RANDOM GRAPHS MODELS



WHY USING RANDOM
GRAPH MODELS

» Several good reasons:

» Study some properties In a “controlled environment”
- How does property X behaves when increasing property Y ?
» Compare an observed network with a randomized version
- |s observed property X “exceptional”, or any similar network with same property Y and Z ?
» Explain a given phenomenon
- Such simple mechanism can reproduce property X andY
» (Generate synthetic datasets
- Testing an algorithm on |00 variations of the same network



BEASSES OF SYN THE RS
NETWORKS

Synthetic networks types

There are three main types of synthetic networks:

- Deterministic models are instances of famous graphs or, more
commonly, repeated regular patters. e.g..Caveman graph, grids, lat-
tices.

- Generative models assign to each pair of nodes a probability of hav-
INg an edge according to their properties (degree, label, etc). e.g.,
Erdos Renyi, Configuration model, etc.

- Mechanistic models create networks by following a set of rules, a
process defined by an algorithm. e.g., Preferential attachment, Forest

fire, etc.




Fundamental network
models



Central quantities in network analysis

e Degree distribution: P(k)
e (Clustering coefficient: C

e Average path length: <d>

Degree
distribution

Clustering
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Path length

Real world
networks




Regular lattices

» Graphs where each node has the same degree %

 Translational symmetry in n directions
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Regular lattices

Clustering coefficient

C=0 C=3/6 C=1
- Clustering coefficient depends on the structure (can be large or not)
- It is constant for each node

Path length
 Average path length grows quickly with n
when Kk << n
o * In a large graph with realistic average

degrees, will be large
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PROBABILISTIC MODEL



The Erdos-Rényi
Random Graph

model
(ER)




Random Graphs

%

Pal Erd6s Alfréd Rényi
(1913-1996) (1921-1970)

“If we do not know anything else than the number n of nodes and the number L of

links, the simplest thing to do is to put the links at random (no correlations)”

P. Erdés and A. Rényi. On random graphs, |. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
P. Erdés and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61, 1960.



ER Random Graphs

Erdos-Rényi model: simple way to generate random graphs

» The G(n,L) definition * The G(n,p) definition
1. Take n disconnected nodes 1. Take n disconnected nodes
2. Add L edges uniformly at random 2. Add an edge between any of the
nodes independently with

Alternatively: probability p

- pick uniformly randomly a g_raph Alternatively:
from the set of all graphs with n s ny_
nodes and L links . pICk with prObablllty p (1 - p)b) ‘
a network from the set of all
networks with size n
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Random Graphs

In the G(n,p) variant, the number of edges
may vary

S5




ER Random Graphs

p=1/6
N=12
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Random Graphs

P(L): probabllity to have exactly L links in a network of n nodes and probabllity p

Binomial distribution:

Discrete probability distribution of the number of successes(X) in a
sequence of N independent experiments, with success probability p

N
P(x) = (x > pi(1 = p)N=

Binomial coefficient:

!
Number of ways, disregarding order; that k (n) — "
objects can be chosen from among n objects k kl(n —k)!



Random Graphs

Binomial distribution N: Number of experiments
Pairs of nodes
N _ n nn—1)
P()C):( )px(l_p)Nx N = _
X 2 2

P(L): probability to have exactly L links in a network of n
nodes (with p the probability to have an edge)

(5)

L1 — p)(5)-L
. p-(1—-p)

P(L) =



Random Graphs

Properties of Binomial distribution

o N\ | N
Definition P(x) = . pl=p)y—

Mean <x>=pN

variance o> = Np(1 — p)



Random Graphs

Expected number of links <[>
nn—1)

2

<L>=pN=p

Expected average degree <k>
<k>=2LIn=pn-1)

Variance

— 1
6> = Np(1 —p) = n(n2 )p(l —P)




Degree distribution - Random Graphs

For each node,
iIndependent probabillities to take each neighbor
=> Binomial distribution

P(K)

<k> hﬁ

K
P(Kk): probability to have exactly k links among n (total # of
nodes), with p the (overall) probability to have an edge

P(k) = (” ) 1) Pl = p)rh+

Characteristics: o _

<k>

I-p 1 1/2 |
p (N-1) (N-1)'"

<k>=pn-1)

As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.

of = p(n—1)(1 = p)



Degree distribution - Random Graphs

For large m and small k (p,L), we can approximate the degree distribution
using a poisson distribution of parameter (mean) 4 = < k >

AKe=
Poisson distribution P(K) = -
<k >k —<k>
Distribution of degrees P(k) = k'e

standard deviation o= \/ < k>



Degree distribution - Random Graphs
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Degree distribution - Random Graphs

Conclusion: degree distribution is hot
-Heterogeneous
-Long tall
-Scale free




Clustering - Random Graphs

L ocal clustering of a node

Reminder, clustering coefficient

__ where n; is the number of links between the neighbours of node i
" k(k -1)
, . k.(k,—1)
e Edges are independent and have the same probability p n, =p 5

p = <k> # possible |in|<ls

n-1 btw neighbors

o 2<k> ki(ki-1) I <Je>
=

n-1 2 ki(k-l)  n-1 P

e For fixed average degree C is decreasing as N goes large

= | ow clustering coefficient
= |t is vanishing with the system size



Clustering - ER Random Networks

1
- Small clustering coefficient C = N <k>=p
Real-world networks
Network Size (k) / / vand C Crand Reference
WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level  3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8%10"* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x10"°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3x10~* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 9.5 8.2 059 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solée, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Distance - Random Graphs

low clustering coefficient=>

Random graphs tend to have a tree-like topology with almost constant node degrees.

e nr. of first neighbors: Nu), =<k>
* nr. of second neighbors: N(u), = < k >?

enr. of neighbours at distance d: N(x), = < k >¢

Inturtion: At which distance are all nodes reached?

log n
log < k >

n=<k>'=log_ . n=d=d=

Diameter, avg. distance in O(log n)



Distance - ER Random Networks

logn
* Logarithmically short distance among nodes ~ Tog(k)
Real-world networks
Network Size (k) / 4 vand C C,and Reference
WWVW, site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level = 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8X10~* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x107°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3x10~*% Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 9.5 8.2 0.59 5.4x10°° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  5.5x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Sol€, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solée, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)



Connected components of Random Graphs

(k)
DISCONNECTED NODES NETWORK. 0.5
1 7 T
0.8 |
0.6 |- = =
0.75
0.4 | -
DG )= |
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<k>
1.25

e Network structure goes through a transition

e (Question: How and when does this transition
happen 1.5




Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-
blob/



https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/

ER Random Network - catch up
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Structural (percolation) phase transition at <k>=1 (or equivalently when p=1/N)
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ER Random Network - catch up
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An intuitive way to understand this phenomenon is to use the same observa-
tion of the graph being tree-like as previously. Since the number of nodes

N that can be reached after d hops can be estimated to grow as (k)<, a
value of (k) < 1 leads to an impossibility to reach all nodes even for a
large d, while (k) > 1 leads to arbitrarily large N for long enough d. Proper
demonstration and more details can be found in the original paper“.

YErd6s and Rényi 1960.
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ER Random Network - catch up

Basic characteristics

I I I n—1 n—1—k L <k>k _
» Degree distribution  pr. = (", )P (1 —p)" ! - = e ™
N — o0
Binomial distribution Poisson distribution

Degree distribution without tail

<k>
» Clustering Ci= nl P

Vanishing clustering coefficient for large size

» Path length O(logn)

Distance with logarithmic relation to nodes



ER Random Network - catch up

Degree
distribution

Clustering

Network coefficient

Path length

Real world

networks broaa

Regular lattices constant

ER random
networks

Poissonian

It is not capturing the properties of any real system

BUT
it serves as a reference system for any other network model



Configuration
model

More detalls at [http://tuvalu.santafe.edu/~aaronc/courses/5352/1all201 3/csci5352 2013 LI |.pdf]



http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf

Random graphs with specified degrees

Problem

e The ER Random Graph model has a Poisson degree distribution
 Most real-world networks have heavy-tailed degree distributions

e We need to generate networks which have pre-determined degrees or degree
distribution, but they are maximally random otherwise

 The observed properties (clustering coefficient, etc.) might be due only to the
difference in degree distribution



Random graphs with specified degrees

Co nfiguration model How much of some observed pattern is driven by the degrees alone?
Based on an observed network

e Defined as G(n, k) where k = {k} is adegree sequence on n nodes, with k;
being the degree of node i

Ad hoc degree distribution

* The degree sequence ¥k = {k;} can be sampled from a probability distribution

e Delta/Dirac function == Random regular graph
e Poisson => Similar to ER for proper parameters
e Scale-free = Power-law random graph

e Only global condition to satisfy is: Z k;mod 2 =0

(even dégree sum) i.e. each edge has to have ending nodes



Random graphs with specified degrees

Co nfiguration model How much of some observed pattern is driven by the degrees alone?

