
RANDOM GRAPHS MODELS

WHY USING RANDOM
GRAPH MODELS

• Several good reasons:
‣ Study some properties in a “controlled environment”

- How does property X behaves when increasing property Y ?
‣ Compare an observed network with a randomized version

- Is observed property X “exceptional”, or any similar network with same property Y and Z ?
‣ Explain a given phenomenon

- Such simple mechanism can reproduce property X and Y
‣ Generate synthetic datasets

- Testing an algorithm on 100 variations of the same network

CLASSES OF SYNTHETIC
NETWORKS

Network Science
Cheatsheet

Made by
Remy Cazabet

� Random graphs

Many elements of this course are inspired by the excellent classes by
Aaron Clauset, than can be found online:

http://tuvalu.santafe.edu/~aaronc/courses/5352/

Synthetic networks usages
Using synthetic networks is essential in network science for several reasons.
In particular, they allow to:

• Study some properties in a controled environment. What happens if
we increase propertyX , while keeping all other properties constant?

• Compare an observed network with a randomized version of it. I ob-
served property X in my data, is it something remarkable, or would I
observe the same thing on a random network similar to my graph?

• Explain a phenomenon. Property X seems exceptional. It can be re-
produced in random networks by simple mechanism Y.

• Generate synthetic datasets, for instance to test the same algorithm
on multiples variations of the same network.

Synthetic networks types
There are three main types of synthetic networks:

• Deterministic models are instances of famous graphs or, more
commonly, repeated regular patters. e.g.,Caveman graph, grids, lat-
tices.

• Generativemodels assign to eachpair of nodes a probability of hav-
ing an edge according to their properties (degree, label, etc.). e.g.,
Erdős Rényi, Con�guration model, etc.

• Mechanistic models create networks by following a set of rules, a
process de�ned by an algorithm. e.g., Preferential attachment, Forest
�re, etc.

Regular lattices
Regular lattices are de�ned as repetition of the same pattern a given (poten-
tially in�nite) number of times. Nodes all have the same degree. The pattern
can be in �, � or more dimensions.
The clustering coe�cient depends on the structure, it can be large if the
structure is made of triangles, for instance. It is the same for all nodes (ex-
cept potentially nodes at the boundaries).
The average distance grows quickly with n, if k ⌧ n

Erdős-Rényi (ER) model
The Erdős-Rényi (ER)model is the simplest random graph model. Assum-
ing that we know the number of nodes and the number of edges, and no
other information, then edges are simply put between randomly chosen pair
of nodes.
ER models can be de�ned in two ways:

• in the G(n,L) formulation, the number of edges of the generated
graph is set to exactlyL, and thusL random pairs of nodes are cho-
sen among the set of all existing node pairs(sharp constraint, micro-
canonical ensemble).

• in the G(n, p) formulation, an edge is added between any set of
node with a probability p.(soft constraint, canonical ensemble).

Properties of both model are similar when the number of edges (de�ned by
L or p) is large.

Random version of observed graph
When one wants to compare a real network with a randomized version of it
(also called a rewired network), the usual way is not to start from the origi-
nal network and to actually rewire it edge by edge, but instead to generate
a new ER random graph keeping the same number of nodes and the same
number of edges (or the same density) as the observed network. Properties
of the observed network can then be compared with the generated net-
work. Note that it does note make sense to compare the properties of any
particular node in both networks, since nodes in the random graph have no
identity. Note that in some applications, there is not need to actually gener-
ate a random graph: one can simply compare properties of the real network
with theoretical properties of the random graph.

Soft ER
In the soft ER, the number of edges is not known in advance. The distribu-
tion of the number of edges in the soft ER are described by the binomial
distributionB(Lmax

, p)
From the known properties of the Binomial distribution, it can be shown that:

• The expected number of edges is hLi = pL
max ,

• The variance of the number of edges is �2 = L
max

p(1 � p)

Binomial distribution

The Binomial distribution B(Nb, pb) is a discrete distribu-
tion which model the number of successes x in a sequence
of Nb independent experiments with success probability pb .
For instance, it models how many times (x) one will ob-
tain a � (success) if they throw a dice Nb times and that
the probability to obtain a � is 1

6 . It is de�ned as P (x) =
�Nb

x

�
px(1� pb)N�x .

�N
x

�
is the binomial coe�cient, describ-

ing the number of ways, disregarding order, that x elements
can be chosen among Nb .

ER: Degree distribution
Since each node has an independent probability to be connected with each
other node, the degree distribution of the ER model is modeled as a bino-
mial distribution B(N � 1, p), i.e., the probability to have a given degree
knowing that we have a probability p to have a link with each of the other
nodes in the graph. From the properties of the Binomial distribution, we
know that:

• The expected average degree is hki = p(N � 1)

• The variance of the degree is �2
k
= p(N � 1)(1 � p)

We can note that the distribution becomes increasingly nar-
row as the network size increases, i.e., we are increasingly
con�dent that the degree of a node is in the vicinity of hki:

�k

hki
=

1

(N � 1)1/2

ER: Approximation of degree distribution
by a Poisson Distribution
When the number of nodesN is large and the average degree hki is small,
the degree distribution can be approximated by a Poisson distribution. From
the properties of Poisson distributions, we approximate that for a network
with average degree hki:

• The variance of the degree is �k =
p

hki

Poisson distribution

The Poisson distribution (Delta) is a discrete distribution
modeling the probability of observing exactly x occurrences
of an event in a period of duration�t if this event occurs ran-
domly and that there are in average � occurrences of it dur-
ing a period �t . It is known that the Poisson distribution is a
good approximation of the Binomial approximationwhenNb

is large and pb is small, which is the case for sparse graphs.
working with the Poisson distribution is convenient because
it depends only on a single parameter Delta.

ER: Clustering Coe�cient
The Global Clustering Coe�cient of a network is de�ned as the fraction
of closed triads among all triads. Since any edge (u, v) has a �x probabil-
ity to exist p independently of the existence of any other edge in the net-
work, the probability of having edge (a, c) 2 E for a triad [a, b, c] such as
(a, b), (b, c) 2 E is p.
Thus, the clustering coe�cient of an ER graph is C

g = p . Since we know
that most real networks are sparse, p is small, thus C

g is small. A similar
reasoning can be used to show that the average clustering coe�cient hCi

is small too.

Fundamental network
models

Central quantities in network analysis

• Degree distribution: P(k)

• Clustering coefficient: C

• Average path length: <d>

Network Degree
distribution Path length Clustering

coefficient

Real world
networks broad short large

Regular lattices
• Graphs where each node has the same degree k

COMPLEX NETWORKS

boundary and corner e↵ects. Here we are going to outline the main types of the frequently used
boundary conditions.

Proceed from a simple two dimensional square lattice with linear size L (Figure 3.2.a), the
simplest conventional choice is the free boundary condition, where we do not involve any kind
of link between di↵erent boundaries, but let dangling bonds on the circumference. This case
is suitable to study such problems where free edge boundaries are more realistic, like modeling
local surface e↵ects which arise on the boundaries of di↵erent matters.

a) b) c)

Figure 3.2: Two dimensional square lattice with free boundary condition (a), half periodical boundary
condition (b) and periodical boundary condition (c).

If we link two opposite boundaries of a square lattice, as we connect each last node to the
first node of a given row, it forms a cylinder (Figure 3.2.b). Here parallel with the periodical
condition, the system is homogeneous and the correlation length is maximally L/2. The name
of such a geometry is the half periodical condition. Another cylindrical structure, which is the
easiest to implement, is the helical (also called screw periodical) boundary condition, where the
nodes of the lattice sit on a one dimensional chain and wrapped around the system. Practically
in the end of the chain the very last node connected to the very first node and cause an
inhomogeneity which is only negligible in the limit of infinite size.

The d dimensional lattice which has periodical boundary condition in each d direction covers
a d + 1 dimensional torus (Figure 3.2.c). Here the system is translational invariant in each
directions, and eliminates every boundary e↵ects, however the correlation length is still reduced
by the system size so finite size e↵ects arise in the system.

Another boundary condition which reduces finite size e↵ects, and which does not need any
additional edges is the mean-field boundary condition. Here an additional external field is in-
troduced on the boundaries, which induces the mean bulk conditions on the borders, eliminates
boundary and corner e↵ects.

3.3 Geometrically disordered graphs

A spontaneously evolving network in the real world usually follows rules which are controlled
by random properties. Such self-organized systems exclude regularity and show a fairly di↵erent
structure which finds its origin in special features like dynamical growth or randomness. In the
following section we are going to overview the brief history of random networks and define
general models which belong to this segment.

32

te
l-0

04
03

92
2,

 v
er

si
on

 1
 -

14
 J

ul
 2

00
9

COMPLEX NETWORKS

coming from the random matrix theory [93], as ⇢(�) =
P

N

i=1
�(���i)

N
, where �i the ith biggest

eigenvalue of A [94]. This density becomes continuous if N !1 and is related directly to the
topology of the network.

3.2 Geometrically ordered graphs

3.2.1 Regular lattices

Since the atoms of a crystal are arranged in a fix periodical structure, in solid state physics
a special type of graph is used to describe such systems which is called lattice. A lattice is
defined as a symmetry group with translational symmetry in n direction, or in other words, it
is a space ordered graph with translational invariance. It is arranged by unit cells which fill
periodically the d-dimensional space. In theoretical physics many models defined on lattices
(lattice models) are exactly solvable and also easy to simulate using computational methods.

a) b)

Figure 3.1: The triangular lattice (a) and the Kagomé lattice (b) are the most studied regular structure
which can induce geometrical frustration in antiferromagnetic lattice models.

Another usually required main property of a lattice is the regularity. In graph theory a graph
is called regular if its each vertex p 2 V has the same number of neighbors, thus they have the
same degree k. We called k-regular graphs those graphs which contain vertices with degree k
only.

The geometrical properties of a crystal lattice can induce frustration in condensed matters
like in antiferromagnetic systems. The simplest regular lattices which cause such frustration
in two dimension are the triangular lattice and the Kagomé lattice (Figure 3.1), which were
intensively studied from the early 50s [95]. In these lattices a geometrical constrain arises from
the structure of the lattice which does not let the system relax to its ground state and induce
residual entropy at zero temperature. The water ice was the first example which presented such
behaviour, found in 1936 [96], but later other matters showed similar features.

3.2.2 Boundary conditions

Since it is possible to study only finite lattice systems via computer simulations, an important
question arises about the influence of the lattice boundaries. Beyond the finite size e↵ects, on
the margin of a finite lattice, all edges which link to the last nodes are hanging and change
the local free energy. However, by applying special boundary conditions we can eliminate these

31

te
l-0

04
03

92
2,

 v
er

si
on

 1
 -

14
 J

ul
 2

00
9

1D COMPLEX NETWORKS

d)c)b)a)

Figure 3.4: The evolution of the Strogatz-Watts network. Starting from a regular ring (a), following
the rewiring process (b), it arrives to a random graph structure (c). A alternative definition (d), where
only shortcuts are added to remaining original ring.

where ¯̀= (lnL)/(lnK). In between this two phases there is a crossover regime, where ¯̀ begins
to decrease drastically (Figure 3.5). The reason of this falling is that the additional shortcuts
which appears first at p � 1/NK, decrease suddenly the geodesic distance between opposite
parts of the graph. Many attention have been focused to determine the behavior of ¯̀ in this
range, but it is still not exactly solved. A widely accepted explanation that ¯̀ satisfies a scaling
relation [111]:

¯̀⇠ ⇠g(L/⇠) and g(x) =
⇢

x if x⌧ 1
ln(x) if x� 1

where the correlation length scales as ⇠ ⇠ p�1/d [112]. Using renormalization group treatments
[113] an equivalent scaling form has been found:

¯̀⇠ L

K
f(L/⇠) (3.4)

which di↵ers only by a factor K and where ⇠ = 1/pK. According to the scaling form in Eq.3.4
the graph can pass through the transition controlled by p or L as well, since LKp is equal
to the mean number of shortcuts, which induce the topological change. Finally a mean-field
treatment [114] of the model in one dimension shows approximately that:

f(x) =
1

2
p

x2 + 2x
tanh�1 xp

x2 + 2x
and so ¯̀=

⇠

2K
p

1 + 2⇠/L
tanh�1 1

1 + 2⇠/L
(3.5)

Clustering coe�cient

The clustering coe�cient, which is large at the initial regular graph, is invariant of the system
size L at p = 0 since it depends only on the coordination number z = 2K of the lattice. If
disorder is introduced into the system by rewired edges, it remains close to C(p = 0), as long as
a large fraction of original neighbors keep connected. The probability that three vertices which
were connected at p = 0 still construct a triangle when p > 0 is (1� p)3, since there are three
edges which need to keep intact. It follows that the clustering coe�cient changes as [115]:

C(p) = C(0)(1� p)3 =
3K � 3
4K � 2

(1� p)3 (3.6)

36

te
l-0

04
03

92
2,

 v
er

si
on

 1
 -

14
 J

ul
 2

00
9

2D lattices 3D lattices

COMPLEX NETWORKS

boundary and corner e↵ects. Here we are going to outline the main types of the frequently used
boundary conditions.

Proceed from a simple two dimensional square lattice with linear size L (Figure 3.2.a), the
simplest conventional choice is the free boundary condition, where we do not involve any kind
of link between di↵erent boundaries, but let dangling bonds on the circumference. This case
is suitable to study such problems where free edge boundaries are more realistic, like modeling
local surface e↵ects which arise on the boundaries of di↵erent matters.

a) b) c)

Figure 3.2: Two dimensional square lattice with free boundary condition (a), half periodical boundary
condition (b) and periodical boundary condition (c).

If we link two opposite boundaries of a square lattice, as we connect each last node to the
first node of a given row, it forms a cylinder (Figure 3.2.b). Here parallel with the periodical
condition, the system is homogeneous and the correlation length is maximally L/2. The name
of such a geometry is the half periodical condition. Another cylindrical structure, which is the
easiest to implement, is the helical (also called screw periodical) boundary condition, where the
nodes of the lattice sit on a one dimensional chain and wrapped around the system. Practically
in the end of the chain the very last node connected to the very first node and cause an
inhomogeneity which is only negligible in the limit of infinite size.

The d dimensional lattice which has periodical boundary condition in each d direction covers
a d + 1 dimensional torus (Figure 3.2.c). Here the system is translational invariant in each
directions, and eliminates every boundary e↵ects, however the correlation length is still reduced
by the system size so finite size e↵ects arise in the system.

Another boundary condition which reduces finite size e↵ects, and which does not need any
additional edges is the mean-field boundary condition. Here an additional external field is in-
troduced on the boundaries, which induces the mean bulk conditions on the borders, eliminates
boundary and corner e↵ects.

3.3 Geometrically disordered graphs

A spontaneously evolving network in the real world usually follows rules which are controlled
by random properties. Such self-organized systems exclude regularity and show a fairly di↵erent
structure which finds its origin in special features like dynamical growth or randomness. In the
following section we are going to overview the brief history of random networks and define
general models which belong to this segment.

32

te
l-0

04
03

92
2,

 v
er

si
on

 1
 -

14
 J

ul
 2

00
9

k=4 k=4 k=6 k=4 k=6

• Translational symmetry in n directions

Regular lattices
Clustering coefficient

Path length

COMPLEX NETWORKS

d)c)b)a)

Figure 3.4: The evolution of the Strogatz-Watts network. Starting from a regular ring (a), following
the rewiring process (b), it arrives to a random graph structure (c). A alternative definition (d), where
only shortcuts are added to remaining original ring.

where ¯̀= (lnL)/(lnK). In between this two phases there is a crossover regime, where ¯̀ begins
to decrease drastically (Figure 3.5). The reason of this falling is that the additional shortcuts
which appears first at p � 1/NK, decrease suddenly the geodesic distance between opposite
parts of the graph. Many attention have been focused to determine the behavior of ¯̀ in this
range, but it is still not exactly solved. A widely accepted explanation that ¯̀ satisfies a scaling
relation [111]:

¯̀⇠ ⇠g(L/⇠) and g(x) =
⇢

x if x⌧ 1
ln(x) if x� 1

where the correlation length scales as ⇠ ⇠ p�1/d [112]. Using renormalization group treatments
[113] an equivalent scaling form has been found:

¯̀⇠ L

K
f(L/⇠) (3.4)

which di↵ers only by a factor K and where ⇠ = 1/pK. According to the scaling form in Eq.3.4
the graph can pass through the transition controlled by p or L as well, since LKp is equal
to the mean number of shortcuts, which induce the topological change. Finally a mean-field
treatment [114] of the model in one dimension shows approximately that:

f(x) =
1

2
p

x2 + 2x
tanh�1 xp

x2 + 2x
and so ¯̀=

⇠

2K
p

1 + 2⇠/L
tanh�1 1

1 + 2⇠/L
(3.5)

Clustering coe�cient

The clustering coe�cient, which is large at the initial regular graph, is invariant of the system
size L at p = 0 since it depends only on the coordination number z = 2K of the lattice. If
disorder is introduced into the system by rewired edges, it remains close to C(p = 0), as long as
a large fraction of original neighbors keep connected. The probability that three vertices which
were connected at p = 0 still construct a triangle when p > 0 is (1� p)3, since there are three
edges which need to keep intact. It follows that the clustering coe�cient changes as [115]:

C(p) = C(0)(1� p)3 =
3K � 3
4K � 2

(1� p)3 (3.6)

36

te
l-0

04
03

92
2,

 v
er

si
on

 1
 -

14
 J

ul
 2

00
9

C=0 C=3/6 C=1
• Clustering coefficient depends on the structure (can be large or not)
• It is constant for each node

• Average path length grows quickly with n
when k << n

• In a large graph with realistic average
degrees, will be large

Network Degree
distribution Path length Clustering

coefficient

Real world
networks broad short large

Regular lattices constant long can be large

Regular lattices

PROBABILISTIC MODEL

The Erdős-Rényi
Random Graph

model
(ER)

Random Graphs

“If we do not know anything else than the number n of nodes and the number L of
links, the simplest thing to do is to put the links at random (no correlations)”

Pál Erdős
(1913-1996)

Alfréd Rényi
(1921-1970)

P. Erdős and A. Rényi. On random graphs, I. Publicationes Mathematicae (Debrecen), 6:290-297, 1959.
P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17-61, 1960.

ER Random Graphs
Erdős-Rényi model: simple way to generate random graphs

Definition
Erdős-Rényi (ER) random network is a simple random graph.
There are two slightly different definitions, G(n, m) and G(n, p):

G(n,m)

I Take an empty graph with n
nodes.

I Add m edges uniformly at
random.

. . . or alternatively:

I Pick uniformly at random a
graph from the set of all
graphs with n nodes and m
edges.

G(n, p)

I Take an empty graph with n
nodes.

I Add an edge between any
pair of nodes independently
with probability p.

. . . or alternatively:

I Pick with probability
pm(1 � p)(

n
2)�m a network

from the set of all networks
with n nodes.

• The G(n,L) definition
1. Take n disconnected nodes
2. Add L edges uniformly at random

Alternatively:
• pick uniformly randomly a graph

from the set of all graphs with n
nodes and L links

• The G(n,p) definition
1. Take n disconnected nodes
2. Add an edge between any of the

nodes independently with
probability p

Alternatively:
• pick with probability

a network from the set of all
networks with size n

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .

55R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .

55R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Random-graph theory studies the properties of the
probability space associated with graphs with N nodes as
N→! . Many properties of such random graphs can be
determined using probabilistic arguments. In this respect
Erdős and Rényi used the definition that almost every
graph has a property Q if the probability of having Q
approaches 1 as N→! . Among the questions addressed
by Erdős and Rényi, some have direct relevance to an
understanding of complex networks as well, such as: Is a
typical graph connected? Does it contain a triangle of
connected nodes? How does its diameter depend on its
size?

In the mathematical literature the construction of a
random graph is often called an evolution: starting with
a set of N isolated vertices, the graph develops by the
successive addition of random edges. The graphs ob-
tained at different stages of this process correspond to
larger and larger connection probabilities p , eventually
obtaining a fully connected graph [having the maximum
number of edges n!N(N"1)/2] for p→1. The main
goal of random-graph theory is to determine at what
connection probability p a particular property of a graph
will most likely arise. The greatest discovery of Erdős
and Rényi was that many important properties of ran-
dom graphs appear quite suddenly. That is, at a given
probability either almost every graph has some property
Q (e.g., every pair of nodes is connected by a path of
consecutive edges) or, conversely, almost no graph has it.
The transition from a property’s being very unlikely to
its being very likely is usually swift. For many such prop-
erties there is a critical probability pc(N). If p(N)
grows more slowly than pc(N) as N→! , then almost
every graph with connection probability p(N) fails to
have Q . If p(N) grows somewhat faster than pc(N),
then almost every graph has the property Q . Thus the

probability that a graph with N nodes and connection
probability p!p(N) has property Q satisfies

lim
N→!

PN ,p"Q #!! 0 if
p"N #

pc"N #
→0

1 if
p"N #

pc"N #
→! .

(4)

An important note is in order here. Physicists trained
in critical phenomena will recognize in pc(N) the critical
probability familiar in percolation. In the physics litera-
ture the system is usually viewed at a fixed system size N
and then the different regimes in Eq. (4) reduce to the
question of whether p is smaller or larger than pc . The
proper value of pc , that is, the limit pc!pc(N→!), is
obtained by finite size scaling. The basis of this proce-
dure is the assumption that this limit exists, reflecting
the fact that ultimately the percolation threshold is inde-
pendent of the system size. This is usually the case in
finite-dimensional systems, which include most physical
systems of interest for percolation theory and critical
phenomena. In contrast, networks are by definition infi-
nite dimensional: the number of neighbors a node can
have increases with the system size. Consequently in
random-graph theory the occupation probability is de-
fined as a function of the system size: p represents the
fraction of the edges that are present from the possible
N(N"1)/2. Larger graphs with the same p will contain
more edges, and consequently properties like the ap-
pearance of cycles could occur for smaller p in large
graphs than in smaller ones. This means that for many
properties Q in random graphs there is no unique,
N-independent threshold, but we have to define a
threshold function that depends on the system size, and
pc(N→!)→0. However, we shall see that the average
degree of the graph

$k%!2n/N!p"N"1 #"pN (5)

does have a critical value that is independent of the sys-
tem size. In the coming subsection we illustrate these
ideas by looking at the emergence of various subgraphs
in random graphs.

B. Subgraphs

The first property of random graphs to be studied by
Erdős and Rényi (1959) was the appearance of sub-
graphs. A graph G1 consisting of a set P1 of nodes and a
set E1 of edges is a subgraph of a graph G!&P ,E' if all
nodes in P1 are also nodes of P and all edges in E1 are
also edges of E . The simplest examples of subgraphs are
cycles, trees, and complete subgraphs (see Fig. 5). A
cycle of order k is a closed loop of k edges such that
every two consecutive edges and only those have a com-
mon node. That is, graphically a triangle is a cycle of
order 3, while a rectangle is a cycle of order 4. The av-
erage degree of a cycle is equal to 2, since every node
has two edges. The opposite of cycles are the trees,
which cannot form closed loops. More precisely, a graph
is a tree of order k if it has k nodes and k"1 edges,

FIG. 5. Illustration of the graph evolution process for the
Erdős-Rényi model. We start with N!10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p . The lower panel of the figure shows two different stages in
the graph’s development, corresponding to p!0.1 and p
!0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p!0.15!1.5/N .

55R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

nL L

Random Graphs
RANDOM NETWORK MODEL

N and p do not uniquely define the
network– we can have many different
realizations of it. How many?

€

P(G(N, p)) = pL (1− p)
N (N −1)
2

−L

N=10
p=1/6

The probability to form a particular graph G(N,p) is That is, each graph G(N,p)
appears with probability
 P(G(N,p)).

Network Science: Random Graphs 2012

In the G(n,p) variant, the number of edges
may vary

n=10
p=1/6

ER Random GraphsRANDOM NETWORK MODEL

p=1/6
 N=12

Network Science: Random Graphs 2012

RANDOM NETWORK MODEL

p=0.03
 N=100

Network Science: Random Graphs 2012

Binomial distribution:

Random Graphs

(n
k) =

n!
k!(n − k)!

Number of ways, disregarding order, that k
objects can be chosen from among n objects

Discrete probability distribution of the number of successes(x) in a
sequence of N independent experiments, with success probability p

P(x) = (N
x) px(1 − p)N−x

P(L): probability to have exactly L links in a network of n nodes and probability p

Binomial coefficient:

Random Graphs

N = (n
2) =

n(n − 1)
2

P(x) = (N
x) px(1 − p)N−x

Binomial distribution N: Number of experiments

P(L) =
(n

2)
L

pL(1 − p)(n
2)−L

Pairs of nodes

P(L): probability to have exactly L links in a network of n
nodes (with p the probability to have an edge)

Properties of Binomial distribution

Random Graphs

Definition

Mean

variance

< x > = pN

σ2 = Np(1 − p)

P(x) = (N
x) px(1 − p)N−x

Slide from CCNR course, A. L. Barabási (2012)

Random Graphs
Expected number of links <L>

< L > = pN = p
n(n − 1)

2

< k > = 2L/n = p(n − 1)
Expected average degree <k>

Variance

σ2 = Np(1 − p) =
n(n − 1)

2
p(1 − p)

Degree distribution - Random Graphs

Slide from CCNR course, A. L. Barabási (2012)

DEGREE DISTRIBUTION OF A RANDOM GRAPH

As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.

Select k
nodes from N-1 probability of

having k edges

probability of
missing N-1-k
edges €

P(k) =
N −1
k

$
%

&

'
(pk (1− p)(N −1)−k

€

< k >= p(N −1)

€

σk
2 = p(1− p)(N −1)

€

σk

< k >
=
1− p
p

1
(N −1)

$

%
&

'

(
)

1/ 2

≈
1

(N −1)1/ 2

Network Science: Random Graphs 2012

For each node,
independent probabilities to take each neighbor

=> Binomial distribution

P(k) = (n − 1
k) pk(1 − p)(n−1)−k

P(k): probability to have exactly k links among n (total # of
nodes), with p the (overall) probability to have an edge

< k > = p(n − 1)
σ2

k = p(n − 1)(1 − p)

DEGREE DISTRIBUTION OF A RANDOM GRAPH

As the network size increases, the distribution becomes increasingly narrow—we are
increasingly confident that the degree of a node is in the vicinity of <k>.

Select k
nodes from N-1 probability of

having k edges

probability of
missing N-1-k
edges €

P(k) =
N −1
k

$
%

&

'
(pk (1− p)(N −1)−k

€

< k >= p(N −1)

€

σk
2 = p(1− p)(N −1)

€

σk

< k >
=
1− p
p

1
(N −1)

$

%
&

'

(
)

1/ 2

≈
1

(N −1)1/ 2

Network Science: Random Graphs 2012

Characteristics:

Degree distribution - Random Graphs

For large n and small k (p,L), we can approximate the degree distribution
using a poisson distribution of parameter (mean) λ = < k >

P(K) =
λKe−λ

K!
Poisson distribution

Distribution of degrees P(k) =
< k >k e−<k>

k!

standard deviation σ = < k >

Slide from CCNR course, A. L. Barabási (2012)

DEGREE DISTRIBUTION OF A RANDOM GRAPH
P

(k
)

 k

€

P(k) = e−<k> < k >k

k!

Network Science: Random Graphs 2012

Degree distribution - Random Graphs

Slide from CCNR course, A. L. Barabási (2012)

Degree distribution - Random Graphs

Conclusion: degree distribution is not
-Heterogeneous

-Long tail
-Scale free

Clustering - Random Graphs

Since edges are independent and have the same probability p,

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small.

For fixed degree C decreases with the system size N.

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010

This is valid for random
networks only, with

arbitrary degree
distribution

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs 2012

where ni is the number of links between the neighbours of node i

• Edges are independent and have the same probability p

Since edges are independent and have the same probability p,

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small.

For fixed degree C decreases with the system size N.

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010

This is valid for random
networks only, with

arbitrary degree
distribution

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs 2012

Since edges are independent and have the same probability p,

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small.

For fixed degree C decreases with the system size N.

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010

This is valid for random
networks only, with

arbitrary degree
distribution

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs 2012

n-1

Ci= 2<k>
n-1

ki (ki-1)
2

1
ki (ki-1) = <k>

n-1

➡ Low clustering coefficient
➡ It is vanishing with the system size

• For fixed average degree C is decreasing as N goes large

Local clustering of a node

= p

Reminder, clustering coefficient

possible links
btw neighbors

Clustering - ER Random Networks
• Small clustering coefficient

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Real-world networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

Since edges are independent and have the same probability p,

C ≅ p = < k >
N

ni ≅ p
ki (ki −1)
2

The clustering coefficient of random graphs is small.

For fixed degree C decreases with the system size N.

Ci ≡
2ni

ki (ki −1)

CLUSTERING COEFFICIENT

Ci ≡
1
N
[< k2 > − < k >]2

< k >3

13.47 from Newman 2010

This is valid for random
networks only, with

arbitrary degree
distribution

< k2 >=< k > (1+ < k >)
< k2 > − < k >=< k >2

Ci ≡
1
N
< k >= p

Network Science: Random Graphs 2012

Distance - Random Graphs

Slide from CCNR course, A. L. Barabási (2012)

DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

•  nr. of first neighbors:

•  nr. of second neighbors:

• nr. of neighbours at distance d:

•  estimate maximum distance:

€

d =
logN
log k

€

N =1+ k + k 2
+ ...+ k d

=
k d +1 −1
k −1

≈ k d

kN1≅
2

2 kN≅

€

Nd ≅ k d

Network Science: Random Graphs 2012

n = < k >d ⇒ log<k> n = d ⇒ d =
log n

log < k >

N(u)1 = < k >

N(u)2 = < k >2

N(u)d = < k >d

low clustering coefficient=>

Intuition: At which distance are all nodes reached?

Diameter, avg. distance in 𝒪(log n)

Distance - ER Random Networks

• Logarithmically short distance among nodes

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Real-world networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

d =
log n

log⟨k⟩

Connected components of Random Graphs
Components in ER networks

I When hki is small, the ER
network consist of several
disjoint components.

I Because Ci = p << 1, the
components are tree-like.

I For hki large enough, a
giant connected

component (GCC) appears
I GCC occupies a finite

fraction of nodes even as
n ! 1.

I The transition from a
fragmented to a connected
phase is called a
percolation transition.

hki
0.5

0.75

1.0

1.25

1.5

<k>

EVOLUTION OF A RANDOM NETWORK

disconnected nodes " NETWORK.

How does this transition happen? Network Science: Random Graphs 2012

• Network structure goes through a transition

• Question: How and when does this transition
happen

Connected components of Random Graphs

https://www.complexity-explorables.org/explorables/the-
blob/

https://www.complexity-explorables.org/explorables/the-blob/
https://www.complexity-explorables.org/explorables/the-blob/

ER Random Network - catch up

I:
Subcritical

<k> < 1

III:
Supercritical

<k> > 1

IV:
Connected

<k> > ln N

II:
Critical

<k> = 1

<k>=0.5 <k>=1 <k>=3 <k>=5

N
=1

00

<k>

Structural (percolation) phase transition at <k>=1 (or equivalently when p=1/N)
Slide from CCNR course, A. L. Barabási (2012)

ER Random Network - catch up

ER: Average Distance
We can intuitively estimate the order of the Average Distance of an ER ran-
dom graph as follows:
We know that the clustering coe�ent of an ER graph is small. Therefore,
we can approximate the graph as having a tree-like structure. As a conse-
quence, the number of nodes located at distance d of a node u increases
as hkid . From this approximation, the relation between distance an number
of nodes isN = hki

d hops, thus the order of ` is loghki n = log N

loghki .
We can thus say that the order of the average distance and the diameter of
a sparse ER graph relatively to its size isO(logN), and thus that: ER graphs
have a short average distance.

Order of magnitude

The notation O is used to represent the order of magni-
tude of a value. It roughly indicates how this value is re-
lated to another one, ignoring any constant, for instance,
O(x) = O(10x) = O(x/10). Typical orders of magnitude
are O(log x), O(x), O(x2) and O(2x).

ER: Largest connected component
The largest connected component of a graph is a way to measure its con-
nectivity. On random networks, the relation between the density (or aver-
age degree) of a graph and the size of its largest connected component
is known to undergo a phase transition phenomenon, i.e., a rapid change
when a threshold is crossed. More precisely, as long as hki < 1, several
connected components of similar sizes exist in the network, while, when
hki > 1, the graph has a single giant component with high probability.

An intuitiveway to understand this phenomenon is to use the sameobserva-
tion of the graph being tree-like as previously. Since the number of nodes
N that can be reached after d hops can be estimated to grow as hki

d , a
value of hki < 1 leads to an impossibility to reach all nodes even for a
large d, while hki > 1 leads to arbitrarily largeN for long enough d. Proper
demonstration and more details can be found in the original papera .

aErdős and Rényi ����.

Con�guration Model (CM)
The Con�guration Model is another classic random graph model in which
the degree of each node –or the degree distribution– is preserved. In gen-
eral terms, a con�guration model is de�ned by the number of nodes in the
graph, the number (or probability) of edges, and a distribution of degrees of
nodes.
This degree distribution can either be chosen a priori, for instance following
a Poisson or a Power-law distribution, or by taking the observed distribution
of a real network we would like to obtain a randomized-version of.
Note that in the later case, nodes can be considered to retain their iden-
tity: one can compare the local properties of the node of highest degree
between the two graphs, for instance.

Why the con�guration model
Formany real graphs, nodes represent real entities, and the degree of those
nodes is due to an intrinsic property of those nodes, which is known in ad-
vance and should be taken into account. For instance, let’s consider a net-
work representing �ight connections between airports: each node repre-
sents an airport, and there is an edge between two airports if a direct �ight
exist between them. JFK internation airport in New-York will likely be a Hub
in this network, having a very large degree. This large degree is a conse-
quence of the properties of the city it belongs to: large population, touristic
attraction, etc. So, if connections between airports were random, it could nev-
ertheless be relevant to keep the degree of this node.
Furthermore, the degree distribution itself is also a characteristic of the net-
work: the fact that hubs do exist in the network change its properties, com-
pared with a network in which such nodes do not exist.

Approximate/Soft Con�guration model
In the approximate version of the Con�guration model, each pair of node
is connected by an edge with a given probability, which depends on their
objective degrees.
More precisely, the probability of having an edge (i, j) is de�ned as puv =
kukv

2L . Note that this is a well de�ned probability only if max(ku)
2
< 2m,

otherwise it can be higher than �. puv should therefore rather be understood
as the expected number of edges in a multigraph.
Intuitively, this de�nition can be understood as follows: each node u has ku

stubs. The total number of stubs in the graph is 2L. Knowing that node v

has kv stubs, the probability for each stub of u to connect to a stub of v is
kv

2L .
Note that this model is de�ned such as self-loops can exist.

Rewired exact con�guration model
When the objective of a con�guration model is to obtain an random version
of an observed graph, a common approach is to �x the exact degree of each
node, and to connect stubs randomly. An e�cient way to do so is to use the
following algorithm:

• Create a list s such as it contains ku times the index of node u

• Randomize s

• For each i in [0, L], create an edge between nodes of index s2i and
s2i+1 .

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

Once a degree sequence �k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

�
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri � U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,
we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability
that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value
is 1/(n � i + 1). By induction, the probability of choosing any particular ordering is

�n
i=1(n � i + 1)�1 = 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform
deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

Note that this method can create self-loops and multiple links between the
same nodes, even if the original network was a simple graph. However,
the number of multiple links and self-links decreases when the number of
nodes increases, for sparse graphs.
The probability of an edge to exist between two nodes depend on their de-
gree, and is the same as in the soft CM.

CM: Friendship paradox
An interesting property of the Con�guration Model with heterogeneous de-
gree distribution arises when we study the average degree of random
neighbors. Let’s call pk the probability to pick a node of degree k when
we pick a node at random. This probability represents the degree distribu-
tion chosen for the con�guration model. Now, if we choose one node at
random, and then pick one of its neighbors at random, what is pneighb,k ,
the degree distribution of random neighbors? It is di�erent, because ran-
doms with a higher degree have, by de�nition, a higher probability of being
chosen. More formally,

pneighb,k =
k

2m
npk =

kpk

hki

becausenpk is the number of nodes of degree k in the graph, and k

2m is the
probability to pick at random a stub of a particular node of degree k among
all stubs.

We can now compute the average degree of neighbors of a node chosen
at random, it is:

hkneighbi =
X

k

kpneighb,k =
hk

2
i

hki

Thus if all degrees are the same (homogeneous), hkneighbi = hki, but if it is
heterogeneous, hkneighbi > hki due to the comparatively larger in�uence
of high degrees.

k=1

k=1

k=1

k=1 k=4

<kneigh>=1

<kneigh>=4 <kneigh>=4

<kneigh>=4
<kneigh>=4

<k>=8/5

<k2>=20/5=4

<kneigh>=<k2>/<k>=20/8=5/2

<kneigh>=(4*1+4*4)/(4+4*1)=20/8=5/2

Basic characteristics

• Degree distribution

• Clustering

• Path length

ER Random Network - catch up
Degree distribution with fixed hki and n ! 1

I Degree distribution is

pk =
�n�1

k

�
pk(1 � p)n�1�k

I We are often interested in
properties of networks in the
limit of large n with hki
fixed.

I Since hki = (n � 1)p, we
may write

�n�1
k

�
pk ' (n � 1)k

k!
pk =

hkik

k!

and

(1�p)n�1�k =
⇣
1� hki

n � 1

⌘n�1�k n!1���! e�hki

I Therefore

pk =
�n�1

k

�
pk(1 � p)n�1�k

! hkik

k!
e�hki

= Poisson(hki)

I For this reason G(n, p) is
often called the Poisson

random graph.

Degree distribution with fixed hki and n ! 1

I Degree distribution is

pk =
�n�1

k

�
pk(1 � p)n�1�k

I We are often interested in
properties of networks in the
limit of large n with hki
fixed.

I Since hki = (n � 1)p, we
may write

�n�1
k

�
pk ' (n � 1)k

k!
pk =

hkik

k!

and

(1�p)n�1�k =
⇣
1� hki

n � 1

⌘n�1�k n!1���! e�hki

I Therefore

pk =
�n�1

k

�
pk(1 � p)n�1�k

! hkik

k!
e�hki

= Poisson(hki)

I For this reason G(n, p) is
often called the Poisson

random graph.

N !1

Degree distribution with fixed hki and n ! 1

I Degree distribution is

pk =
�n�1

k

�
pk(1 � p)n�1�k

I We are often interested in
properties of networks in the
limit of large n with hki
fixed.

I Since hki = (n � 1)p, we
may write

�n�1
k

�
pk ' (n � 1)k

k!
pk =

hkik

k!

and

(1�p)n�1�k =
⇣
1� hki

n � 1

⌘n�1�k n!1���! e�hki

I Therefore

pk =
�n�1

k

�
pk(1 � p)n�1�k

! hkik

k!
e�hki

= Poisson(hki)

I For this reason G(n, p) is
often called the Poisson

random graph.

Binomial distribution Poisson distribution

Distance with logarithmic relation to nodes

Vanishing clustering coefficient for large size

Degree distribution without tail

Ci= <k>
n-1 = p

𝒪(log n)

ER Random Network - catch up

It is not capturing the properties of any real system
BUT

it serves as a reference system for any other network model

Network Degree
distribution Path length Clustering

coefficient

Real world
networks broad short large

Regular lattices constant long large

ER random
networks Poissonian short small

Configuration
model

More details at [http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf]

http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L11.pdf

Random graphs with specified degrees
Problem

• The ER Random Graph model has a Poisson degree distribution

• Most real-world networks have heavy-tailed degree distributions

• We need to generate networks which have pre-determined degrees or degree
distribution, but they are maximally random otherwise

• The observed properties (clustering coefficient, etc.) might be due only to the
difference in degree distribution

Configuration model

Random graphs with specified degrees

• Defined as where is a degree sequence on n nodes, with ki
being the degree of node i

G(n, ⃗k) ⃗k = {ki}

∑
i

ki mod 2 = 0

(even degree sum) i.e. each edge has to have ending nodes

• The degree sequence can be sampled from a probability distribution

• Delta/Dirac function => Random regular graph

• Poisson => Similar to ER for proper parameters

• Scale-free => Power-law random graph

• Only global condition to satisfy is:

⃗k = {ki}

How much of some observed pattern is driven by the degrees alone?

Based on an observed network

Ad hoc degree distribution

Configuration model

Random graphs with specified degrees

• The model can preserve the expected degree sequence, or the exact degree sequence

• Chung-lu (appoximate)

• Molloy-reed (Exact)

How much of some observed pattern is driven by the degrees alone?

Exact or approximate degree distribution

Chung-Lu model for configuration networks = Approximate degree
distribution

Random graphs with specified degrees

• Probabilistic model which produce a network with degrees approximating (on
average) the original degree

• It is a “coin-flipping” process as ER model but the probability that two nodes i
and j are connected depends on the degree ki and kj of the ending nodes

• From the point of node i with degree ki, the probability that one of its edges will
connect to j with kj:

kj /2m

pij =
kikj

2m

• This can happen via ki links, thus the probability that they are connected:

• Chung-Lu model takes each pairs of nodes and connects them with this probability

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

1.2.1 Simple graphs from flipping coins

The central mathematical property of all random-graph models is the probability that two vertices
i and j are connected. In the random graph models we consider here, this probability depends
only on the degrees ki and kj of that pair. Thus, from the perspective of i, the probability that
one of its edges connects to j is equal to the fraction of the m total edges we choose that point to
j. Because we have chosen j’s degree, this fraction is exactly kj/2m. And, because we have also
chosen i’s degree, this event has ki chances to occur and the probability that (i, j) exists is

pij = ki

✓
kj

2m

◆
=

kikjPn
`=1 k`

. (1)

The Chung-Lu model takes this probability as a parameter and simply flips a single coin for each
of the pairs i, j to generate a simple graph:

8i>j Aij = Aji =

⇢
1 with probability pij

0 otherwise
,

where pij is given by Eq. (1). Just as with generating Erdős-Rényi graphs, each pair is considered
only once; hence, this process produces a simple graph, with no self-loops and no multi-edges. (In
contrast, the Molloy-Reed model produces a random multigraph, which may have multi-edges and
self-loops.) This method can also be used to generate directed networks by first specifying the
in-degree and out-degree sequences, subject to the requirement that

P
i k

in
i =

P
j k

out
j . We then

choose pi!j = k
out
i k

in
j /m and drop the requirement that Aij = Aji.

As a result of this form, the degree of each vertex i under this method of generation equals the
specified value ki only in expectation (and similarly for the in- and out-degrees in the directed
version). The observed degree for node i in the Chung-Lu ensemble is a Poisson distribution with
mean ki (do you see why?). Hence, deviations from the expected value are generally small, when
the graph is sparse and the maximum degree is ⌧

p
n.

Notably, drawing random graphs from the Chung-Lu model is computationally expensive, especially
for large n, as we need to flip ⇥(n2) coins, one for each possible pair of vertices i, j 2 V . This cost
is one reason that the Molloy-Reed model is more commonly used for large empirical studies (but
see Fosdick et al. [2016]).

1.2.2 Multigraphs from random matchings

The standard method for generating a Molloy-Reed random multigraph is to choose a uniformly
random matching on the degree “stubs” (half edges) of the specified degree sequence. Unlike in
the Chung-Lu model described above, which only generates simple graphs by design, this “stub
matching” method will typically produce some number of self-loops and multi-edges. In practice,

3

assuming that:

(/!\ inconsistent probability, it is rather expected

number of edges)

[max(ki)]2 < 2m

Random graphs with specified degrees

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

1.2.1 Simple graphs from flipping coins

The central mathematical property of all random-graph models is the probability that two vertices
i and j are connected. In the random graph models we consider here, this probability depends
only on the degrees ki and kj of that pair. Thus, from the perspective of i, the probability that
one of its edges connects to j is equal to the fraction of the m total edges we choose that point to
j. Because we have chosen j’s degree, this fraction is exactly kj/2m. And, because we have also
chosen i’s degree, this event has ki chances to occur and the probability that (i, j) exists is

pij = ki

✓
kj

2m

◆
=

kikjPn
`=1 k`

. (1)

The Chung-Lu model takes this probability as a parameter and simply flips a single coin for each
of the pairs i, j to generate a simple graph:

8i>j Aij = Aji =

⇢
1 with probability pij

0 otherwise
,

where pij is given by Eq. (1). Just as with generating Erdős-Rényi graphs, each pair is considered
only once; hence, this process produces a simple graph, with no self-loops and no multi-edges. (In
contrast, the Molloy-Reed model produces a random multigraph, which may have multi-edges and
self-loops.) This method can also be used to generate directed networks by first specifying the
in-degree and out-degree sequences, subject to the requirement that

P
i k

in
i =

P
j k

out
j . We then

choose pi!j = k
out
i k

in
j /m and drop the requirement that Aij = Aji.

As a result of this form, the degree of each vertex i under this method of generation equals the
specified value ki only in expectation (and similarly for the in- and out-degrees in the directed
version). The observed degree for node i in the Chung-Lu ensemble is a Poisson distribution with
mean ki (do you see why?). Hence, deviations from the expected value are generally small, when
the graph is sparse and the maximum degree is ⌧

p
n.

Notably, drawing random graphs from the Chung-Lu model is computationally expensive, especially
for large n, as we need to flip ⇥(n2) coins, one for each possible pair of vertices i, j 2 V . This cost
is one reason that the Molloy-Reed model is more commonly used for large empirical studies (but
see Fosdick et al. [2016]).

1.2.2 Multigraphs from random matchings

The standard method for generating a Molloy-Reed random multigraph is to choose a uniformly
random matching on the degree “stubs” (half edges) of the specified degree sequence. Unlike in
the Chung-Lu model described above, which only generates simple graphs by design, this “stub
matching” method will typically produce some number of self-loops and multi-edges. In practice,

3

where

• Each pairs of nodes are considered once, thus it produces a simple graph
(without self-loops and multi edges)

• Degree of a node equals only in “expectation” to the originally assigned degree

Complexity:

• O(n2): We need n(n-1) flips to test all node pairs

EXPENSIVE!

pij =
kikj

2m

• Inconsistency for large degrees in small networks [max(ki)]2 < 2m

Chung-Lu model for configuration networks = Approximate degree
distribution

Molloy-Reed model for configuration networks = exact degree
preservation

Random graphs with specified degreesNetwork Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

Original idea:
1. Given a degree sequence
2. Assign each node i∈V with ki number of stubs
3. Select random pairs of unmatched stubs and connect them
4. Repeat 3 while there are unmatched stubs

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

these deviations from a simple graph represent an asymptotically small fraction of all edges, and
we can “simplify” the network by discarding self-loops and collapsing multi-edges, and potentially
also discarding disconnected components.2

Given a degree sequence ~k = {k1, k2, . . . , kn}, we say that each vertex i has a number of “stubs”
equal to its degree. Every matching on these stubs, in which we repeatedly choose an unmatched
stub on some vertex i and connect it with some unmatched stub on vertex j, represents a network.
Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
result in a triangle. The following figure shows the distinct labelings, and hence distinct matchings,
that form a triangle. In the configuration model, we choose each of these with equal probability.

a b

c

d

e

f

a

c

d

e

f

b a b

a ba b ab ab

ab

c

d

c

d

c

d

c

d

c

d

c

d

e

f

e

f

e

f

e

f

e

f

e

f

However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.

a b ab a b

c

d

c d

e

f e f

d f c e

In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.

4

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

• This process will produce a configuration model with exact degree sequence

• Possible to select multiple times stubs of the same pair of nodes

• Possible to select the stubs of the same node to connect

Multilinks

Self-links

The obtained graph is not simple…but the density of multi and self-links ➜ 0 as N ➜ ∞

Random graphs with specified degrees

Non-unique problem

• Matching of stubs appears with equal probability

• BUT networks with the same {ki} do not appear with equal probability

• More than one matching can correspond to the same network (topologically)

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

these deviations from a simple graph represent an asymptotically small fraction of all edges, and
we can “simplify” the network by discarding self-loops and collapsing multi-edges, and potentially
also discarding disconnected components.2

Given a degree sequence ~k = {k1, k2, . . . , kn}, we say that each vertex i has a number of “stubs”
equal to its degree. Every matching on these stubs, in which we repeatedly choose an unmatched
stub on some vertex i and connect it with some unmatched stub on vertex j, represents a network.
Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
result in a triangle. The following figure shows the distinct labelings, and hence distinct matchings,
that form a triangle. In the configuration model, we choose each of these with equal probability.

a b

c

d

e

f

a

c

d

e

f

b a b

a ba b ab ab

ab

c

d

c

d

c

d

c

d

c

d

c

d

e

f

e

f

e

f

e

f

e

f

e

f

However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.

a b ab a b

c

d

c d

e

f e f

d f c e

In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.

4

Network Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

these deviations from a simple graph represent an asymptotically small fraction of all edges, and
we can “simplify” the network by discarding self-loops and collapsing multi-edges, and potentially
also discarding disconnected components.2

Given a degree sequence ~k = {k1, k2, . . . , kn}, we say that each vertex i has a number of “stubs”
equal to its degree. Every matching on these stubs, in which we repeatedly choose an unmatched
stub on some vertex i and connect it with some unmatched stub on vertex j, represents a network.
Under this method of generating a graph, we will choose such a matching uniformly at random from
among all such matchings. Each possible matching thus occurs with equal probability; however,
each network with the specified degree sequence does not occur with equal probability under this
model, as some matchings produce the same network.

To illustrate this idea, consider the set of matchings on three vertices, each with degree 2, that
result in a triangle. The following figure shows the distinct labelings, and hence distinct matchings,
that form a triangle. In the configuration model, we choose each of these with equal probability.

a b

c

d

e

f

a

c

d

e

f

b a b

a ba b ab ab

ab

c

d

c

d

c

d

c

d

c

d

c

d

e

f

e

f

e

f

e

f

e

f

e

f

However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.

a b ab a b

c

d

c d

e

f e f

d f c e

In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

2
These procedures do change the graph structure slightly, and a safer approach is to use Fosdick et al.’s (2016)

methods to sample directly from the simple graph ensemble.

4

Different matchings
yield same graphs

Some graphs produced by less
combinations =>less likely to appear

Molloy-Reed model for configuration networks = exact degree
preservation

Random graphs with specified degreesNetwork Analysis and Modeling, CSCI 5352
Lecture 4

Prof. Aaron Clauset
2017

Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an e�cient method by which to choose a uniformly
random matching on the

P
i ki stubs.

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

For instance, the figure above shows an example of this “stub matching” construction of a configu-
ration model random graph. On the left is shown both the vertices with their stubs, which shows
the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ⇠ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation3 on the

3
Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,

we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability

that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value

is 1/(n� i+ 1). By induction, the probability of choosing any particular ordering is
Qn

i=1(n� i+ 1)
�1

= 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform

deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where

5

An effective algorithm:
1. Take an array with length 2m and fill it with exactly ki indices of each

node i∈V

2. Make a random permutation of the array
3. Read the content of the array in an order and in pairs
4. Pairs of consecutive node indices will assign links in the configuration

network

⃗v

⃗v

Complexity:
• O(m): Random permutation of an array

• O(m log m): assigning uniformly random variables to indices and quick-sort them

CHEAP!

Molloy-Reed model for configuration networks = exact degree
preservation

Configuration model - mathematical properties
Expected clustering coefficient

It is the average probability that two neighbours of a vertex are neighbours

• Start at some vertex v (with degree k ≥ 2)

• Choose a random pair of its neighbours i and j

• The probability that i and j are themselves connected is kikj/2m

v

i j

Clustering coefficient
C = . . . =

1
n

[⟨k2⟩ − ⟨k⟩]2

⟨k⟩3

• It is a vanishing quantity O(1/n) as long as the second moment is finite (not power law)

For details, see: http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/csci5352_2013_L12.pdf

independent of network size

Configuration model - mathematical properties
Neighbors's degrees

What is the degree distribution of neighbors of a randomly chosen vertex?

i j

• Let pk be the fraction of vertices in the network with degree k

• There are npk vertices of degree k in the network.

• The end point of every edge in the network has the same probability of

connecting to a vertex of degree k

• Degree distribution of a randomly picked neighbor (of any node)

k
2m

pneighb,k =
k

2m
npk =

kpk

⟨k⟩

Configuration model - mathematical properties

pneighb,k =
k

2m
npk =

kpk

⟨k⟩

• Degree distribution of a randomly picked neighbor (of any node)

• Average degree of a randomly picked neighbor

⟨kneighb⟩ = ∑
k

kpneighb,k =
⟨k2⟩
⟨k⟩

• Larger than ⟨k⟩ as soon as degrees are heterogeneous ➡ Friendship paradox

1 node with degree 10, 10 nodes with degree 1:

⟨k⟩ =
10 + 1 * 10

11
= 1.81..

⟨k2⟩ =
102 + 12 * 10

11
= 10

⟨k2⟩
⟨k⟩

=
10

1.82
= 5.5

ER Random Network - catch up

Network Degree
distribution Path length Clustering

coefficient
Real world
networks broad short large

Regular lattices constant long large

ER random
networks Poissonian short small

Configuration
Model

Custom, can be
broad short small

