
GRAPH/NODE EMBEDDING

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.

1

VARIANT
• We can differentiate:

‣ Node embedding
‣ Edge Embedding
‣ Substructure embedding
‣ Whole graph Embedding

• In this course, only node embedding (often called graph
embedding)

Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering, 30(9), 1616-1637.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, SEPT 2017 2

8

2

1

3

7
5

6 9 4

1.5

0.3

1.2

0.8

1.5

1

0.6
0.2

1.5

1

(a) Input Graph G1
0.0 1.5 3.0

3

0

-3

1
2

3
4
5

6
7

8 9

(b) Node Embedding
0.0 1.5 3.0

3

0

-3

e67

e79

e78
e45

e56 e46

e13

e12
e23

e34

(c) Edge Embedding
0.0 1.5 3.0

3

0

-3

G{7,8,9}

G{4,5,6}

G{1,2,3}

(d) Substructure Embedding
 0.0 1.5 3.0

3

0

-3

G1

(e) Whole-Graph Embedding

Fig. 1. A toy example of embedding a graph into 2D space with different granularities. G{1,2,3} denotes the substructure containing node v1, v2, v3.

aims to represent a graph as low dimensional vectors while
the graph structures are preserved. On the one hand, graph
analytics aims to mine useful information from graph data.
On the other hand, representation learning obtains data
representations that make it easier to extract useful informa-
tion when building classifiers or other predictors [9]. Graph
embedding lies in the overlap of the two problems and
focuses on learning the low-dimensional representations.
Note that we distinguish graph representation learning
and graph embedding in this survey. Graph representation
learning does not require the learned representations to be
low dimensional. For example, [10] represents each node as
a vector with dimensionality equals to the number of nodes
in the input graph. Every dimension denotes the geodesic
distance of a node to each other node in the graph.

Embedding graphs into low dimensional spaces is not
a trivial task. The challenges of graph embedding depend
on the problem setting, which consists of embedding input
and embedding output. In this survey, we divide the input
graph into four categories, including homogeneous graph,
heterogeneous graph, graph with auxiliary information and graph
constructed from non-relational data. Different types of em-
bedding input carry different information to be preserved
in the embedded space and thus pose different challenges
to the problem of graph embedding. For example, when
embedding a graph with structural information only, the
connections between nodes are the target to be preserved.
However, for a graph with node label or attribute infor-
mation, the auxiliary information provides graph property
from other perspectives, and thus may also be considered
during the embedding. Unlike embedding input which is
given and fixed, the embedding output is task driven. For
example, the most common type of embedding output is
node embedding which represents close nodes as similar
vectors. Node embedding can benefit node related tasks
such as node classification, node clustering, etc. However, in
some cases, the tasks may be related to higher granularity
of a graph e.g., node pairs, subgraph, whole graph. Hence,
the first challenge in terms of embedding output is to find a
suitable embedding output type for the application of inter-
est. We categorize four types of graph embedding output,
including node embedding, edge embedding, hybrid embedding
and whole-graph embedding. Different output granularities
have different criteria for a “good” embedding and face
different challenges. For example, a good node embedding
preserves the similarity to its neighbouring nodes in the
embedded space. In contrast, a good whole-graph embedding
represents a whole graph as a vector so that the graph-level

similarity is preserved.
In observations of the challenges faced in different prob-

lem settings, we propose two taxonomies of graph em-
bedding work, by categorizing graph embedding literature
based on the problem settings and the embedding tech-
niques. These two taxonomies correspond to what chal-
lenges exist in graph embedding and how existing studies
address these challenges. In particular, we first introduce
different settings of graph embedding problem as well as
the challenges faced in each setting. Then we describe how
existing studies address these challenges in their work,
including their insights and their technical solutions.

Note that although a few attempts have been made to
survey graph embedding ([11], [12], [13]), they have the fol-
lowing two limitations. First, they usually propose only one
taxonomy of graph embedding techniques. None of them
analyzed graph embedding work from the perspective of
problem setting, nor did they summarize the challenges in
each setting. Second, only a limited number of related work
are covered in existing graph embedding surveys. E.g., [11]
mainly introduces twelve representative graph embedding
algorithms, and [13] focuses on knowledge graph embed-
ding only. Moreover, there is no analysis on the insight
behind each graph embedding technique. A comprehensive
review of existing graph embedding work and a high level
abstraction of the insight for each embedding technique can
foster the future researches in the field.

1.1 Our Contributions

Below, we summarize our major contributions in this survey.
• We propose a taxonomy of graph embedding based on
problem settings and summarize the challenges faced in
each setting. We are the first to categorize graph embedding
work based on problem setting, which brings new perspec-
tives to understanding existing work.
• We provide a detailed analysis of graph embedding tech-
niques. Compared to existing graph embedding surveys,
we not only investigate a more comprehensive set of graph
embedding work, but also present a summary of the insights
behind each technique. In contrast to simply listing how the
graph embedding was solved in the past, the summarized
insights answer the questions of why the graph embedding
can be solved in a certain way. This can serve as an insightful
guideline for future research.
• We systematically categorize the applications that graph
embedding enables and divide the applications as node

2

IN CONCRETE TERMS

• A graph is composed of
‣ Nodes (possibly with labels)
‣ Edges (possibly directed, weighted, with labels)

• A graph/node embedding technique in d dimensions will
assign a vector of length d to each node, that will be useful for
what we want to do with the graph.
‣ It captures some aspect of the network structure

• A vector can be assigned to an edge (u,v) by combining
vectors of u and v

3

WHAT TO DO WITH
EMBEDDINGS?

• Two possible ways to use an embedding:
‣ Unsupervised learning:

- The distance between vectors in the embedding is used for *something*
‣ Supervised learning:

- Algorithm learn to predict *something* from the features in the embedding

4

WHAT CAN WE DO WITH
EMBEDDINGS ?