Exact or approximate degree distribution

* The model can preserve the expected degree sequence, or the exact degree sequence
e Chung-lu (appoximate)

 Molloy-reed (Exact)



Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree
distribution

Probabilistic model which produce a network with degrees approximating (on
average) the original degree

It is a “coin-flipping” process as ER model but the probability that two nodes i
and j are connected depends on the degree k; and %; of the ending nodes

From the point of node i with degree k;, the probability that one of its edges will
connect to j with k;:

ki/2m

This can happen via k; links, thus the probability that they are connected:
i assuming that: [max(kl-)]2 <2m
Pij = leJl (/\ inconsistent probability, it is rather expected

number of edges)

Chung-Lu model takes each pairs of nodes and connects them with this probability

1 with probability p;;
0 otherwise

Visj Ay = A5 = {



Random graphs with specified degrees

Chung-Lu model for configuration networks = Approximate degree
distribution 0
e e el 1 with probablhty Dij where D= Y
Vi>j A { 0 otherwise T 2m

e Each pairs of nodes are considered once, thus it produces a simple graph
(without self-loops and multi edges)

 Degree of a node equals only in “expectation” to the originally assigned degree

* Inconsistency for large degrees in small networks ~ [max(k,)]* < 2m

Complexity:

e (O(n?). We need n(n-1) flips to test all node pairs

EXPENSIVE!



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation
Original idea:

1. Given a degree sequence k= 50 50 6 0l ]

2. Assign each node i€V with k; number of stubs

3. Select random pairs of unmatched stubs and connect them

4. Repeat 3 while there are unmatched stubs

AXKLF s > 90y

e This process will produce a configuration model with exact degree sequence

* Possible to select multiple times stubs of the same pair of nodes =  Multilinks

e Possible to select the stubs of the same node to connect =4 Self-links

The obtained graph is not simple...but the density of multi and self-links =» 0 as N = «



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation

Non-unique problem
e Matching of stubs appears with equal probability
e BUT networks with the same {k;} do not appear with equal probability

 More than one matching can correspond to the same network (topologically)

ayAb b a ayAb b a
C e C e d e d e

Different matchings i = B o
yield same graphs o, . o, .

C f C f d f d f

GHEE ol E cC e c e

ayb b a ayb
Some graphs produced by less A A A
C f C e d f

combinations =>less likely to appear e 60 00



Random graphs with specified degrees

Molloy-Reed model for configuration networks = exact degree
preservation

An effective algorithm:

1. Take an array 7 with length 2m and fill it with exactly &; indices of each
node i€V

2. Make a random permutation of the array 7’
3. Read the content of the array in an order and in pairs

4. Pairs of consecutive node indices will assign links in the configuration

network
11111222233334445567 14122325123734351146
Complexity: '
e O(m). Random permutation of an array CHEAP!

e O(m log m). assigning uniformly random variables to indices and quick-sort them



Configuration model - mathematical properties

Expected clustering coefficient

It is the average probability that two neighbours of a vertex are neighbours

e Start at some vertex v (with degree k > 2)
e Choose a random pair of its neighbours i and ;

* The probability that i and j are themselves connected is kiki/2m

independent of network size

L[k — ()12 |

Clustering coefficient

e [tis a vanishing quantity O(1/n) as long as the second moment is finite (not power law)

For detalls, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall201 3/csci5352_2013_L12.pdf



Configuration model - mathematical properties

Neighbors's degrees
i J é

What is the degree distribution of neighbors of a randomly chosen vertex?

e Let p, be the fraction of vertices in the network with degree k

« There are np, vertices of degree k in the network.

k

The end point of every edge in the network has the same probability 2— of
m

connecting to a vertex of degree k
 Degree distribution of a randomly picked neighbor (of any node)

k kp;
: = —np, = —
pnezghb,k P Pk <k>



Configuration model - mathematical properties

e Degree distribution of a randomly picked neighbor (of any node)
k kpy
Preighbk = 2_npk (k)

* Average degree of a randomly picked neighbor

(k%)
(k)

® Larger than <k) as soon as degrees are heterogeneous = Friendship paradox

< elghb> = Z kpnezghbk

EaSacervithrdesree |0, 10 nodes with degrechis

O 1)
= & — o <k2> 10
(K2 — I e i (k) R 82

11



ER Random Network - catch up

Network Degree Path length Clustering

distribution coefficient

Real world broad
networks

Regular lattices constant

ER random
networks

Configuration

Poissonian

small

Model



