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VARIAN T

* We can differentiate:

» Node embedding

» Edge Embedding

» Substructure embedding
» Whole graph Embedding

* In this course, only node embedaing (often called graph
embedding)
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IN CONCRETE TERMS

@ " orabhs composed of

» Nodes (possibly with labels)
» Edges (possibly directed, weighted, with labels)

* A graph/node embedding technique in d dimensions will
assign a vector of length d to each node, that will be useful for
*what we want to do with the graph™.

» [t captures some aspect of the network structure

» A vector can be assigned to an edge (u,v) by combining
vectors of u and v



WHAT TO DO WITH
EMBEDDINGS?

» [wo possible ways to use an embedding:

» Unsupervised learning:
- The distance between vectors in the embedding is used for *something*
» Supervised learning:

- Algorithm learn to predict *something® from the features in the embedding



WHAIT CANWE DO WITH
EMBEDDINGS ¢



EMBEDDING TASKS

» Common tasks:

» Link prediction (supervised)
Graph reconstruction (unsupervised link prediction ? / ad hoc)
Community detection (unsupervised)
Node classification (supervised community detection ?)
Role definrtion (Variant of node classification, can be unsupervised)
Visualisation (distances, like unsupervised)
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OVERVIEW OF MOST
POPULAR METHOES



MATRIX FACTORIZATION



L& LAPLACIAN EIGENMAPS

* Introduced 200 |

» Objective function:
1 2
y>X< = Mmin Z ”yl = y]” Sl]
%]
- y* optimal embedding

>

- y;: embedding of node |

- 5,7 similarity between nodes i and j (A, heuristic, ...)

* Minimize the product between distance in the
embedding and similarity in the graph
» If nodes are similar, they must be close In the embedding
9



L& LAPLACIAN EIGENMAPS

L yE=min ) _|ly, — ylIS;
e

 Can be written (with S=A) In matrix form as:
» miny! Ly

» L: Laplacian
* o avoid trivial solution, we impose the constraint:
» y' Dy =1

EDRIBIcoree matrix

+ Solution: d eigenvectors of lowest eigenvalues of D~1V2LD =1/

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications,ﬁyd performance: A survey. Knowledge-Based Systems, 151, 78-94.



HOPE: HIGHER-ORDER PROXIMITY
PRESERVED EMBEDDING

* Preserve a proximity matrix
y* = mmz S = |

* § can be the adjacency matrix, or number of common neighbors,
Adamic Adar, etc.

* As similarity tends towards 0, embedding vectors must tend towards
orthogonality (orthogonal vectors: yl-ij — ()

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications,|a|nd performance: A survey. Knowledge-Based Systems, 151, 78-94.



RANDOM WALKS BASED



DEEPWALK

* The first Random Walk+Neural Networks graph embedding
method.

» First of a long series

- Adaptation of word2vec/skipgram to graphs

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM. 3



SKIPGRAM

Word embedding
Corpus => Word = vectors
Similar embedding= similar context

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

[http://mccormickml.com/2016/04/ | 9/vvc|>4rd2vec—tutoria|—the—s|<ip—gram—model/]



SKIPGRAM

Output Layer
Softmax Classifier

Hldden Layer Probability that the word at a
Linear Neurons /;
Input Vector Ay /

> randomly chosen, nearby
position is “abandon”
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https://towardsdatascience.com/word2vec-skip4gram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM

Output
Input softmax
@) G
X1 0 Hidden e
X2| O N /Khl\ 0 |¥Y2
A hy v :
Vector of word i
hs3 3
- g
X Matrix W = X Matrix W” & |V =
: 2
Xi| 1 g_ 1 Y;
' Context matrix
h
Embedding matrix ~—\_ /
Xyv| 0 N-dimension vector 0 |yv
N N

https://towardsdatascience.com/word2vec-skip4gram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

| https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|
|8


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM”

» Algorithm that takes an input:

» The element to embed
» A list of “context’’ elements

* Provide as output:

» An embedding with interesting properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure



DEEPWALK

» Skipgram for graphs:

» [)Generate “sentences’ using random walks
» 2)Apply Skipgram

S rameters:

» Embedding dimensions d
RS enitext size

» More technical parameters: length of random walks, number of walks starting
from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



NODE2VEC

» Use biased random walk to tune the context to capture

*what we want™®

» “Breadth first” like RW => |ocal neighborhood (edge probability ?)
» “Depth-first” like RW => global structure ¢ (Communities ?)
» 2 parameters to tune:

- Pp: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in nodeZvec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases c.

| T— m—

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



RANDOM WALK METHODS

 What Is the objective function ¢

BEE Bicinterpret the distance between nodes In the
embedding !

ik



RANDOM WALK METHODS

Approximately

y =min » p(nj|n;) —o(yiy, )
(%,7)

with p(w;|w;) the probability to encounter node n; in a random
walk of a chosen length starting from node n;. Its objective is
therefore to make the distance in the embedding proportional to
a random walk based distance in the graph.

X

with o the softmax function defined as ﬁ a function commonly
used in neural networks to add non-linearity and to ensure that the

solution is a probability.

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation Iearrﬂnjg on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.



RANDOM WALK METHODS

» Scalabilrty:
» Skipgram uses techniques from machine learning developed for very large
datasets: highly scalable (not necessarily fast or cost efficient)

» Matrix factorization methods require the similarity matrix § as
input
» Computing all random walk distance: O(n?)
» k random walks of length £ from each node: O(n)

il



SOME REMARKS ON WHAT
ARE EMBEDDINGS



ADJACENCY MATRIX

* An adjacency matrix 1s an embedding... in high dimension

* [ hat represents the structural equivalence

» 2 nodes have similar “embeddings” it they have similar neighborhoods
» Distance=># of different neighbors (Manhattan Distance)

» Standard dimensionality reduction (I-SNE, PCA) of this
matrix!
» Small dimensions
» But still uninturtive notion of distance

26



BRAPH LAYOURE

» Graph layouts are also embeddings.
» Force layout, kamada-kawal ...

* [ hey try to put connected nodes close to each other and
non-connected ones “not close”

* Problem: they try to avoid overlaps

» Usually not scalable

ik



NODE EMBEDDING:
VISUALIZATION



A\ DIRBELG

» Graph embedding can be used to visualize graphs

B EEiE N o redlce the embedding from d tor2

s ESINIE
» PCA

e,

* Interpretable positions of nodes

* But not necessarily optimized for human reading

i



CLIQUE RING

5 cliques or size 20 with | edge between them

Spring layout
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NODE EMBEDDING:
EOMMUNITY DE | ECTICHS



CLUSTERING EMBEDDINGS

* Many algorithm exists for elustering non-network data
» K-means, DBscan, etc.

» Clustering: sroup nodes that are close in the feature space.

£37)



EMIBEDDING ROLES



STRUC2VEC/ROLE2ZVEC

* In node2vec/Deepwalk, the context collected by RWV contain
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
SINBNEES I avallable, or computed attributes (degrees .

« =>Nodes with a same context will be nodes In a same
“position” In the graph

» =>(apture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mirfing (pp. 385-394). ACM.



BERUC | 2VEC : DOUBLE ZISSs
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Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Miring (pp. 385-394). ACM.



NODE CLASSIHCATICHS
WITH EMBEDDINGS



NODE CLASSIFICATION

» lo each node Is associated a vector In the embedding

» This vector corresponds to topological features of the node, used instead of,
for instance, centralities

» Both types of features can be combined

» As usual, a classifier can be trained using those features

Bi



NODE CLASSIFICATION

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) | 0.25,0.25 4,1 4, 0.5
Gain of node2vec [ %] 22.3 1.3 21.8

R

@ehlie sl

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



LINK PREDICTION WITH
EMBEDDINGS

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In International
Conference on Complex Networks and their Applications (pp. 81-93). Springer, Charré.



UNSUPERVISED
LINK PREDICTION

* Unsupervised link prediction from embeddings
» =>Compute the distance between nodes in the embedding

» =>Use It as a similarity score

40



SUPERVISED
LINK PREDICTION

* Supervised link prediction from embeddings

» =>embeddings provide features for nodes (nb features:
dimensions)
» Combine nodes features to obtain edge features

* =>Train a classifier to predict edges based on features from
the embedding

il



SUPERVISED
LINK PREDICTION

Operator Result

Average (a+b)/2

Concat (0,550 5 5 Aty Dy s s by]
Hadamard [a; xbq,..., ag *by]
Weighted L1 [|la; — b1l,...,|lag — byl]
Weighted L2 (a; —b1)%, ..., (ag —by)?]

Combining nodes vectors Into edge vectors

2



SUPERVISED
LINK PREDIC [TON

« How well does 1t works ?

g Geeiding to recent

articles

Node2vec (2016)
» VERSE (2018)

« =>[hese methods are
better than the state of
the art

Algorithm Dataset
Facebook | PPI arXiv
Common Neighbors | 0.8100 0.7142 | 0.8153
Jaccard’s Coefficient | 0.8880 0.7018 | 0.8067
Adamic-Adar 0.8289 0.7126 | 0.8315
Pref. Attachment 0.7137 0.6670 | 0.6996
Spectral Clustering 0.5960 0.6588 | 0.5812
(a) | DeepWalk 0.7238 0.6923 | 0.7066
LINE 0.7029 0.6330 | 0.6516
node2vec 0.7266 0.7543 | 0.7221
Spectral Clustering 0.6192 0.4920 | 0.5740
(b) | DeepWalk 0.9680 0.7441 | 0.9340
LINE 0.9490 0.7249 | 0.8902
node2vec 0.9680 0.7719 | 0.9366
Spectral Clustering 0.7200 0.6356 | 0.7099
(¢) | DeepWalk 0.9574 0.6026 | 0.8282
LINE 0.9483 0.7024 | 0.8809
node2vec 0.9602 0.6292 | 0.8468
Spectral Clustering 0.7107 0.6026 | 0.6765
(d) | DeepWalk 0.9584 0.6118 | 0.8305
LINE 0.9460 0.7106 | 0.8862
node2vec 0.9606 0.6236 | 0.8477

255

(a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-L.2

(AUC)



LINK PREDICTION

* Personal opinion: not that simple

Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In
International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



LINK PREDICTION

* Personal opinion: not that simple
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Sinha, A., Cazabet, R., & Vaudaine, R. (2018, December). Systematic Biases in Link Prediction: comparing heuristic and graph embedding based methods. In

International Conference on Complex Networks and their Applications (pp. 81-93). Springer, Cham.



MODEL STACKING

Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks.
Proceedings of the National Academy of Sciences, 117(38), 23393-23400.
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Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., & Clauset, A. (2020). Stacking models for nearly optimal link prediction in complex networks.

Proceedings of the National Academy of Sciences, 117(38), 23393-23400.

MODEL STACKING

Table S12. Average AUC, precision, and recall performances of the link prediction algorithms over 124
CommunityFitNet corpus. A random forest is used for supervised stacking of methods. Here, the predh ed_fe
measure using a model selection through a cross validation on training set. The results are reported on 20% holdout test set.

as a subset of
maximum F

Algorithm | AUC | Precision | Recal Table 1. Link prediction performance (mean-=std. err.), measured by
Q 0.89+0.07 | 0.42+0.13 | 0.85+0.08 W%diction algorithms applied to
Q-MR 0871007 | 038L0.16 | 0.78 £ 0.07 e 548 structurally diverse network our corpus.
Q-MP 0.86 +0.08 | 0.25+0.07 | 0.83+0.09
B-NR (SBM) 0.93+£0.06 | 0.3+0.08 | 0.85+0.12 algorithm AUC | precision | recall
B-NR (DC-SBM) 0.93+0.07 | 0.28+0.08 | 0.88+0.08 Q 071014 1 0141017 | 067 Lo015
cICL-HKK 0.93+0.08 | 0.34+0.1 | 0.85+0.14 QMR 0672015 oD A N ENEE
B-HKK 0.88£0.07 | 0.174+0.05 | 0.79+0.17 aMP PENR G o | e
nlelian DT A0 20 DO EO 551000 B-NR (SBM) 0.81+0.13 | 0.13+0.12 | 0.65+ 0.22
REIFEM) Bkl 0igl 0000 008 N0 D=0 1 B-NR (DC-SBM) 07402 | 0.12+0.12 | 0.61+0.24
MDL (DC-SBM) 0.93+0.09 | 0.26+0.09 | 0.89+0.11
e T e T T LT clCL-HKK 0.79+0.13 | 0.14+0.14 | 0.58 +0.25
B-HKK 0.77+0.13 | 0.114+0.1 | 0.51+0.26
mean .mo.del—based 0.91 £ 0.08 0.3 £0.12 0.84 £0.12 Infomap 073+ 0.14 012 £ 0.12 0.68 +0.13
mean !nd!v. topol. 0.64 +£0.19 0.2 +0.27 0.56 +0.33 MDL (SBM) 079+015 | 014 +0.13 057 +£03
mean indiv. topol. & model 07£021 | 022+0.25 | 0.62+0.32 MDL (DC-SBM) 0812101 0131011 | 078 £ 0.12
SHIGaRYY Dogse Uil || BeDes b |00 0-13 > S-NB 0.704+0.19 | 0.12+0.13 | 0.66+0.17
b-vgae 0.95+0.08 | 0.0940.02 | 0.96 +0.0
mean model-based 0.74+0.16 | 0.124+0.13 | 0.63 £0.21
diiiopol Uy =e G el == UL | Bher 2= 0.2 mean indiv. topol. 0.6 £ 0137 [ 00 RN e
gaioce - based G 0 DO ER 00PN 060 21 T mean indiv. topol. & model | 0.63 £ 0.15 | 0.09+0.16 | 0.55 + 0.33
all embed. 0.95+0.11 | 0.75+0.23 | 0.74 £0.23
all topol. & model 0.98+0.06 | 0.89+0.22 | 0.88+0.19 emb-DW 0.63£0.23 | 0.17+0.19 | 0.42+0.35
all topol. & embed. 0.06+0.1 | 0.86+0.22 | 0.83+0.25 emb-vgae 0.69£0.19 | 0.05+0.05 | 0.69+0.21
all model & embed. 0.96 +0.09 | 0.78 +0.21 | 0.74 +0.22 <drtopol. 0.86+£0.11 | 0.42+0.33 | 044+0.32 —
< alltopol., model & embed. | 0.97+0.09 | 0.86+0.23 | 0844023~  all modelbased 0-83—+6+2—6-39+0StT 03 L 029
all embed. 0.77+0.16 | 0.32+0.32 | 0.3240.31
all topol. & model 0.87 £ 0.1 0.48 £0.36 | 0.35+0.35
all topol. & embed. 0.84 £0.13 0.4+0.34 0.39 £0.33
all model & embed. 0.84 £0.13 | 0.36 £0.32 | 0.36 +0.31
< alltopol., model & embed. | 0.85+0.14 | 0.42+0.34 | 0.39+0.33"
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GRAPH CONVOLUTIONAL
NE TWORKS

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.

Zhang, Z., Cui, P., & Zhu, W. (2018). Deep learning on graphs: A survey. arXiv preprint arXiv:1812.04202.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
48



(DEEP) NEURAL NETWORKS

A deep neural networks can be seen as the chaining of multiple simple
machine learning models (e.g., logistic classifier).
The output of a model is the input of the other, all weights optimized
simultaneously (backpropagation)

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3
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Figure 12.2 Deep network architecture with multiple layers.

https://medium.com/tebs-lab/introduction-to-deep-learning-a46e92cb0022
https://en.wikipedia.ogg/wiki/Backpropagation



CONVOLUTIONAL NE

———%

» All outputs of a layer connected to all inputs of the next Is
called fully connected layer

» Learned weights will “cut” some edges (zero weights)
* In Input data Is structured, one can already use this structure

» Convolutions were introduced to work with pictures
» Adjacency In pixels i1s meaningful

50



CONVOLUTION

1x1 1x0 1x1 0 0
O 1,110} |4
Oxl OxO 1x1 1 1
0(0(1|1|0
0(1(1/0|0
Image Convolved
Feature

——

NS s sieditires” of ‘higher level”

- Pixels => lines, curves, dots => circles, long lines, curvy shapes => eye, hand, leaves =>
Animal, Car, sky ...

Sl



CONVOLUTION

» A convolution Is defined by the

welghts of Its kernel

* Which kernel(s) should we use!?

B C1its ofl the kernel can be

learnt, too

0 0 0
Identity 0 1 0
0 0 0
1 0 1
0 0 0
-1 0 1
0 1 0
Edge detection 1 -4 1
0 1 0
-1 -1 -1
-1 8 -1
1 -1 -1
0 -1 0
Sharpen -1 5 -1
0 -1 0
1 1 1
Box blur 1
. —11 1 1
(normalized) 9
1 1 1
1 2 1
Gaussian blur 3 x 3 1
' —— 6 2 4 2
approximaton E
o 1 2 1
| — —

https://en.wikipedia.org/wiki/Kernel _(image_processing)



CONVOLUTIONAL NEURAL
NETWORK

Convolution Pooling Convolution Pooling Fully Fully Output
+RelU +RelU Connected Connected perdictions

dog (0.01)

Cat (0.01)
Boat (0.94)
Bird (0.94)

-
-
-

16



CONVOLUTIONAL NEURAL
NETWORK

» Convolution on a picture can be 1 1 1 1
NNININVINFINY

seen as a special case of a graph KD NZNZL N
operation: gugﬁngugu

» Combine weights of neighbors I/ N/ EOEEEEO
> \/IZ:jth an iImage represented as a regular RKOKORORORTK
: NENENYNENZINY
NN N

e Define convolutions on networks

https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-20 | 6-2/



GRAPH CONVOLUTION

Stacking convolution layers

s

e

Gconv Gconv
Graph T\ ”:\
ol - X “\.1 .; [ k I Outputs
R g - v
(@) 2D Convolution. Analo- (b) Graph Convolution. To get L Vi ReLu S ReLu [:}\[;)
gous to a graph, each pixel a hidden representation of the < 4 & - 4 =N > OO o\ @59)
in an image is taken as a red node, one simple solution . \ ED\['I,\
node where neighbors are de- of graph convolution opera- 2 5 O
termined by the filter size. tion takes the average value 29 B eY
The 2D convolution takes a of node features of the red ec e
weighted average of pixel val- node along with its neighbors.
ues of the red node along with Different from image data, the
its neighbors. The neighbors of neighbors of a node are un- T — ——

a node are ordered and have a
fixed size.

ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

T —

T

Wu, Z., Pan, S., Chen, F.,, Long, G., Zhang, C., & Yu, P. S. (2019).%comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.



GRAPH CONVOLUTION

H™D = f(HY, A)

f(H(l),A) — 0 (lfj_%Aﬁ_%H(l)W@)

H: node features

A: adjacency matrix (A =PA)

[: layer index

D: Degree matrix (degrees on the diagonal)
W:learnable weights

0. activation fonction (often RelLU)

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019).%¢comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596.



GRAPH CONVOLUTION

» Going through an example of the typical GCN

0 5 10 15 20 25 30

0 4

5 -

10 -

Zackary Karate club
(with communities for reference)

Sl



GRAPH CONVOLUTION

D~ !A et

Simple average Weighted average

Normalisation of the adjacency matrix



GRAPH CONVOLUTION

f(H(l), A)=o <DA_%A]5—%H(Z)W(Z)>

DD

Features of the nodes become the (weighted)
average of the features of the neighbors

W has shape (X X Y), with X the number of features In
input and Y the desired number of features in output

5\



GRAPH CONVOLUTION

f(H(l),A) —s) <DA_%A]5—%H(Z)W(Z)>
Size of the weight matrices by layer

W, dy X d,
W, :d, Xd,

Wn : dn X dn+1

d is the number of features per node in the original network data,
d, . 1 is the number of desired features (usually followed by a normal
classifier; e.g., logistic)

60



GRAPH CONVOLUTION

f(H(l), A)=o <DA_%ADA—%H(Z)W(Z))

o I1s called an activation function.
[t Is used to introduce non-lineartty.
As of 2019, the most common choice is to use the ReLU,

(Rectified Linear Unit)
=>5SIimple to differentiate and to compute

https://medium.com/@danging/a-priactical-guide-to-relu-b83ca804f| {7



FORWARD STEP

* We can first look at what happens without weight
learning, i.e., doing only the forward step.

* We set the original features to the identity matrix, H, = I. Each
node’s features Is a one hot vector of itself (| at rts position, O
otherwise)

* Weights are random (normal distribution centered on 0)

» Two layers, with W sizesn X 5,5 X 2

62



FORWARD STEP

fHD, A) =0 ( D TAD = HU)WU))

0 B 10 15 20 25 30

aaaaa

BR=Nrhio> features y

25

30

10

BE—t 0 ) fcatures =

20

25

8 e

63



FORWARD STEP

Blnension 2

Dimension |

Even with random welghts, some structure Is preserved
[[iftacRcmEcaalines



FORWARD STEP

K-means on the 2D “embedding”
(paramater k=3 clusters)

(Node positions based on spring layout)



BACKWARD STEP

* o learn the weights, we use a mechanism called back-
propagation

* Short summary

» A loss function Is defined to compare the “predicted values” with ground
truth labels (at this point, we need some labels...)
- Typically, log-likelihood
» The derivative of the cost function relative to welights Is computed

» Weights are updated using grading descent (i.e., weights are modified in
the direction that will minimize the loss)

https://en.wikipedia.org/w@é/Backpropagation



ST TING THE GCIN

* We define the same GCN as before

* We define a “semi-supervised” process:

» Labels are known only for a few nodes (the 2 instructors)
» The loss Is computed only for them

* We run e steps (‘‘epoch’”) of back-propagation, until
convergence

6/



ST TING THE GCIN

W,

STHE D
Stepl: After averaging over results of
Each node takes the average features of its step| (AH),
neighbors. each node combines its
W, can be seen as “computed” features aggregated features according
(this Is because we used [ as original features) to this matrix

68

Result:
This is the computed feature
vector.
As expected, values for nodes
0 and 33 are opposed



Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Evpoch

oo s W O

U o s b B B B B B B B W wWwwWwWwwwwwWw NN NNNNNNNNNNN - O
ocowvwoegooumewWwNMHOOVLWOEISOANODBWNMHMOOVLWOESOOODBGWNMHOWOLWESIOAWUD B WN -O

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

oo oCcoococococoo

.6987
.6804
.6634
.6476
.6326
.6174
.6017
.5852
.5684
.5513

(=== NeBeN-E-R-N-N-R-N-E-R-R-R-R-N-DN-N-R-R-R-R-R-EN-E-R-R-N-B-N-D-N-D-N-N-N-]