5

EMBEDDING TASKS

• Common tasks:
‣ Link prediction (supervised)
‣ Graph reconstruction (unsupervised link prediction ? / ad hoc)
‣ Community detection (unsupervised)
‣ Node classification (supervised community detection ?)
‣ Role definition (Variant of node classification, can be unsupervised)
‣ Visualisation (distances, like unsupervised)

6

OVERVIEW OF MOST
POPULAR METHODS

7

MATRIX FACTORIZATION

8

LE: LAPLACIAN EIGENMAPS

• Introduced 2001

• Objective function:
‣

- : optimal embedding
- : embedding of node i
- : similarity between nodes i and j (A, heuristic, …)

• Minimize the product between distance in the
embedding and similarity in the graph
‣ If nodes are similar, they must be close in the embedding

y* = min ∑
i≠j

∥yi − yj∥2Sij

y*
yi
Sij

9

LE: LAPLACIAN EIGENMAPS
•

• Can be written (with S=A) in matrix form as:
‣

‣ : Laplacian

• To avoid trivial solution, we impose the constraint:
‣

- : Degree matrix

• Solution: eigenvectors of lowest eigenvalues of

y* = min ∑
i≠j

∥yi − yj∥2Sij

min yTLy

L

yTDy = I
D

d D−1/2LD−1/2

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.10

HOPE: HIGHER-ORDER PROXIMITY
PRESERVED EMBEDDING

• Preserve a proximity matrix

•

• can be the adjacency matrix, or number of common neighbors,
Adamic Adar, etc.

• As similarity tends towards 0, embedding vectors must tend towards
orthogonality (orthogonal vectors:)

y * = min ∑
i,j

|Sij − yiyT
j |

S

yiyT
j = 0

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, 151, 78-94.11

RANDOM WALKS BASED

12

DEEPWALK

• The first Random Walk+Neural Networks graph embedding
method.
‣ First of a long series

• Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

13

SKIPGRAM
Word embedding

Corpus => Word = vectors
Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]
14

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b15

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b16

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
17

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
18

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with interesting properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

19

DEEPWALK

• Skipgram for graphs:
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters:
‣ Embedding dimensions d
‣ Context size
‣ More technical parameters: length of random walks, number of walks starting

from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

20

NODE2VEC
• Use biased random walk to tune the context to capture

what we want
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM. 21

RANDOM WALK METHODS

• What is the objective function ?

• How to interpret the distance between nodes in the
embedding ?

22

RANDOM WALK METHODS

Approximately

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.

Node Embedding: HOPE

Higher-Order Proximity preserved Embedding (HOPE)a objec-
tive function is:

y = min
X

i,j

|Wij � yiy
T
j |

Said di�erently, its objective is tominimize the di�erence between
the similarity in the graph Sij and the similarity in the graph, com-
puted as the product of embedding vectors. Vectors are imposed
to be normalized, thus yiyTj corresponds to the cosinesimilarity.
Two nodes close(resp. far) in the graph should therefore be close
(far) in the embedding. Relative distances should also be con-
served.

aou����asymmetric

LE - HOPE: Complexity

Discovering the solution of LE and HOPE methods can be done
e�ciently using matrix decomposition approaches. For instance,
�nding the embedding according to LE in d dimension for the ad-
jacency matrix can be formalized as �nding the d eigenvectors of
lowest eigenvalues of D�1/2LD�1/2, with D the degree matrix
and L the Laplacian matrix.
The computation of the Smatrix however, if it is not the adjacency
matrix, can be costly since in the general case, it requires n2 com-
putations.

RandomWalk NN based embedding

In recent years, new approaches based on randomwalks an neu-
ral networks have encountered a large success and relaunched a
large interest in graph embedding for various applications. They
are transpositions of techniques developed for the embedding of
words to the graph setting.

Word Embedding

Machine Learning on text su�ers from a problem similar to Ma-
chine Learning on graphs: words are not numbers are cannot be
naturally represented as a meaningful vector. Word embedding
objective is to assign a (lowdimensional) vector to eachword such
as two words with similar semantic have similar vectors.

Word Embedding: word�vec - context

The principled proposed in a famous method called word�vec is
to use the context, i.e., the words encountered around a word in
sentences of a corpus, to discover the semantic similarity. In sum-
mary, themore two words are encountered in a same context, the
more they are considered similar. For instance, a corpus might
contain sentences such as: the dog eat dry food, and the cat eat

dry food: cat and dog are found in similar context, which should
drive them closer in the embeddding. In other sentences, their
contexts di�ers, which should drive them away in the embedding.

Word Embedding: Skipgram/word�vec

In practice, a word is considered to be in the context of another
if it is at a distance less than l in a sentence. From a corpus, one
then extract the probability p(wj |wi) for eachwordwi, that a word
taken at random in its context is wj .
The objective function of word�vec can be expressed as:

y = min
X

(i,j)

p(wj |wi)� �(yiyj)

with� the softmax function de�ned as exP
ex , a function commonly

used in neural networks to addnon-linearity and to ensure that the
solution is a probability.

Skipgram: a neural network formulation

The skipgram algorithm is solved, in practice, using tools and
methods of neural networks, which make it scalable to large
datasets. It can then be represented as followsa :

ahttps://towardsdatascience.com/
word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Word�vec e�cacy

Word�Vec (and other word embedding approaches) have en-
countered an enormous success in the Natural Language Pro-
cessing domain, and are nowadays used for most practical tasks
such as automatic language translation, sentiment analysis, per-
sonal assistants, etc.
Various other �elds, including network science, have therefore
adapted the mechanism to embed other complex elements.

DeepWalk

DeepWalka is the direct transcription of Word�vec to graphs. The
principle is to generate random walks in the graph, playing the
role of sentences in a corpus. The probability of �nding a word
in the vicinity of another therefore translates in the probability of
encountering a node in a random walk from another.
To sum up, the objective function can now be expressed as:

y = min
X

(i,j)

p(nj |ni)� �(yiyj)

with p(wj |wi) the probability to encounter node nj in a random
walk of a chosen length starting from node ni . Its objective is
therefore to make the distance in the embedding proportional to
a random walk based distance in the graph.

aPerozzi, Al-Rfou, and Skiena ����.

DeepWalk complexity

Contrary to matrix decomposition based approaches, DeepWalk
do not require a similarity matrix S. All pairs (i, j) are obtain by k
random walks of length l starting from each of the n nodes. The
complexity of obtaining the input data is therefore in O(n).

Node�vec
Node�veca is a popular variant of DeepWalk, introducing biased
random walks. Two parameters guide the random walks: p de-
creases the probability to revisit the previous node, while q de-
creases the probability to explore farther nodes, i.e., nodes that
were not neighbors of the origin node. It allows tomimic breadth-
�rst or depth-�rst like exploration of the graph, capturing more
local or more global network structures.

aGrover and Leskovec ����.

