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Small-world networks

• On of the first paper of
       Network Science…

D.J. Watts and S. Strogatz,

”Collective dynamics of 'small-world' 
networks”, Nature 393, 440–442, 1998

Contradiction: Real-world networks have

High clustering 
coefficient AND Short 

distances



Clustering vs. Interconnectedness
Random networks

d =
logN

loghki• Logarithmically short distance among nodes

• Vanishing clustering coefficient for large size Ci ⌘
1
N
hki = p

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Real-world networks

✔

Albert, R. et.al. Rev. Mod. Phy. (2002)
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Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Real-world networks

✔

✔X

Albert R. et.al. Rev. Mod. Phy. (2002)



The Watts-Strogatz model
A model to capture large clustering coefficient and short 
distances observed in real networks
• It interpolates between an ordered finite lattice and a random graph
• Fixed parameters:

• n - system size
• K - initial coordination number

• