degree of vacci-
nated persons.

aCohen, Havlin, and Ben-Avraham ����.

Going further

Book Dynamic processes on Networks: Barrat, Barthelemy, and
Vespignani ���� Surveys: Analysis and Control of Epidemics:
Nowzari, Preciado, and Pappas ���� Di�usion in networks: Lam-
berson ����
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The COVID-19 pandemic dramatically changed human mobility patterns, 
necessitating epidemiological models which capture the e!ects of changes in 
mobility on virus spread1. We introduce a metapopulation SEIR model that integrates 
"ne-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in 10 of 
the largest US metropolitan statistical areas. Derived from cell phone data, our 
mobility networks map the hourly movements of 98 million people from 
neighborhoods (census block groups, or CBGs) to points of interest (POIs) such as 
restaurants and religious establishments, connecting 57k CBGs to 553k POIs with 5.4 
billion hourly edges. We show that by integrating these networks, a relatively simple 
SEIR model can accurately "t the real case trajectory, despite substantial changes in 
population behavior over time. Our model predicts that a small minority of 
“superspreader” POIs account for a large majority of infections and that restricting 
maximum occupancy at each POI is more e!ective than uniformly reducing mobility. 
Our model also correctly predicts higher infection rates among disadvantaged racial 
and socioeconomic groups2–8 solely from di!erences in mobility: we "nd that 
disadvantaged groups have not been able to reduce mobility as sharply, and that the 
POIs they visit are more crowded and therefore higher-risk. By capturing who is 
infected at which locations, our model supports detailed analyses that can inform 
more e!ective and equitable policy responses to COVID-19.

In response to the COVID-19 crisis, stay-at-home orders were enacted 
in many countries to reduce contact between individuals and slow 
the spread of the virus9. Since then, public officials have continued to 
deliberate over when to reopen, which places are safe to return to, and 
how much activity to allow10. Answering these questions requires epi-
demiological models that can capture the effects of changes in mobility 
on virus spread. In particular, findings of COVID-19 “super-spreader” 
events11–14 motivate models that can reflect the heterogeneous risks of 
visiting different locations, while well-reported disparities in infection 
rates2–8 require models that can explain the disproportionate impact 
of the virus on disadvantaged groups.

To address these needs, we construct fine-grained dynamic mobility 
networks from cell phone geolocation data, and use these networks to 
model the spread of SARS-CoV-2 within 10 of the largest metropolitan 
statistical areas (referred to below as metro areas) in the United States. 
These networks map the hourly movements of 98 million people from 
census block groups (CBGs), which are geographical units that typically 
contain 600–3,000 people, to specific points of interest (POIs). As 
shown in Table S1, POIs are non-residential locations that people visit 
such as restaurants, grocery stores, and religious establishments. On 
top of each network, we overlay a metapopulation SEIR model that 
tracks the infection trajectories of each CBG as well as the POIs at which 
these infections are likely to have occurred. This builds upon prior 

work that models disease spread using aggregate15–19, historical20–22, 
or synthetic mobility data23–25; separately, other work has analyzed 
mobility data in the context of COVID-19, but without an underlying 
model of disease spread26–30.

Combining our epidemiological model with these mobility net-
works allows us to not only accurately fit observed case counts, but 
also to conduct detailed analyses that can inform more effective and 
equitable policy responses to COVID-19. By capturing information 
about individual POIs (e.g., hourly number of visitors, median visit 
duration), our model can estimate the impacts of specific reopening 
strategies, such as only reopening certain POI categories or restricting 
maximum occupancy at each POI. By modeling movement from CBGs, 
our model can identify at-risk populations and correctly predict, solely 
from mobility patterns, that disadvantaged racial and socioeconomic 
groups face higher rates of infection. Our model thus enables analysis 
of urgent health disparities; we use it to illuminate two mobility-related 
mechanisms driving these disparities and to evaluate the disparate 
impact of reopening on disadvantaged groups.

Mobility network model
We use data from SafeGraph, a company that aggregates anonymized 
location data from mobile applications, to study mobility patterns from 
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mobility on virus spread1. We introduce a metapopulation SEIR model that integrates 
"ne-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in 10 of 
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billion hourly edges. We show that by integrating these networks, a relatively simple 
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“superspreader” POIs account for a large majority of infections and that restricting 
maximum occupancy at each POI is more e!ective than uniformly reducing mobility. 
Our model also correctly predicts higher infection rates among disadvantaged racial 
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disadvantaged groups have not been able to reduce mobility as sharply, and that the 
POIs they visit are more crowded and therefore higher-risk. By capturing who is 
infected at which locations, our model supports detailed analyses that can inform 
more e!ective and equitable policy responses to COVID-19.
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deliberate over when to reopen, which places are safe to return to, and 
how much activity to allow10. Answering these questions requires epi-
demiological models that can capture the effects of changes in mobility 
on virus spread. In particular, findings of COVID-19 “super-spreader” 
events11–14 motivate models that can reflect the heterogeneous risks of 
visiting different locations, while well-reported disparities in infection 
rates2–8 require models that can explain the disproportionate impact 
of the virus on disadvantaged groups.

To address these needs, we construct fine-grained dynamic mobility 
networks from cell phone geolocation data, and use these networks to 
model the spread of SARS-CoV-2 within 10 of the largest metropolitan 
statistical areas (referred to below as metro areas) in the United States. 
These networks map the hourly movements of 98 million people from 
census block groups (CBGs), which are geographical units that typically 
contain 600–3,000 people, to specific points of interest (POIs). As 
shown in Table S1, POIs are non-residential locations that people visit 
such as restaurants, grocery stores, and religious establishments. On 
top of each network, we overlay a metapopulation SEIR model that 
tracks the infection trajectories of each CBG as well as the POIs at which 
these infections are likely to have occurred. This builds upon prior 

work that models disease spread using aggregate15–19, historical20–22, 
or synthetic mobility data23–25; separately, other work has analyzed 
mobility data in the context of COVID-19, but without an underlying 
model of disease spread26–30.

Combining our epidemiological model with these mobility net-
works allows us to not only accurately fit observed case counts, but 
also to conduct detailed analyses that can inform more effective and 
equitable policy responses to COVID-19. By capturing information 
about individual POIs (e.g., hourly number of visitors, median visit 
duration), our model can estimate the impacts of specific reopening 
strategies, such as only reopening certain POI categories or restricting 
maximum occupancy at each POI. By modeling movement from CBGs, 
our model can identify at-risk populations and correctly predict, solely 
from mobility patterns, that disadvantaged racial and socioeconomic 
groups face higher rates of infection. Our model thus enables analysis 
of urgent health disparities; we use it to illuminate two mobility-related 
mechanisms driving these disparities and to evaluate the disparate 
impact of reopening on disadvantaged groups.

Mobility network model
We use data from SafeGraph, a company that aggregates anonymized 
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"ne-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in 10 of 
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mobility networks map the hourly movements of 98 million people from 
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billion hourly edges. We show that by integrating these networks, a relatively simple 
SEIR model can accurately "t the real case trajectory, despite substantial changes in 
population behavior over time. Our model predicts that a small minority of 
“superspreader” POIs account for a large majority of infections and that restricting 
maximum occupancy at each POI is more e!ective than uniformly reducing mobility. 
Our model also correctly predicts higher infection rates among disadvantaged racial 
and socioeconomic groups2–8 solely from di!erences in mobility: we "nd that 
disadvantaged groups have not been able to reduce mobility as sharply, and that the 
POIs they visit are more crowded and therefore higher-risk. By capturing who is 
infected at which locations, our model supports detailed analyses that can inform 
more e!ective and equitable policy responses to COVID-19.

In response to the COVID-19 crisis, stay-at-home orders were enacted 
in many countries to reduce contact between individuals and slow 
the spread of the virus9. Since then, public officials have continued to 
deliberate over when to reopen, which places are safe to return to, and 
how much activity to allow10. Answering these questions requires epi-
demiological models that can capture the effects of changes in mobility 
on virus spread. In particular, findings of COVID-19 “super-spreader” 
events11–14 motivate models that can reflect the heterogeneous risks of 
visiting different locations, while well-reported disparities in infection 
rates2–8 require models that can explain the disproportionate impact 
of the virus on disadvantaged groups.

To address these needs, we construct fine-grained dynamic mobility 
networks from cell phone geolocation data, and use these networks to 
model the spread of SARS-CoV-2 within 10 of the largest metropolitan 
statistical areas (referred to below as metro areas) in the United States. 
These networks map the hourly movements of 98 million people from 
census block groups (CBGs), which are geographical units that typically 
contain 600–3,000 people, to specific points of interest (POIs). As 
shown in Table S1, POIs are non-residential locations that people visit 
such as restaurants, grocery stores, and religious establishments. On 
top of each network, we overlay a metapopulation SEIR model that 
tracks the infection trajectories of each CBG as well as the POIs at which 
these infections are likely to have occurred. This builds upon prior 

work that models disease spread using aggregate15–19, historical20–22, 
or synthetic mobility data23–25; separately, other work has analyzed 
mobility data in the context of COVID-19, but without an underlying 
model of disease spread26–30.

Combining our epidemiological model with these mobility net-
works allows us to not only accurately fit observed case counts, but 
also to conduct detailed analyses that can inform more effective and 
equitable policy responses to COVID-19. By capturing information 
about individual POIs (e.g., hourly number of visitors, median visit 
duration), our model can estimate the impacts of specific reopening 
strategies, such as only reopening certain POI categories or restricting 
maximum occupancy at each POI. By modeling movement from CBGs, 
our model can identify at-risk populations and correctly predict, solely 
from mobility patterns, that disadvantaged racial and socioeconomic 
groups face higher rates of infection. Our model thus enables analysis 
of urgent health disparities; we use it to illuminate two mobility-related 
mechanisms driving these disparities and to evaluate the disparate 
impact of reopening on disadvantaged groups.

Mobility network model
We use data from SafeGraph, a company that aggregates anonymized 
location data from mobile applications, to study mobility patterns from 

https://doi.org/10.1038/s41586-020-2923-3

Received: 15 June 2020

Accepted: 21 October 2020

Published online: 10 November 2020

1Department of Computer Science, Stanford University, Stanford, CA, 94305, USA. 2Microsoft Research, Cambridge, MA, 02142, USA. 3Department of Preventive Medicine, Northwestern 
University, Chicago, IL, 60611, USA. 4Department of Sociology, Northwestern University, Evanston, IL, 60208, USA. 5Institute for Policy Research, Northwestern University, Evanston, IL, 
60208, USA. 6Department of Sociology, Stanford University, Stanford, CA, 94305, USA. 7Center on Poverty and Inequality, Stanford University, Stanford, CA, 94305, USA. 8Chan Zuckerberg 
Biohub, San Francisco, CA, 94158, USA. 9These authors contributed equally: Serina Chang, Emma Pierson, Pang Wei Koh. ᅒe-mail: jure@cs.stanford.edu

$&
&(
/(
5$
7(
' �
$5
7,&
/( �
35
(9
,(
: �

Nature | www.nature.com | 1

Article

Mobility network models of COVID-19 
explain inequities and inform reopening

Serina Chang1,9, Emma Pierson1,2,9, Pang Wei Koh1,9, Jaline Gerardin3, Beth Redbird4,5, 
David Grusky6,7 & Jure Leskovec1,8ಞᅒ

The COVID-19 pandemic dramatically changed human mobility patterns, 
necessitating epidemiological models which capture the e!ects of changes in 
mobility on virus spread1. We introduce a metapopulation SEIR model that integrates 
"ne-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in 10 of 
the largest US metropolitan statistical areas. Derived from cell phone data, our 
mobility networks map the hourly movements of 98 million people from 
neighborhoods (census block groups, or CBGs) to points of interest (POIs) such as 
restaurants and religious establishments, connecting 57k CBGs to 553k POIs with 5.4 
billion hourly edges. We show that by integrating these networks, a relatively simple 
SEIR model can accurately "t the real case trajectory, despite substantial changes in 
population behavior over time. Our model predicts that a small minority of 
“superspreader” POIs account for a large majority of infections and that restricting 
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statistical areas (referred to below as metro areas) in the United States. 
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census block groups (CBGs), which are geographical units that typically 
contain 600–3,000 people, to specific points of interest (POIs). As 
shown in Table S1, POIs are non-residential locations that people visit 
such as restaurants, grocery stores, and religious establishments. On 
top of each network, we overlay a metapopulation SEIR model that 
tracks the infection trajectories of each CBG as well as the POIs at which 
these infections are likely to have occurred. This builds upon prior 

work that models disease spread using aggregate15–19, historical20–22, 
or synthetic mobility data23–25; separately, other work has analyzed 
mobility data in the context of COVID-19, but without an underlying 
model of disease spread26–30.

Combining our epidemiological model with these mobility net-
works allows us to not only accurately fit observed case counts, but 
also to conduct detailed analyses that can inform more effective and 
equitable policy responses to COVID-19. By capturing information 
about individual POIs (e.g., hourly number of visitors, median visit 
duration), our model can estimate the impacts of specific reopening 
strategies, such as only reopening certain POI categories or restricting 
maximum occupancy at each POI. By modeling movement from CBGs, 
our model can identify at-risk populations and correctly predict, solely 
from mobility patterns, that disadvantaged racial and socioeconomic 
groups face higher rates of infection. Our model thus enables analysis 
of urgent health disparities; we use it to illuminate two mobility-related 
mechanisms driving these disparities and to evaluate the disparate 
impact of reopening on disadvantaged groups.

Mobility network model
We use data from SafeGraph, a company that aggregates anonymized 
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Applications

Data: SafeGraph, a company that aggregates anonymized 
location data from mobile applications

Period: March 1- May 2 - 2020

Time scale: Hourly movements



Applications

Data type: CBG -> POI 

CBG: Census Block Group (small Area, 600-3000 people) 
POI: Point of Interest 

Restaurant
Grocery store
Religious Establishment
etc.

Access to location and type



Applications

CBG: 59,945
POI: 552,758

Population: 98 Million people (anonymized)

Hourly Edges: 5.4 Billion

Split my metropolitan Erea
Chicago, New York, etc. 

Each an independent model



Applications

Model: SEIR

Exposed:
Infected but not aware 

and not contagious



Applications

Model: SEIR

Extended Data Table 2 | Model parameters

If the parameter has a fixed value, we specify it under Value; otherwise, we write “Variable” to indicate that it varies across CBG / POI / metro area.
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3. We then apply the iterative proportional fitting procedure (IPFP) 
to estimate an hourly visit matrix W(t) that is consistent with the hourly 
marginals U(t) and V(t) but otherwise “as similar as possible” to the dis-
tribution of visits in the aggregate visit matrix W , in terms of 
Kullback-Leibler divergence.

IPFP is a classic statistical method31 for adjusting joint distributions 
to match pre-specified marginal distributions, and it is also known in 
the literature as biproportional fitting, the RAS algorithm, or raking53. 
In the social sciences, it has been widely used to infer the characteristics 
of local subpopulations (e.g., within each CBG) from aggregate data54–56. 
IPFP estimates the joint distribution of visits from CBGs to POIs by 
alternating between scaling each row to match the hourly row (CBG) 
marginals U(t) and scaling each column to match the hourly column 
(POI) marginals V(t). For further details about the estimation procedure, 
we refer the reader to SI Methods Section 3.

M3 Model dynamics
To model the spread of SARS-CoV-2, we overlay a metapopulation disease 
transmission model on the mobility network defined in Methods M2. The 
transmission model structure follows prior work on epidemiological 
models of SARS-CoV-215,20 but incorporates a fine-grained mobility net-
work into the calculations of the transmission rate. We construct separate 
mobility networks and models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (I), 
and removed (R) compartments. Susceptible individuals have never 
been infected, but can acquire the virus through contact with infectious 
individuals, which may happen at POIs or in their home CBG. They then 
enter the exposed state, during which they have been infected but are 
not infectious yet. Individuals transition from exposed to infectious at 
a rate inversely proportional to the mean latency period. Finally, they 
transition into the removed state at a rate inversely proportional to 
the mean infectious period. The removed state represents individuals 
who can no longer be infected or infect others, e.g., because they have 
recovered, self-isolated, or died.

Each CBG ci maintains its own SEIR instantiation, with Sc
t( )
i

, E c
t( )
i

, I c
t( )
i

, 
and Rc

t( )
i

 representing how many individuals in CBG ci are in each disease 
state at hour t, and Nci

 = Sc
t( )
i

 + E c
t( )
i

 + I c
t( )
i

 + Rc
t( )
i

. At each hour t, we sample 
the transitions between states as follows:
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where λ p
t( )

j
 is the rate of infection at POI pj at time t; wij

t( ), the ij-th entry 
of the visit matrix from the mobility network (Methods M2), is the 
number of visitors from CBG ci to POI pj at time t; λc

t( )
i

 is the base rate of 
infection that is independent of visiting POIs; δE is the mean latency 
period; and δI is the mean infectious period.

We then update each state to reflect these transitions. Let 
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 is the physical area of pj, and ψ is a transmission constant 

(shared across all POIs) that we fit to data. The inverse scaling of trans-
mission rate with area a pj

 is a standard simplifying assumption57. The 
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 ∈ [0, 1] is what fraction of an hour an average 
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For sufficiently large values of ψ and a sufficiently large proportion 
of infected individuals, the expression above can sometimes exceed 
1. To address this, we simply clip the infection rate to 1. However, this 
occurs very rarely for the parameter settings and simulation duration 
that we use.