Node Embedding: HOPE

Higher-Order Proximity preserved Embedding (HOPE)a objec-
tive function is:

y = min
X

i,j

|Wij � yiy
T
j |

Said di�erently, its objective is tominimize the di�erence between
the similarity in the graph Sij and the similarity in the graph, com-
puted as the product of embedding vectors. Vectors are imposed
to be normalized, thus yiyTj corresponds to the cosinesimilarity.
Two nodes close(resp. far) in the graph should therefore be close
(far) in the embedding. Relative distances should also be con-
served.

aou����asymmetric

LE - HOPE: Complexity

Discovering the solution of LE and HOPE methods can be done
e�ciently using matrix decomposition approaches. For instance,
�nding the embedding according to LE in d dimension for the ad-
jacency matrix can be formalized as �nding the d eigenvectors of
lowest eigenvalues of D�1/2LD�1/2, with D the degree matrix
and L the Laplacian matrix.
The computation of the Smatrix however, if it is not the adjacency
matrix, can be costly since in the general case, it requires n2 com-
putations.

RandomWalk NN based embedding

In recent years, new approaches based on randomwalks an neu-
ral networks have encountered a large success and relaunched a
large interest in graph embedding for various applications. They
are transpositions of techniques developed for the embedding of
words to the graph setting.

Word Embedding

Machine Learning on text su�ers from a problem similar to Ma-
chine Learning on graphs: words are not numbers are cannot be
naturally represented as a meaningful vector. Word embedding
objective is to assign a (lowdimensional) vector to eachword such
as two words with similar semantic have similar vectors.

Word Embedding: word�vec - context

The principled proposed in a famous method called word�vec is
to use the context, i.e., the words encountered around a word in
sentences of a corpus, to discover the semantic similarity. In sum-
mary, themore two words are encountered in a same context, the
more they are considered similar. For instance, a corpus might
contain sentences such as: the dog eat dry food, and the cat eat

dry food: cat and dog are found in similar context, which should
drive them closer in the embeddding. In other sentences, their
contexts di�ers, which should drive them away in the embedding.

Word Embedding: Skipgram/word�vec

In practice, a word is considered to be in the context of another
if it is at a distance less than l in a sentence. From a corpus, one
then extract the probability p(wj |wi) for eachwordwi, that a word
taken at random in its context is wj .
The objective function of word�vec can be expressed as:

y = min
X

(i,j)

p(wj |wi)� �(yiy
T
j)

with� the softmax function de�ned as exP
ex , a function commonly

used in neural networks to addnon-linearity and to ensure that the
solution is a probability.

Skipgram: a neural network formulation

The skipgram algorithm is solved, in practice, using tools and
methods of neural networks, which make it scalable to large
datasets. It can then be represented as followsa :

ahttps://towardsdatascience.com/
word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Word�vec e�cacy

Word�Vec (and other word embedding approaches) have en-
countered an enormous success in the Natural Language Pro-
cessing domain, and are nowadays used for most practical tasks
such as automatic language translation, sentiment analysis, per-
sonal assistants, etc.
Various other �elds, including network science, have therefore
adapted the mechanism to embed other complex elements.

DeepWalk

DeepWalka is the direct transcription of Word�vec to graphs. The
principle is to generate random walks in the graph, playing the
role of sentences in a corpus. The probability of �nding a word
in the vicinity of another therefore translates in the probability of
encountering a node in a random walk from another.
To sum up, the objective function can now be expressed as:

y = min
X

(i,j)

p(nj |ni)� �(yiy
T
j)

with p(wj |wi) the probability to encounter node nj in a random
walk of a chosen length starting from node ni . Its objective is
therefore to make the distance in the embedding proportional to
a random walk based distance in the graph.

aPerozzi, Al-Rfou, and Skiena ����.

DeepWalk complexity

Contrary to matrix decomposition based approaches, DeepWalk
do not require a similarity matrix S. All pairs (i, j) are obtain by k
random walks of length l starting from each of the n nodes. The
complexity of obtaining the input data is therefore in O(n).

Node�vec
Node�veca is a popular variant of DeepWalk, introducing biased
random walks. Two parameters guide the random walks: p de-
creases the probability to revisit the previous node, while q de-
creases the probability to explore farther nodes, i.e., nodes that
were not neighbors of the origin node. It allows tomimic breadth-
�rst or depth-�rst like exploration of the graph, capturing more
local or more global network structures.

aGrover and Leskovec ����.

23

RANDOM WALK METHODS

• Scalability:
‣ Skipgram uses techniques from machine learning developed for very large

datasets: highly scalable (not necessarily fast or cost efficient)

• Matrix factorization methods require the similarity matrix as
input
‣ Computing all random walk distance:
‣ random walks of length from each node:

S

𝒪(n2)
k ℓ 𝒪(n)

24

SOME REMARKS ON WHAT
ARE EMBEDDINGS

25

ADJACENCY MATRIX

• An adjacency matrix is an embedding… in high dimension

• That represents the structural equivalence
‣ 2 nodes have similar “embeddings” if they have similar neighborhoods
‣ Distance=># of different neighbors (Manhattan Distance)

• Standard dimensionality reduction (T-SNE, PCA) of this
matrix?
‣ Small dimensions
‣ But still unintuitive notion of distance

26

GRAPH LAYOUT

• Graph layouts are also embeddings.
‣ Force layout, kamada-kawai ….

• They try to put connected nodes close to each other and
non-connected ones “not close”

• Problem: they try to avoid overlaps

• Usually not scalable

27

NODE EMBEDDING:
VISUALIZATION

28

FROM D TO 2

• Graph embedding can be used to visualize graphs

• Requires to reduce the embedding from d to 2
‣ TSNE
‣ PCA
‣ …

• Interpretable positions of nodes

• But not necessarily optimized for human reading

29

CLIQUE RING
5 cliques or size 20 with 1 edge between them

LE

LLESpring layout

n2v

30

NODE EMBEDDING:
COMMUNITY DETECTION

31

CLUSTERING EMBEDDINGS
• Many algorithm exists for clustering non-network data

‣ K-means, DBscan, etc.

• Clustering: group nodes that are close in the feature space.

32

EMBEDDING ROLES

33

STRUC2VEC/ROLE2VEC

• In node2vec/Deepwalk, the context collected by RW contain
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes:
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same
“position” in the graph

• =>Capture the role of nodes instead of proximity
Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.34

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC

35

NODE CLASSIFICATION
 WITH EMBEDDINGS

36

NODE CLASSIFICATION

• To each node is associated a vector in the embedding
‣ This vector corresponds to topological features of the node, used instead of,

for instance, centralities
‣ Both types of features can be combined

• As usual, a classifier can be trained using those features

37

NODE CLASSIFICATION

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.