.5338
.5158
.4976
.4792
.4605
.4416
.4225
.4033
.3842
.3652
.3464
.3279
.3096
.2916
L2741
.2571
.2407
.2248
.2095
.1946
.1803
.1668
.1541
.1422
.1312
.1209
.1113
.1024
.0940
.0863
.0793
L0727
.0667
.0611
.0560
.0513
.0470
.0432
.0396
.0363
.0333

ST TING THE GCIN

Epoch: 0

69



el 6

Features values

We retrieve the expected
“communities”

70




SCIN LITERATURE

« Results are claimed to be above the state of the art

» Controversies, which is normal for such recent methods

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7

LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1

ICA [18] 69.1 75.1 73.9 23.1
Planetoid* [29] 64.7 (26s) 75.7(13s) 77.2(25s) 61.9 (185s)
GCN (thispaper) 70.3(7s) 81.5@4s) 79.0(38s) 66.0 (48s)
GCN (rand. SplitS) 67905 &80.1£05 789=x0.7 584xL1.7

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification wiff graph convolutional networks. arXiv preprint arXiv:1609.02907 .



e CONCLUCHS

Many variations
proposed already

Very active since 2017/

Spawned renewed Interest In
networks in the ML Iiterature

Hard to predict the future of
these techniques.

Approach Category Inputs Pooling Readout Time Complexity
GNN* (2009) [15] RecGNN A X . X® - a dummy super node -
GraphESN (2010) [16] RecGNN A X - mean -
GGNN (2015) [17] RecGNN A X - attention sum -
SSE (2018) [18] RecGNN A X - - -
Spectral CNN (2014) [19]  Spectral-based ConvGNN A, X spectral clustering+max pooling  max
Henaff et al. (2015) [20] pecty ONN ectealelusiesingdmaenooling

S ChebNet (2016) [21] ____Specizal-hased Cos 4.X afficie 7

==GCN (017) [22] — Specual DT COMCNT e -
CayleyNet 2017) 0] S pect T D e OO T T oo -
AGCN (2018) [40] Spectral-based ConvGNN A, X max pooling sum
DualGCN (2018) [41] Spectral-based ConvGNN A, X - -
NN4G (2009) [24] Spatial-based ConvGNN A, X . sum/mean O(m)
DCNN (2016) [25] Spatial-based ConvGNN A X - mean O(n?)
PATCHY-SAN (2016) [26]  Spatial-based ConvGNN A X, Xe - concat -
MPNN (2017) [27] Spatial-based ConvGNN A, X, X* - attention sum/ set2set  O(rn)
GraphSage (2017) [42] Spatial-based ConvGNN A X - - -
GAT (2017) [43] Spatial-based ConvGNN A X - - O(m)
MoNet (2017) [44] Spatial-based ConvGNN A X - - O(m)
PGC-DGCNN (2018) [46]  Spatial-based ConvGNN A X sort pooling attention sum O(n*)
CGMM (2018) [47] Spatial-based ConvGNN A X - concat -
LGCN (2018) [45] Spatial-based ConvGNN A X - - -
GAAN (2018) [48] Spatial-based ConvGNN A X - - O(m)
FastGCN (2018) [49] Spatial-based ConvGNN A, X . . .
StoGCN (2018) [50] Spatial-based ConvGNN A X - - -
Huang et al. (2018) [51] Spatial-based ConvGNN A X - - -
DGCNN (2018) [52] Spatial-based ConvGNN A, X sort pooling - O(m)
DiffPool (2018) [54] Spatial-based ConvGNN A X differential pooling mean O(n?)
GeniePath (2019) [55] Spatial-based ConvGNN A X - - O(m)
DGI (2019) [56] Spatial-based ConvGNN A X - - O(m)
GIN (2019) [57] Spatial-based ConvGNN A X - concat+sum O(m)
ClusterGCN (2019) [58] Spatial-based ConvGNN A X - - -

e ———— |

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., & Yu, P. S. (2019). A comprehepiive survey on graph neural networks. arXiv preprint arXiv:1901.00596.