Finally, to compute the number of infectious individuals at pj at time 
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infections or infections at POIs that are absent from the SafeGraph 
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3. We then apply the iterative proportional fitting procedure (IPFP) 
to estimate an hourly visit matrix W(t) that is consistent with the hourly 
marginals U(t) and V(t) but otherwise “as similar as possible” to the dis-
tribution of visits in the aggregate visit matrix W , in terms of 
Kullback-Leibler divergence.

IPFP is a classic statistical method31 for adjusting joint distributions 
to match pre-specified marginal distributions, and it is also known in 
the literature as biproportional fitting, the RAS algorithm, or raking53. 
In the social sciences, it has been widely used to infer the characteristics 
of local subpopulations (e.g., within each CBG) from aggregate data54–56. 
IPFP estimates the joint distribution of visits from CBGs to POIs by 
alternating between scaling each row to match the hourly row (CBG) 
marginals U(t) and scaling each column to match the hourly column 
(POI) marginals V(t). For further details about the estimation procedure, 
we refer the reader to SI Methods Section 3.

M3 Model dynamics
To model the spread of SARS-CoV-2, we overlay a metapopulation disease 
transmission model on the mobility network defined in Methods M2. The 
transmission model structure follows prior work on epidemiological 
models of SARS-CoV-215,20 but incorporates a fine-grained mobility net-
work into the calculations of the transmission rate. We construct separate 
mobility networks and models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (I), 
and removed (R) compartments. Susceptible individuals have never 
been infected, but can acquire the virus through contact with infectious 
individuals, which may happen at POIs or in their home CBG. They then 
enter the exposed state, during which they have been infected but are 
not infectious yet. Individuals transition from exposed to infectious at 
a rate inversely proportional to the mean latency period. Finally, they 
transition into the removed state at a rate inversely proportional to 
the mean infectious period. The removed state represents individuals 
who can no longer be infected or infect others, e.g., because they have 
recovered, self-isolated, or died.

Each CBG ci maintains its own SEIR instantiation, with Sc
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of the visit matrix from the mobility network (Methods M2), is the 
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 is the base rate of 
infection that is independent of visiting POIs; δE is the mean latency 
period; and δI is the mean infectious period.
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where a pj
 is the physical area of pj, and ψ is a transmission constant 

(shared across all POIs) that we fit to data. The inverse scaling of trans-
mission rate with area a pj

 is a standard simplifying assumption57. The 
dwell time fraction d pj

 ∈ [0, 1] is what fraction of an hour an average 
visitor to pj at any hour will spend there (SI Methods Section 3); it has 
a quadratic effect on the POI transmission rate β p
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 because it reduces 
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For sufficiently large values of ψ and a sufficiently large proportion 
of infected individuals, the expression above can sometimes exceed 
1. To address this, we simply clip the infection rate to 1. However, this 
occurs very rarely for the parameter settings and simulation duration 
that we use.

Finally, to compute the number of infectious individuals at pj at time 
t, I p

t( )
j
, we assume that the proportion of infectious individuals among 

the wkj
t( ) visitors to pj from a CBG ck mirrors the overall density of infec-
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 in that CBG, although we note that the scaling factor ψ can 
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Base rate of new exposures not captured by visiting POIs. In addi-
tion to the new exposures from infections at POIs, we model a 
CBG-specific base rate of new exposures that is independent of POI 
visit activity. This captures other sources of infections, e.g., household 
infections or infections at POIs that are absent from the SafeGraph 
data. We assume that at each hour, every susceptible individual in CBG 
ci has a base probability λc
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3. We then apply the iterative proportional fitting procedure (IPFP) 
to estimate an hourly visit matrix W(t) that is consistent with the hourly 
marginals U(t) and V(t) but otherwise “as similar as possible” to the dis-
tribution of visits in the aggregate visit matrix W , in terms of 
Kullback-Leibler divergence.

IPFP is a classic statistical method31 for adjusting joint distributions 
to match pre-specified marginal distributions, and it is also known in 
the literature as biproportional fitting, the RAS algorithm, or raking53. 
In the social sciences, it has been widely used to infer the characteristics 
of local subpopulations (e.g., within each CBG) from aggregate data54–56. 
IPFP estimates the joint distribution of visits from CBGs to POIs by 
alternating between scaling each row to match the hourly row (CBG) 
marginals U(t) and scaling each column to match the hourly column 
(POI) marginals V(t). For further details about the estimation procedure, 
we refer the reader to SI Methods Section 3.

M3 Model dynamics
To model the spread of SARS-CoV-2, we overlay a metapopulation disease 
transmission model on the mobility network defined in Methods M2. The 
transmission model structure follows prior work on epidemiological 
models of SARS-CoV-215,20 but incorporates a fine-grained mobility net-
work into the calculations of the transmission rate. We construct separate 
mobility networks and models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (I), 
and removed (R) compartments. Susceptible individuals have never 
been infected, but can acquire the virus through contact with infectious 
individuals, which may happen at POIs or in their home CBG. They then 
enter the exposed state, during which they have been infected but are 
not infectious yet. Individuals transition from exposed to infectious at 
a rate inversely proportional to the mean latency period. Finally, they 
transition into the removed state at a rate inversely proportional to 
the mean infectious period. The removed state represents individuals 
who can no longer be infected or infect others, e.g., because they have 
recovered, self-isolated, or died.
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infection that is independent of visiting POIs; δE is the mean latency 
period; and δI is the mean infectious period.
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 is the physical area of pj, and ψ is a transmission constant 

(shared across all POIs) that we fit to data. The inverse scaling of trans-
mission rate with area a pj

 is a standard simplifying assumption57. The 
dwell time fraction d pj

 ∈ [0, 1] is what fraction of an hour an average 
visitor to pj at any hour will spend there (SI Methods Section 3); it has 
a quadratic effect on the POI transmission rate β p
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 because it reduces 
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For sufficiently large values of ψ and a sufficiently large proportion 
of infected individuals, the expression above can sometimes exceed 
1. To address this, we simply clip the infection rate to 1. However, this 
occurs very rarely for the parameter settings and simulation duration 
that we use.

Finally, to compute the number of infectious individuals at pj at time 
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CBG-specific base rate of new exposures that is independent of POI 
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Applications

3. We then apply the iterative proportional fitting procedure (IPFP) 
to estimate an hourly visit matrix W(t) that is consistent with the hourly 
marginals U(t) and V(t) but otherwise “as similar as possible” to the dis-
tribution of visits in the aggregate visit matrix W , in terms of 
Kullback-Leibler divergence.

IPFP is a classic statistical method31 for adjusting joint distributions 
to match pre-specified marginal distributions, and it is also known in 
the literature as biproportional fitting, the RAS algorithm, or raking53. 
In the social sciences, it has been widely used to infer the characteristics 
of local subpopulations (e.g., within each CBG) from aggregate data54–56. 
IPFP estimates the joint distribution of visits from CBGs to POIs by 
alternating between scaling each row to match the hourly row (CBG) 
marginals U(t) and scaling each column to match the hourly column 
(POI) marginals V(t). For further details about the estimation procedure, 
we refer the reader to SI Methods Section 3.

M3 Model dynamics
To model the spread of SARS-CoV-2, we overlay a metapopulation disease 
transmission model on the mobility network defined in Methods M2. The 
transmission model structure follows prior work on epidemiological 
models of SARS-CoV-215,20 but incorporates a fine-grained mobility net-
work into the calculations of the transmission rate. We construct separate 
mobility networks and models for each metropolitan statistical area.

We use a SEIR model with susceptible (S), exposed (E), infectious (I), 
and removed (R) compartments. Susceptible individuals have never 
been infected, but can acquire the virus through contact with infectious 
individuals, which may happen at POIs or in their home CBG. They then 
enter the exposed state, during which they have been infected but are 
not infectious yet. Individuals transition from exposed to infectious at 
a rate inversely proportional to the mean latency period. Finally, they 
transition into the removed state at a rate inversely proportional to 
the mean infectious period. The removed state represents individuals 
who can no longer be infected or infect others, e.g., because they have 
recovered, self-isolated, or died.

Each CBG ci maintains its own SEIR instantiation, with Sc
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where λ p
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 is the rate of infection at POI pj at time t; wij

t( ), the ij-th entry 
of the visit matrix from the mobility network (Methods M2), is the 
number of visitors from CBG ci to POI pj at time t; λc

t( )
i

 is the base rate of 
infection that is independent of visiting POIs; δE is the mean latency 
period; and δI is the mean infectious period.

We then update each state to reflect these transitions. Let 
S S S∆ := −c

t
c

t
c

t( ) ( +1) ( )
i i i

, and likewise for E I∆ , ∆c
t

c
t( ) ( )

i i
, and R∆ c

t( )
i

. Then,
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S E
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M3.1 The number of new exposures →NNSS EE
tt( )

ccii ccii
. We separate the number 

of new exposures N S E
t

→
( )

ci ci
 in CBG ci at time t into two parts: cases from 

visiting POIs, which are sampled from S N λ wPois(( / )∑ )c
t

c j
n

p
t

ij
t( )

=1
( ) ( )

i i j
, and 

other cases not captured by visiting POIs, which are sampled from 
S λBinom( , )c

t
c

t( ) ( )
i i

.

New exposures from visiting POIs. We assume that any susceptible 
visitor to POI pj at time t has the same independent probability λ p

t( )
j
  

of being infected and transitioning from the susceptible (S) to the 
exposed (E) state. Since there are wij

t( ) visitors from CBG ci to POI  
pj at time t, and we assume that a Sc

t( )
i

/Nci
 fraction of them are suscep-

tible, the number of new exposures among these visitors is distri buted 
as w S N λ λ w S NBinom( / , ) ≈ Pois( / )ij

t
c

t
c p

t
p
t

ij
t

c
t

c
( ) ( ) ( ) ( ) ( ) ( )

i i j j i i
. The number of new ex   -

posures among all outgoing visitors from CBG ci is therefore  
distributed as the sum of the above expression over all POIs, 

S N λ wPois(( / )∑ )c
t

c j
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p
t
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=1
( ) ( )

i i j
.

We model the infection rate at POI pj at time t, λ β I V:= ⋅ /p
t

p
t

p
t

p
t( ) ( ) ( ) ( )

j j j j
,  

as the product of its transmission rate β p
t( )

j
 and proportion of infectious 

individuals I V/p
t

p
t( ) ( )

j j
, where V w:= ∑p

t
i
m

ij
t( )

=1
( )

j
 is the total number of visitors to  

pj at time t. We model the transmission rate at POI pj at time t as

β ψ d
V

a
:= ⋅ ⋅ , (8)p

t
p

p
t

p

( ) 2
( )

j j

j

j

where a pj
 is the physical area of pj, and ψ is a transmission constant 

(shared across all POIs) that we fit to data. The inverse scaling of trans-
mission rate with area a pj

 is a standard simplifying assumption57. The 
dwell time fraction d pj

 ∈ [0, 1] is what fraction of an hour an average 
visitor to pj at any hour will spend there (SI Methods Section 3); it has 
a quadratic effect on the POI transmission rate β p

t( )
j
 because it reduces 

both (1) the time that a susceptible visitor spends at pj and (2) the den-
sity of visitors at pj. With this expression for the transmission rate β p

t( )
j
, 

we can calculate the infection rate at POI pj at time t as
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t p
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t p
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For sufficiently large values of ψ and a sufficiently large proportion 
of infected individuals, the expression above can sometimes exceed 
1. To address this, we simply clip the infection rate to 1. However, this 
occurs very rarely for the parameter settings and simulation duration 
that we use.

Finally, to compute the number of infectious individuals at pj at time 
t, I p

t( )
j
, we assume that the proportion of infectious individuals among 

the wkj
t( ) visitors to pj from a CBG ck mirrors the overall density of infec-

tions I N/c
t

c
( )

k k
 in that CBG, although we note that the scaling factor ψ can 

account for differences in the ratio of infectious individuals who visit 
POIs. This gives

∑I
I
N

w:= . (10)p
t

k

m
c

t

c
kj
t( )

=1

( )
( )

j

k

k

Base rate of new exposures not captured by visiting POIs. In addi-
tion to the new exposures from infections at POIs, we model a 
CBG-specific base rate of new exposures that is independent of POI 
visit activity. This captures other sources of infections, e.g., household 
infections or infections at POIs that are absent from the SafeGraph 
data. We assume that at each hour, every susceptible individual in CBG 
ci has a base probability λc

t( )
i

 of becoming infected and transitioning to 
the exposed state, where

λ β
I
N

: = ⋅ (11)c
t c

t

c

( )
base

( )

i

i
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For a particular POI: 
Infection rate at t depends on:

-Fraction of infected visitors at t
-Transmission rate β

-Transmission rate  at t depends on:
-Size of the POI

-Number of visitors at t
-Shared learnt parameter

β



Applications

Each CBG has its own model
Prevalence of each state varies by SBG, 

c.f. degree blocks 

Figure 1 | Model description and fit. (a) The mobility network captures hourly 
visits from each census block group (CBG) to each point of interest (POI). The 
vertical lines indicate that most visits are between nearby POIs and CBGs. Visits 
dropped dramatically from March (top) to April (bottom), as indicated by the 
lower density of grey lines. (b) We overlaid a disease spread model on the 
mobility network, with each CBG having its own set of SEIR compartments. 
New infections occur at both POIs and CBGs, with the mobility network 
governing how subpopulations from different CBGs interact as they visit POIs. 
(c) Left: To test out-of-sample prediction, we calibrated the model on data 
before April 15, 2020 (vertical black line). Even though its parameters remain 
fixed over time, the model accurately predicts the case trajectory in the 
Chicago metro area after April 15 by using mobility data (RMSE on daily cases = 

406 for date range April 15–May 9). Right: Model fit further improved when we 
calibrated the model on the full range of data (RMSE on daily cases = 387 for 
date range April 15–May 9). (d) We fit separate models to 10 of the largest US 
metropolitan statistical areas, modeling a total population of 98 million 
people; here, we show full model fits, as in (c)-Right. In (c) and (d), the blue line 
represents model predictions and grey x’s represent the daily reported cases; 
since they tend to have great variability, we also show the smoothed weekly 
average (orange line). Shaded regions denote 2.5th and 97.5th percentiles 
across parameter sets and stochastic realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area.
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Figure 1 | Model description and fit. (a) The mobility network captures hourly 
visits from each census block group (CBG) to each point of interest (POI). The 
vertical lines indicate that most visits are between nearby POIs and CBGs. Visits 
dropped dramatically from March (top) to April (bottom), as indicated by the 
lower density of grey lines. (b) We overlaid a disease spread model on the 
mobility network, with each CBG having its own set of SEIR compartments. 
New infections occur at both POIs and CBGs, with the mobility network 
governing how subpopulations from different CBGs interact as they visit POIs. 
(c) Left: To test out-of-sample prediction, we calibrated the model on data 
before April 15, 2020 (vertical black line). Even though its parameters remain 
fixed over time, the model accurately predicts the case trajectory in the 
Chicago metro area after April 15 by using mobility data (RMSE on daily cases = 

406 for date range April 15–May 9). Right: Model fit further improved when we 
calibrated the model on the full range of data (RMSE on daily cases = 387 for 
date range April 15–May 9). (d) We fit separate models to 10 of the largest US 
metropolitan statistical areas, modeling a total population of 98 million 
people; here, we show full model fits, as in (c)-Right. In (c) and (d), the blue line 
represents model predictions and grey x’s represent the daily reported cases; 
since they tend to have great variability, we also show the smoothed weekly 
average (orange line). Shaded regions denote 2.5th and 97.5th percentiles 
across parameter sets and stochastic realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area.
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Applications

Only 3 parameters to learn, constant over 
time:

-Scaling in POI (size*visitors*?) (proxy )
-CBG transmission rate ( )

-Initial proportion of exposed individuals

β
β

Fit using RMSE 
(minimizing the root of the mean square error)

=>Run various simulations with different sets of parameters to find those generating a 
diffusion as close as possible from observed data.
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Figure 1 | Model description and fit. (a) The mobility network captures hourly 
visits from each census block group (CBG) to each point of interest (POI). The 
vertical lines indicate that most visits are between nearby POIs and CBGs. Visits 
dropped dramatically from March (top) to April (bottom), as indicated by the 
lower density of grey lines. (b) We overlaid a disease spread model on the 
mobility network, with each CBG having its own set of SEIR compartments. 
New infections occur at both POIs and CBGs, with the mobility network 
governing how subpopulations from different CBGs interact as they visit POIs. 
(c) Left: To test out-of-sample prediction, we calibrated the model on data 
before April 15, 2020 (vertical black line). Even though its parameters remain 
fixed over time, the model accurately predicts the case trajectory in the 
Chicago metro area after April 15 by using mobility data (RMSE on daily cases = 

406 for date range April 15–May 9). Right: Model fit further improved when we 
calibrated the model on the full range of data (RMSE on daily cases = 387 for 
date range April 15–May 9). (d) We fit separate models to 10 of the largest US 
metropolitan statistical areas, modeling a total population of 98 million 
people; here, we show full model fits, as in (c)-Right. In (c) and (d), the blue line 
represents model predictions and grey x’s represent the daily reported cases; 
since they tend to have great variability, we also show the smoothed weekly 
average (orange line). Shaded regions denote 2.5th and 97.5th percentiles 
across parameter sets and stochastic realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area.
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Figure 1 | Model description and fit. (a) The mobility network captures hourly 
visits from each census block group (CBG) to each point of interest (POI). The 
vertical lines indicate that most visits are between nearby POIs and CBGs. Visits 
dropped dramatically from March (top) to April (bottom), as indicated by the 
lower density of grey lines. (b) We overlaid a disease spread model on the 
mobility network, with each CBG having its own set of SEIR compartments. 
New infections occur at both POIs and CBGs, with the mobility network 
governing how subpopulations from different CBGs interact as they visit POIs. 
(c) Left: To test out-of-sample prediction, we calibrated the model on data 
before April 15, 2020 (vertical black line). Even though its parameters remain 
fixed over time, the model accurately predicts the case trajectory in the 
Chicago metro area after April 15 by using mobility data (RMSE on daily cases = 

406 for date range April 15–May 9). Right: Model fit further improved when we 
calibrated the model on the full range of data (RMSE on daily cases = 387 for 
date range April 15–May 9). (d) We fit separate models to 10 of the largest US 
metropolitan statistical areas, modeling a total population of 98 million 
people; here, we show full model fits, as in (c)-Right. In (c) and (d), the blue line 
represents model predictions and grey x’s represent the daily reported cases; 
since they tend to have great variability, we also show the smoothed weekly 
average (orange line). Shaded regions denote 2.5th and 97.5th percentiles 
across parameter sets and stochastic realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area.
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Prediction of future trends



Applications

Figure 2 | Assessing mobility reduction and reopening. The Chicago metro 
area is used as an example, but references to results for all metro areas are 
provided for each subfigure. (a) Counterfactual simulations (left) of past 
mobility reduction illustrate that the magnitude of reduction (middle) was at 
least as important as its timing (right) (Tables S4–S5). (b) The model predicts 
that most infections at POIs occur at a small fraction of “super-spreader” POIs 
(Figure S10). (c) Left: We plot cumulative predicted infections after one month 
of reopening against the fraction of visits lost by partial instead of full 
reopening (ED Figure 3); the annotations within the plot show the fraction of 
maximum occupancy used as the cap. Compared to full reopening, capping at 
20% maximum occupancy in Chicago cuts down new infections by more than 
80%, while only losing 42% of overall visits. Right: Compared to uniformly 

reducing visits, the reduced maximum occupancy strategy always results in a 
smaller predicted increase in infections for the same number of visits (ED 
Figure 4). The y-axis plots the relative difference between the predicted 
number of new infections under the reduced occupancy strategy compared to 
uniform reduction. (d) Reopening full-service restaurants has the largest 
predicted impact on infections, due to the large number of restaurants as well 
as their high visit densities and long dwell times (Figures S15–S24). Colors are 
used to distinguish the different POI categories, but do not have any additional 
meaning. All results in this figure are aggregated across 4 parameter sets and 
30 stochastic realizations (N = 120). Shaded regions in (a–c) denote the 2.5th–
97.5th percentiles; boxes in (d) denote the interquartile range, with data points 
outside the range individually shown.
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Figure 2 | Assessing mobility reduction and reopening. The Chicago metro 
area is used as an example, but references to results for all metro areas are 
provided for each subfigure. (a) Counterfactual simulations (left) of past 
mobility reduction illustrate that the magnitude of reduction (middle) was at 
least as important as its timing (right) (Tables S4–S5). (b) The model predicts 
that most infections at POIs occur at a small fraction of “super-spreader” POIs 
(Figure S10). (c) Left: We plot cumulative predicted infections after one month 
of reopening against the fraction of visits lost by partial instead of full 
reopening (ED Figure 3); the annotations within the plot show the fraction of 
maximum occupancy used as the cap. Compared to full reopening, capping at 
20% maximum occupancy in Chicago cuts down new infections by more than 
80%, while only losing 42% of overall visits. Right: Compared to uniformly 

reducing visits, the reduced maximum occupancy strategy always results in a 
smaller predicted increase in infections for the same number of visits (ED 
Figure 4). The y-axis plots the relative difference between the predicted 
number of new infections under the reduced occupancy strategy compared to 
uniform reduction. (d) Reopening full-service restaurants has the largest 
predicted impact on infections, due to the large number of restaurants as well 
as their high visit densities and long dwell times (Figures S15–S24). Colors are 
used to distinguish the different POI categories, but do not have any additional 
meaning. All results in this figure are aggregated across 4 parameter sets and 
30 stochastic realizations (N = 120). Shaded regions in (a–c) denote the 2.5th–
97.5th percentiles; boxes in (d) denote the interquartile range, with data points 
outside the range individually shown.
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Figure 2 | Assessing mobility reduction and reopening. The Chicago metro 
area is used as an example, but references to results for all metro areas are 
provided for each subfigure. (a) Counterfactual simulations (left) of past 
mobility reduction illustrate that the magnitude of reduction (middle) was at 
least as important as its timing (right) (Tables S4–S5). (b) The model predicts 
that most infections at POIs occur at a small fraction of “super-spreader” POIs 
(Figure S10). (c) Left: We plot cumulative predicted infections after one month 
of reopening against the fraction of visits lost by partial instead of full 
reopening (ED Figure 3); the annotations within the plot show the fraction of 
maximum occupancy used as the cap. Compared to full reopening, capping at 
20% maximum occupancy in Chicago cuts down new infections by more than 
80%, while only losing 42% of overall visits. Right: Compared to uniformly 

reducing visits, the reduced maximum occupancy strategy always results in a 
smaller predicted increase in infections for the same number of visits (ED 
Figure 4). The y-axis plots the relative difference between the predicted 
number of new infections under the reduced occupancy strategy compared to 
uniform reduction. (d) Reopening full-service restaurants has the largest 
predicted impact on infections, due to the large number of restaurants as well 
as their high visit densities and long dwell times (Figures S15–S24). Colors are 
used to distinguish the different POI categories, but do not have any additional 
meaning. All results in this figure are aggregated across 4 parameter sets and 
30 stochastic realizations (N = 120). Shaded regions in (a–c) denote the 2.5th–
97.5th percentiles; boxes in (d) denote the interquartile range, with data points 
outside the range individually shown.
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Figure 2 | Assessing mobility reduction and reopening. The Chicago metro 
area is used as an example, but references to results for all metro areas are 
provided for each subfigure. (a) Counterfactual simulations (left) of past 
mobility reduction illustrate that the magnitude of reduction (middle) was at 
least as important as its timing (right) (Tables S4–S5). (b) The model predicts 
that most infections at POIs occur at a small fraction of “super-spreader” POIs 
(Figure S10). (c) Left: We plot cumulative predicted infections after one month 
of reopening against the fraction of visits lost by partial instead of full 
reopening (ED Figure 3); the annotations within the plot show the fraction of 
maximum occupancy used as the cap. Compared to full reopening, capping at 
20% maximum occupancy in Chicago cuts down new infections by more than 
80%, while only losing 42% of overall visits. Right: Compared to uniformly 

reducing visits, the reduced maximum occupancy strategy always results in a 
smaller predicted increase in infections for the same number of visits (ED 
Figure 4). The y-axis plots the relative difference between the predicted 
number of new infections under the reduced occupancy strategy compared to 
uniform reduction. (d) Reopening full-service restaurants has the largest 
predicted impact on infections, due to the large number of restaurants as well 
as their high visit densities and long dwell times (Figures S15–S24). Colors are 
used to distinguish the different POI categories, but do not have any additional 
meaning. All results in this figure are aggregated across 4 parameter sets and 
30 stochastic realizations (N = 120). Shaded regions in (a–c) denote the 2.5th–
97.5th percentiles; boxes in (d) denote the interquartile range, with data points 
outside the range individually shown.
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Applications

Figure 3 | Mobility patterns give rise to infection disparities. For (c–f), the 
Chicago metro area is used as an example, but references to results for all metro 
areas are provided for each subfigure. (a) In every metro area, our model 
predicts that people in lower-income CBGs are likelier to be infected. (b) People 
in non-white CBGs area are also likelier to be infected, although results are 
more variable across metro areas. (c) The overall predicted disparity is driven 
by a few POI categories like full-service restaurants (Figure S2). (d) One reason 
for the predicted disparities is that higher-income CBGs were able to reduce 
their mobility levels below those of lower-income CBGs (ED Figure 6). (e) Within 
each POI category, people from lower-income CBGs tend to visit POIs that have 
higher predicted transmission rates (ED Table 3). The size of each dot 
represents the average number of visits per capita made to the category. The 

top 10 out of 20 categories with the most visits are labeled, covering 0.48–2.88 
visits per capita (Hardware Stores–Full-Service Restaurants). (f) Reopening (at 
different levels of reduced maximum occupancy) leads to more predicted 
infections in lower-income CBGs than in the overall population (ED Figure 3). In 
(c–f), purple denotes lower-income CBGs, yellow denotes higher-income CBGs, 
and blue represents the overall population. Aside from (d) and (e), which were 
directly extracted from mobility data, all results in this figure represent 
predictions aggregated over model realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area. Shaded regions in (c) and (f) 
denote the 2.5th–97.5th percentiles; boxes in (a–b) denote the interquartile 
range, with data points outside the range individually shown.
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Figure 3 | Mobility patterns give rise to infection disparities. For (c–f), the 
Chicago metro area is used as an example, but references to results for all metro 
areas are provided for each subfigure. (a) In every metro area, our model 
predicts that people in lower-income CBGs are likelier to be infected. (b) People 
in non-white CBGs area are also likelier to be infected, although results are 
more variable across metro areas. (c) The overall predicted disparity is driven 
by a few POI categories like full-service restaurants (Figure S2). (d) One reason 
for the predicted disparities is that higher-income CBGs were able to reduce 
their mobility levels below those of lower-income CBGs (ED Figure 6). (e) Within 
each POI category, people from lower-income CBGs tend to visit POIs that have 
higher predicted transmission rates (ED Table 3). The size of each dot 
represents the average number of visits per capita made to the category. The 

top 10 out of 20 categories with the most visits are labeled, covering 0.48–2.88 
visits per capita (Hardware Stores–Full-Service Restaurants). (f) Reopening (at 
different levels of reduced maximum occupancy) leads to more predicted 
infections in lower-income CBGs than in the overall population (ED Figure 3). In 
(c–f), purple denotes lower-income CBGs, yellow denotes higher-income CBGs, 
and blue represents the overall population. Aside from (d) and (e), which were 
directly extracted from mobility data, all results in this figure represent 
predictions aggregated over model realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area. Shaded regions in (c) and (f) 
denote the 2.5th–97.5th percentiles; boxes in (a–b) denote the interquartile 
range, with data points outside the range individually shown.
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Policies guidance?

Risks come from different
Sources for different populations

Figure 3 | Mobility patterns give rise to infection disparities. For (c–f), the 
Chicago metro area is used as an example, but references to results for all metro 
areas are provided for each subfigure. (a) In every metro area, our model 
predicts that people in lower-income CBGs are likelier to be infected. (b) People 
in non-white CBGs area are also likelier to be infected, although results are 
more variable across metro areas. (c) The overall predicted disparity is driven 
by a few POI categories like full-service restaurants (Figure S2). (d) One reason 
for the predicted disparities is that higher-income CBGs were able to reduce 
their mobility levels below those of lower-income CBGs (ED Figure 6). (e) Within 
each POI category, people from lower-income CBGs tend to visit POIs that have 
higher predicted transmission rates (ED Table 3). The size of each dot 
represents the average number of visits per capita made to the category. The 

top 10 out of 20 categories with the most visits are labeled, covering 0.48–2.88 
visits per capita (Hardware Stores–Full-Service Restaurants). (f) Reopening (at 
different levels of reduced maximum occupancy) leads to more predicted 
infections in lower-income CBGs than in the overall population (ED Figure 3). In 
(c–f), purple denotes lower-income CBGs, yellow denotes higher-income CBGs, 
and blue represents the overall population. Aside from (d) and (e), which were 
directly extracted from mobility data, all results in this figure represent 
predictions aggregated over model realizations. Across metro areas, we 
sample 97 parameter sets, with 30 stochastic realizations each (N = 2,910); see 
Table S6 for the number of sets per metro area. Shaded regions in (c) and (f) 
denote the 2.5th–97.5th percentiles; boxes in (a–b) denote the interquartile 
range, with data points outside the range individually shown.
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