Controversies…

38

LINK PREDICTION WITH
EMBEDDINGS

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In International
Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.

39

UNSUPERVISED
LINK PREDICTION

• Unsupervised link prediction from embeddings

• =>Compute the distance between nodes in the embedding

• =>Use it as a similarity score

40

SUPERVISED
LINK PREDICTION

• Supervised link prediction from embeddings

• =>embeddings provide features for nodes (nb features:
dimensions)
‣ Combine nodes features to obtain edge features

• =>Train a classifier to predict edges based on features from
the embedding

41

SUPERVISED
LINK PREDICTION

Combining nodes vectors into edge vectors

42

SUPERVISED
LINK PREDICTION

• How well does it works ?

• According to recent
articles
‣ Node2vec (2016)
‣ VERSE (2018)

• =>These methods are
better than the state of
the art

Score Definition

Common Neighbors | N (u) \N (v) |
Jaccard’s Coefficient |N (u)\N (v)|

|N (u)[N (v)|
Adamic-Adar Score

P
t2N (u)\N (v)

1
log|N (t)|

Preferential Attachment | N (u) | · | N (v) |
Table 3: Link prediction heuristic scores for node pair (u, v) with
immediate neighbor sets N (u) and N (v) respectively.

our search parameters adds an overhead. However, as our exper-
iments confirm, this overhead is minimal since node2vec is semi-
supervised and hence, can learn these parameters efficiently with
very little labeled data.

4.7 Link prediction

In link prediction, we are given a network with a certain frac-
tion of edges removed, and we would like to predict these missing
edges. We generate the labeled dataset of edges as follows: To ob-
tain positive examples, we remove 50% of edges chosen randomly
from the network while ensuring that the residual network obtained
after the edge removals is connected, and to generate negative ex-
amples, we randomly sample an equal number of node pairs from
the network which have no edge connecting them.

Since none of feature learning algorithms have been previously
used for link prediction, we additionally evaluate node2vec against
some popular heuristic scores that achieve good performance in
link prediction. The scores we consider are defined in terms of the
neighborhood sets of the nodes constituting the pair (see Table 3).
We test our benchmarks on the following datasets:

• Facebook [14]: In the Facebook network, nodes represent
users, and edges represent a friendship relation between any
two users. The network has 4,039 nodes and 88,234 edges.

• Protein-Protein Interactions (PPI) [5]: In the PPI network for
Homo Sapiens, nodes represent proteins, and an edge indi-
cates a biological interaction between a pair of proteins. The
network has 19,706 nodes and 390,633 edges.

• arXiv ASTRO-PH [14]: This is a collaboration network gen-
erated from papers submitted to the e-print arXiv where nodes
represent scientists, and an edge is present between two sci-
entists if they have collaborated in a paper. The network has
18,722 nodes and 198,110 edges.

Experimental results. We summarize our results for link pre-
diction in Table 4. The best p and q parameter settings for each
node2vec entry are omitted for ease of presentation. A general ob-
servation we can draw from the results is that the learned feature
representations for node pairs significantly outperform the heuris-
tic benchmark scores with node2vec achieving the best AUC im-
provement on 12.6% on the arXiv dataset over the best performing
baseline (Adamic-Adar [1]).

Amongst the feature learning algorithms, node2vec outperforms
both DeepWalk and LINE in all networks with gain up to 3.8% and
6.5% respectively in the AUC scores for the best possible choices
of the binary operator for each algorithm. When we look at opera-
tors individually (Table 1), node2vec outperforms DeepWalk and
LINE barring a couple of cases involving the Weighted-L1 and
Weighted-L2 operators in which LINE performs better. Overall,
the Hadamard operator when used with node2vec is highly stable
and gives the best performance on average across all networks.

5. DISCUSSION AND CONCLUSION

In this paper, we studied feature learning in networks as a search-
based optimization problem. This perspective gives us multiple ad-
vantages. It can explain classic search strategies on the basis of

Op Algorithm Dataset

Facebook PPI arXiv
Common Neighbors 0.8100 0.7142 0.8153
Jaccard’s Coefficient 0.8880 0.7018 0.8067
Adamic-Adar 0.8289 0.7126 0.8315
Pref. Attachment 0.7137 0.6670 0.6996
Spectral Clustering 0.5960 0.6588 0.5812

(a) DeepWalk 0.7238 0.6923 0.7066
LINE 0.7029 0.6330 0.6516
node2vec 0.7266 0.7543 0.7221
Spectral Clustering 0.6192 0.4920 0.5740

(b) DeepWalk 0.9680 0.7441 0.9340
LINE 0.9490 0.7249 0.8902
node2vec 0.9680 0.7719 0.9366

Spectral Clustering 0.7200 0.6356 0.7099
(c) DeepWalk 0.9574 0.6026 0.8282

LINE 0.9483 0.7024 0.8809
node2vec 0.9602 0.6292 0.8468
Spectral Clustering 0.7107 0.6026 0.6765

(d) DeepWalk 0.9584 0.6118 0.8305
LINE 0.9460 0.7106 0.8862
node2vec 0.9606 0.6236 0.8477

Table 4: Area Under Curve (AUC) scores for link prediction. Com-
parison with popular baselines and embedding based methods boot-
stapped using binary operators: (a) Average, (b) Hadamard, (c)
Weighted-L1, and (d) Weighted-L2 (See Table 1 for definitions).

the exploration-exploitation trade-off. Additionally, it provides a
degree of interpretability to the learned representations when ap-
plied for a prediction task. For instance, we observed that BFS can
explore only limited neighborhoods. This makes BFS suitable for
characterizing structural equivalences in network that rely on the
immediate local structure of nodes. On the other hand, DFS can
freely explore network neighborhoods which is important in dis-
covering homophilous communities at the cost of high variance.

Both DeepWalk and LINE can be seen as rigid search strategies
over networks. DeepWalk [24] proposes search using uniform ran-
dom walks. The obvious limitation with such a strategy is that it
gives us no control over the explored neighborhoods. LINE [28]
proposes primarily a breadth-first strategy, sampling nodes and op-
timizing the likelihood independently over only 1-hop and 2-hop
neighbors. The effect of such an exploration is easier to charac-
terize, but it is restrictive and provides no flexibility in exploring
nodes at further depths. In contrast, the search strategy in node2vec
is both flexible and controllable exploring network neighborhoods
through parameters p and q. While these search parameters have in-
tuitive interpretations, we obtain best results on complex networks
when we can learn them directly from data. From a practical stand-
point, node2vec is scalable and robust to perturbations.

We showed how extensions of node embeddings to link predic-
tion outperform popular heuristic scores designed specifically for
this task. Our method permits additional binary operators beyond
those listed in Table 1. As a future work, we would like to explore
the reasons behind the success of Hadamard operator over oth-
ers, as well as establish interpretable equivalence notions for edges
based on the search parameters. Future extensions of node2vec
could involve networks with special structure such as heteroge-
neous information networks, networks with explicit domain fea-
tures for nodes and edges and signed-edge networks. Continuous
feature representations are the backbone of many deep learning al-
gorithms, and it would be interesting to use node2vec representa-
tions as building blocks for end-to-end deep learning on graphs.

(AUC)
(a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-L2

43

LINK PREDICTION

• Personal opinion: not that simple

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.

44

LINK PREDICTION
• Personal opinion: not that simple

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.

45

MODEL STACKING
Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks.
Proceedings of the National Academy of Sciences, 117(38), 23393-23400.

Fig. 1. The Gini importances for predicting missing links in networks within each of six scientific domains, for the 29 most important predictors, grouped by family, under a
random forest classifier trained over all 203 predictors. Across domains, predictors exhibit widely different levels of importance, indicating a diversity of errors, such that no
predictor is best overall. Here, topological predictors include shortest-path betweenness centrality (SPBC), common neighbors (CN), Leicht-Holme-Newman index (LHN),
personalized page rank (PPR), shortest path (SP), the mean neighbor entries within a low rank approximation (mLRA), Jaccard coefficient (JC), and the Adamic-Adar index
(AA); embedding predictors include the L2 distance between embedded vectors under emb-DW (L2d-emb-DW), and the dot product (emb-vgae-dp) of embedded vectors
under emb-vgae; and, model-based predictors include Infomap (Infomap), stochastic block models with (MDL (DC-SBM), B-NR (DC-SBM)) and without degree corrections
(MDL (SBM), B-NR (SBM)), and modularity (Q). (A complete list of abbreviations is given in SI Appendix, Section A.)

is captured by its learned Gini importance (mean decrease
in impurity) (11) within the random forest: the higher the
Gini importance, the more generally useful the predictor is
for correctly identifying missing links on that network or that
domain. If all methods exploit a common missingness signal
(one method to rule them all), the same few predictors or pre-
dictor family will be assigned consistently greater importance
across networks and domains. However, if there are multiple
distinct signals (a diversity of errors), the learned importances
will be highly heterogeneous across inputs, and no predictor
or family will be best.

Across networks and domains, we find wide variation in
both individual and family-wise predictor importances, such
that no individual method and no family of methods is best,
or worst, on all networks. On individual networks, predictor
importances tend to be highly skewed, such that a relatively
small subset of predictors account for the majority of predic-
tion accuracy (SI Appendix, Table S4 and Fig. S2). However,
the precise composition of this subset varies widely across
both networks and families (SI Appendix, Tables S4–S5, and
Figs. S3–S4), implying a broad diversity of errors and multi-
ple distinct signals of missingness. At the same time, not all
predictors perform well on realistic inputs, e.g., a subset of
topological methods generally receive low importances, and
most embedding-based predictors are typically mediocre. Nev-
ertheless, each family contains some members that are ranked
among the most important predictors for many, but not all,
networks.

Across domains, predictor importances cluster in interest-
ing ways, such that some individual and some families of
predictors perform better on specific domains. For instance,
examining the 10 most-important predictors by domain (29
unique predictors; Fig. 1), we find that topological methods,
such as those based on common neighbors or localized random
walks, perform well on social networks but less well on net-
works from other domains. In contrast, model-based methods
perform relatively well across domains, but often perform less

well on social networks than do topological measures and some
embedding-based methods. Together, these results indicate
that predictor methods exhibit a broad diversity of errors,
which tend correlate somewhat with scientific domain.

This performance heterogeneity highlights the practical
relevance to link prediction of the general No Free Lunch the-
orem (19), which proves that across all possible inputs, every
machine learning method has the same average performance,
and hence accuracy must be assessed on a per dataset basis.
The observed diversity of errors indicates that none of the
203 individual predictors is a universally-best method for the
subset of all inputs that are realistic. However, that diversity
also implies that a nearly-optimal link prediction method for
realistic inputs could be constructed by combining individual
methods so that the best individual method is applied for each
given input. Such a meta-learning algorithm cannot circum-
vent the No Free Lunch theorem, but it can achieve optimal
performance on realistic inputs by e�ectively redistributing
its worse-than-average performance onto unrealistic inputs,
which are unlikely to be encountered in practice. In the fol-
lowing sections, we develop and investigate the near-optimal
performance of such an algorithm.

Stacking on Networks with Known Structure. Model “stack-
ing” is a meta-learning approach that learns to apply the
best individual predictor according to the input’s characteris-
tics (24). Here, we assess the accuracy of model stacking both
within and across families of prediction methods, which adds
seven more prediction algorithms to our evaluation set.

Because the optimality of an algorithm’s predictions can
only be assessed when the underlying data generating process
is known, we first characterize the accuracy of model stacking
using synthetic networks with known structure, for which we
calculate an exact upper bound on link prediction accuracy (see
SI Appendix, section B). To provide a broad range of realistic
variation in these tests, we use a structured random graph
model, in which we systematically vary its degree distribution’s

Ghasemian et al. 3

46

MODEL STACKING
Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks.
Proceedings of the National Academy of Sciences, 117(38), 23393-23400.

Table 1. Link prediction performance (mean±std. err.), measured by
AUC, precision, and recall, for link prediction algorithms applied to
the 548 structurally diverse networks in our corpus.

algorithm AUC precision recall

Q 0.7 ± 0.14 0.14 ± 0.17 0.67 ± 0.15
Q-MR 0.67 ± 0.15 0.12 ± 0.17 0.63 ± 0.13
Q-MP 0.64 ± 0.15 0.09 ± 0.11 0.59 ± 0.17
B-NR (SBM) 0.81 ± 0.13 0.13 ± 0.12 0.65 ± 0.22
B-NR (DC-SBM) 0.7 ± 0.2 0.12 ± 0.12 0.61 ± 0.24
cICL-HKK 0.79 ± 0.13 0.14 ± 0.14 0.58 ± 0.25
B-HKK 0.77 ± 0.13 0.11 ± 0.1 0.51 ± 0.26
Infomap 0.73 ± 0.14 0.12 ± 0.12 0.68 ± 0.13
MDL (SBM) 0.79 ± 0.15 0.14 ± 0.13 0.57 ± 0.3
MDL (DC-SBM) 0.84 ± 0.1 0.13 ± 0.11 0.78 ± 0.12
S-NB 0.71 ± 0.19 0.12 ± 0.13 0.66 ± 0.17
mean model-based 0.74 ± 0.16 0.12 ± 0.13 0.63 ± 0.21
mean indiv. topol. 0.6 ± 0.13 0.09 ± 0.16 0.53 ± 0.35
mean indiv. topol. & model 0.63 ± 0.15 0.09 ± 0.16 0.55 ± 0.33
emb-DW 0.63 ± 0.23 0.17 ± 0.19 0.42 ± 0.35
emb-vgae 0.69 ± 0.19 0.05 ± 0.05 0.69 ± 0.21
all topol. 0.86 ± 0.11 0.42 ± 0.33 0.44 ± 0.32
all model-based 0.83 ± 0.12 0.39 ± 0.34 0.3 ± 0.29
all embed. 0.77 ± 0.16 0.32 ± 0.32 0.32 ± 0.31
all topol. & model 0.87 ± 0.1 0.48 ± 0.36 0.35 ± 0.35
all topol. & embed. 0.84 ± 0.13 0.4 ± 0.34 0.39 ± 0.33
all model & embed. 0.84 ± 0.13 0.36 ± 0.32 0.36 ± 0.31
all topol., model & embed. 0.85 ± 0.14 0.42 ± 0.34 0.39 ± 0.33

itself, which produces similar results, but with slightly lower
precisions in exchange for slightly higher AUC scores (see
Table S18).

Among the stacked models, the highest accuracy on real-
world networks is achieved by stacking model-based and topo-
logical predictor families. Adding embedding-based predictors
does not significantly improve accuracy, suggesting that the
network embeddings do not capture more structural informa-
tion than is represented by the model-based and topological
families. This behavior aligns with our results on synthetic
networks above, where the performances of stacking all predic-
tors and stacking only model-based and topological predictors
were nearly identical (SI Appendix, Tables S8 and S9).

Applied to individual scientific domains, we find consider-
able variation in missing link predictability, which we take to
be approximated by the most-accurate stacked model (Fig. 2B).
In particular, most predictors, both stacked and individual
(SI Appendix, Figs. S8 and S9), perform well on social net-
works, and on these networks, model stacking achieves nearly
perfect link prediction (up to AUC = 0.98 ± 0.06; Table S12).
In contrast, this upper limit is substantially lower in non-
social domains, being lowest for biological and technological
networks (AUC = 0.83 ± 0.10; Tables S13 and S15), while
marginally higher for economic and information networks
(AUC = 0.88 ± 0.10; SI Appendix, Tables S14 and S16).

Stacked models also exhibit superior performance on link
prediction across real-world networks of di�erent scales (num-
ber of edges m; Fig. 3), and generally exhibit more accurate
predictions as network size increases, where link prediction
is inherently harder. We note, however, that on small net-
works (m < 200), an alternative algorithm based on a simple
majority-vote among model-based predictors slightly outper-

Fig. 3. Mean link prediction performance (AUC) as a function of network size (number
of edges m) for stacked models and select individual predictors, applied to 548 real-
world networks. Generally, stacking topological predictors, model-based predictors,
or both yields superior performance, but especially on larger networks where link
prediction is inherently more difficult.

forms all stacking methods, but performs substantially worse
than the best stacked model on larger networks (m > 1000).
And, embedding-based methods perform poorly at most scales,
suggesting a tendency to overfit, although stacking within that
family produces higher accuracies on larger networks, but still
lower than other stacked models.

Sufficiency and Optimality. In practice, the optimality of a
meta-learning method can only be established indirectly, over
a set of considered predictors applied to a su�ciently diverse
range of empirical tests cases (19). We assess this indirect
evidence for stacked link-prediction models through two nu-
merical experiments.

In the first, we consider how performance varies as a func-
tion of the number of predictors stacked, either within or
across families. Evidence for optimality here appears as an
early saturation, in which performance achieves its maximum
prior to the inclusion of all available individual predictors.
This behavior would indicate that a subset of predictors is
su�cient to capture the same information as the total set. To
test for this early-saturation signature, we first train a random
forest classifier on all predictors in each of our stacked models
and calculate each predictor’s within-model Gini importance.
For each stacked model, we then build a new sequence of sub-
models in which we stack only the k most important predictors
at a time and assess its performance on the test corpus.

In each of the stacked models, performance exhibits a clas-
sic saturation pattern: it increases quickly as the 10 most-
important predictors are included, and then stabilizes by
around 30 predictors (Fig. 4 and SI Appendix, Fig. S5). Perfor-
mance then degrades slightly beyond 30–50 included predictors,

Ghasemian et al. 5

Table S12. Average AUC, precision, and recall performances of the link prediction algorithms over 124 social networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.89 ± 0.07 0.42 ± 0.13 0.85 ± 0.08
Q-MR 0.87 ± 0.07 0.38 ± 0.16 0.78 ± 0.07
Q-MP 0.86 ± 0.08 0.25 ± 0.07 0.83 ± 0.09
B-NR (SBM) 0.93 ± 0.06 0.3 ± 0.08 0.85 ± 0.12
B-NR (DC-SBM) 0.93 ± 0.07 0.28 ± 0.08 0.88 ± 0.08
cICL-HKK 0.93 ± 0.08 0.34 ± 0.1 0.85 ± 0.14
B-HKK 0.88 ± 0.07 0.17 ± 0.05 0.79 ± 0.17
Infomap 0.91 ± 0.04 0.29 ± 0.08 0.83 ± 0.05
MDL (SBM) 0.94 ± 0.07 0.31 ± 0.09 0.87 ± 0.16
MDL (DC-SBM) 0.93 ± 0.09 0.26 ± 0.09 0.89 ± 0.11
S-NB 0.94 ± 0.07 0.3 ± 0.1 0.87 ± 0.08
mean model-based 0.91 ± 0.08 0.3 ± 0.12 0.84 ± 0.12
mean indiv. topol. 0.64 ± 0.19 0.2 ± 0.27 0.56 ± 0.33
mean indiv. topol. & model 0.7 ± 0.21 0.22 ± 0.25 0.62 ± 0.32
emd-DW 0.95 ± 0.1 0.45 ± 0.16 0.92 ± 0.13
emb-vgae 0.95 ± 0.08 0.09 ± 0.02 0.96 ± 0.09
all topol. 0.97 ± 0.08 0.89 ± 0.21 0.88 ± 0.2
all model-based 0.95 ± 0.07 0.76 ± 0.2 0.68 ± 0.17
all embed. 0.95 ± 0.11 0.75 ± 0.23 0.74 ± 0.23
all topol. & model 0.98 ± 0.06 0.89 ± 0.22 0.88 ± 0.19
all topol. & embed. 0.96 ± 0.1 0.86 ± 0.22 0.83 ± 0.25
all model & embed. 0.96 ± 0.09 0.78 ± 0.21 0.74 ± 0.22
all topol., model & embed. 0.97 ± 0.09 0.86 ± 0.23 0.84 ± 0.23

Table S13. Average AUC, precision, and recall performances of the link prediction algorithms over 179 biological networks as a subset of
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predictors are adjusted for maximum F
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

Algorithm AUC Precision Recall

Q 0.61 ± 0.12 0.06 ± 0.09 0.58 ± 0.13
Q-MR 0.57 ± 0.11 0.05 ± 0.09 0.56 ± 0.12
Q-MP 0.59 ± 0.09 0.06 ± 0.07 0.52 ± 0.13
B-NR (SBM) 0.78 ± 0.13 0.09 ± 0.09 0.6 ± 0.21
B-NR (DC-SBM) 0.72 ± 0.17 0.1 ± 0.09 0.63 ± 0.21
cICL-HKK 0.74 ± 0.13 0.09 ± 0.09 0.47 ± 0.24
B-HKK 0.72 ± 0.14 0.11 ± 0.12 0.39 ± 0.26
Infomap 0.7 ± 0.12 0.07 ± 0.09 0.68 ± 0.11
MDL (SBM) 0.77 ± 0.14 0.11 ± 0.1 0.51 ± 0.29
MDL (DC-SBM) 0.82 ± 0.09 0.09 ± 0.07 0.75 ± 0.11
S-NB 0.72 ± 0.14 0.09 ± 0.1 0.64 ± 0.16
mean model-based 0.7 ± 0.15 0.08 ± 0.09 0.58 ± 0.21
mean indiv. topol. 0.59 ± 0.11 0.06 ± 0.08 0.51 ± 0.35
mean indiv. topol. & model 0.62 ± 0.13 0.06 ± 0.08 0.52 ± 0.32
emd-DW 0.59 ± 0.15 0.07 ± 0.08 0.39 ± 0.25
emb-vgae 0.63 ± 0.16 0.04 ± 0.06 0.62 ± 0.2
all topol. 0.83 ± 0.1 0.27 ± 0.23 0.34 ± 0.24
all model-based 0.79 ± 0.12 0.29 ± 0.29 0.24 ± 0.25
all embed. 0.68 ± 0.16 0.17 ± 0.25 0.12 ± 0.17
all topol. & model 0.83 ± 0.1 0.35 ± 0.31 0.23 ± 0.23
all topol. & embed. 0.79 ± 0.13 0.23 ± 0.27 0.18 ± 0.2
all model & embed. 0.79 ± 0.14 0.23 ± 0.26 0.18 ± 0.2
all topol., model & embed. 0.79 ± 0.15 0.25 ± 0.27 0.18 ± 0.2

Ghasemian et al. 27

47

GRAPH CONVOLUTIONAL
NETWORKS

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Zhang, Z., Cui, P., & Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint arXiv:1812.04202.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
48

(DEEP) NEURAL NETWORKS

https://medium.com/tebs-lab/introduction-to-deep-learning-a46e92cb0022

A deep neural networks can be seen as the chaining of multiple simple
machine learning models (e.g., logistic classifier).

The output of a model is the input of the other, all weights optimized
simultaneously (backpropagation)

https://en.wikipedia.org/wiki/Backpropagation49

CONVOLUTIONAL NEURAL
NETWORK

• All outputs of a layer connected to all inputs of the next is
called fully connected layer
‣ Learned weights will “cut” some edges (zero weights)

• In input data is structured, one can already use this structure

• Convolutions were introduced to work with pictures
‣ Adjacency in pixels is meaningful

50

CONVOLUTION

‣ Extract “features” of “higher level”
- Pixels => lines, curves, dots => circles, long lines, curvy shapes => eye, hand, leaves =>

Animal, Car, sky …

51

CONVOLUTION

• A convolution is defined by the
weights of its kernel

• Which kernel(s) should we use?

• Weights of the kernel can be
learnt, too

https://en.wikipedia.org/wiki/Kernel_(image_processing)
52

CONVOLUTIONAL NEURAL
NETWORK

53

CONVOLUTIONAL NEURAL
NETWORK

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/

• Convolution on a picture can be
seen as a special case of a graph
operation:
‣ Combine weights of neighbors
‣ With an image represented as a regular

grid

• Define convolutions on networks

54

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 5

Graph

&

'()* '()*
Outputs

Gconv

…

Gconv

…

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

GconvGraph

Readout

Gconv

Pooling
3456789

:

… …

MLP =

∑

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer is followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

!	

φ(
!%!

∗)

'

(

')

DecoderEncoder

…

Gconv	Gconv

…

(c) A GAE for network embedding [61]. The encoder uses graph convolutional
layers to get a network embedding for each node. The decoder computes the
pair-wise distance given network embeddings. After applying a non-linear
activation function, the decoder reconstructs the graph adjacency matrix. The
network is trained by minimizing the discrepancy between the real adjacency
matrix and the reconstructed adjacency matrix.

!

"

Ti
me

			Gconv			CNN				Gconv				CNN

… …

MLP 2

Tim
e

(d) A STGNN for spatial-temporal graph forecasting [74]. A graph convolu-
tional layer is followed by a 1D-CNN layer. The graph convolutional layer
operates on A and X

(t) to capture the spatial dependency, while the 1D-CNN
layer slides over X along the time axis to capture the temporal dependency.
The output layer is a linear transformation, generating a prediction for each
node, such as its future value at the next time step.

Fig. 2: Different Graph Neural Network Models built with
graph convolutional layers. The term Gconv denotes a graph
convolutional layer (e.g., GCN [22]). The term MLP denotes
multilayer perceptrons. The term CNN denotes a standard
convolutional layer.

latent representation upon which a decoder is used to re-
construct the graph structure [61], [62]. Another popular
way is to utilize the negative sampling approach which
samples a portion of node pairs as negative pairs while
existing node pairs with links in the graphs are positive
pairs. Then a logistic regression layer is applied after the
convolutional layers for end-to-end learning [42].

In Table III, we summarize the main characteristics of
representative RecGNNs and ConvGNNs. Input sources, pool-
ing layers, readout layers, and time complexity are compared
among various models.

IV. RECURRENT GRAPH NEURAL NETWORKS

Recurrent graph neural networks (RecGNNs) are mostly pi-
oneer works of GNNs. They apply the same set of parameters
recurrently over nodes in a graph to extract high-level node
representations. Constrained by computation power, earlier
research mainly focused on directed acyclic graphs [13], [80].

Graph Neural Network (GNN*2) proposed by Scarselli et
al. extends prior recurrent models to handle general types of
graphs, e.g., acyclic, cyclic, directed, and undirected graphs
[15]. Based on an information diffusion mechanism, GNN*
updates nodes’ states by exchanging neighborhood information
recurrently until a stable equilibrium is reached. A node’s
hidden state is recurrently updated by

h
(t)
v =

X

u2N(v)

f(xv,x
e
(v,u),xu,h

(t�1)
u), (1)

where f(·) is a parametric function, and h
(0)
v is initialized

randomly. The sum operation enables GNN* to be applicable
to all nodes, even if the number of neighbors differs and no
neighborhood ordering is known. To ensure convergence, the
recurrent function f(·) must be a contraction mapping, which
shrinks the distance between two points after mapping. In the
case of f(·) being a neural network, a penalty term has to
be imposed on the Jacobian matrix of parameters. When a
convergence criterion is satisfied, the last step node hidden
states are forwarded to a readout layer. GNN* alternates the
stage of node state propagation and the stage of parameter
gradient computation to minimize a training objective. This
strategy enables GNN* to handle cyclic graphs. In follow-up
works, Graph Echo State Network (GraphESN) [16] extends
echo state networks to improve efficiency. GraphESN consists
of an encoder and an output layer. The encoder is randomly
initialized and requires no training. It implements a contractive
state transition function to recurrently update node states until
the global graph state reaches convergence. Afterward, the
output layer is trained by taking the fixed node states as inputs.

Gated Graph Neural Network (GGNN) [17] employs a gated
recurrent unit (GRU) [81] as a recurrent function, reducing the
recurrence to a fixed number of steps. The advantage is that it
no longer needs to constrain parameters to ensure convergence.

2As GNN is used to represent broad graph neural networks in the survey,
we name this particular method GNN* to avoid ambiguity.

Stacking convolution layers

55

GRAPH CONVOLUTION

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))
: node features
: adjacency matrix ()

: layer index
: Degree matrix (degrees on the diagonal)
: learnable weights

: activation fonction (often ReLU)

H
A ̂A = A + I
l
D
W
σ

H(l+1) = f(H(l), A)

56

GRAPH CONVOLUTION

• Going through an example of the typical GCN

Zackary Karate club
(with communities for reference)

̂A

57

GRAPH CONVOLUTION

D−1 ̂A D− 1
2 ̂AD− 1

2

Normalisation of the adjacency matrix
Simple average Weighted average

58

GRAPH CONVOLUTION

D− 1
2 ̂AD− 1

2 H

Features of the nodes become the (weighted)
average of the features of the neighbors

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

 has shape (), with the number of features in
input and the desired number of features in output
W X × Y X

Y

59

GRAPH CONVOLUTION

…

W0 : d0 × d1
W1 : d1 × d2

Wn : dn × dn+1

Size of the weight matrices by layer

 is the number of features per node in the original network data,
 is the number of desired features (usually followed by a normal

classifier, e.g., logistic)

d0
dn+1

f(H(l), A) = σ (D̂− 1
2 ̂AD̂− 1

2 H(l)W(l))

60

GRAPH CONVOLUTION
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

 is called an activation function.
It is used to introduce non-linearity.

As of 2019, the most common choice is to use the ReLU,
(Rectified Linear Unit)

=>Simple to differentiate and to compute

σ

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f761

FORWARD STEP

• We can first look at what happens without weight
learning, i.e., doing only the forward step.

• We set the original features to the identity matrix, . Each
node’s features is a one hot vector of itself (1 at its position, 0
otherwise)

• Weights are random (normal distribution centered on 0)

• Two layers, with sizes

H0 = I

W n × 5,5 × 2

62

FORWARD STEP
f(H(l), A) = σ (D̂− 1

2 ̂AD̂− 1
2 H(l)W(l))

=

=

L1 = n to 5 features

L1 = 5 to 2 features

=>σ

63

FORWARD STEP

Dimension 1

Dimension 2

Even with random weights, some structure is preserved
in the “embedding”

64

FORWARD STEP
K-means on the 2D “embedding”

(paramater k=3 clusters)

(Node positions based on spring layout)65

BACKWARD STEP

• To learn the weights, we use a mechanism called back-
propagation

• Short summary
‣ A loss function is defined to compare the “predicted values” with ground

truth labels (at this point, we need some labels…)
- Typically, log-likelihood

‣ The derivative of the cost function relative to weights is computed
‣ Weights are updated using grading descent (i.e., weights are modified in

the direction that will minimize the loss)

https://en.wikipedia.org/wiki/Backpropagation66

FITTING THE GCN

• We define the same GCN as before

• We define a “semi-supervised” process:
‣ Labels are known only for a few nodes (the 2 instructors)
‣ The loss is computed only for them

• We run e steps (“epoch”) of back-propagation, until
convergence

67

FITTING THE GCN
W1 W2 H

Step1:
Each node takes the average features of its

neighbors.
 can be seen as “computed” features

(this is because we used as original features)
W1

I

Step2:
After averaging over results of

step1 (),
each node combines its

aggregated features according
to this matrix

AH

Result:
This is the computed feature

vector.
As expected, values for nodes

0 and 33 are opposed
68

FITTING THE GCN

69

RESULTS

Features values Highest
feature as

label

We retrieve the expected
“communities”

70

GCN LITERATURE
• Results are claimed to be above the state of the art

‣ Controversies, which is normal for such recent methods

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.71

TO CONCLUDE
Many variations

proposed already

Very active since 2017

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Hard to predict the future of
these techniques.

Spawned renewed interest in
networks in the ML literature

72

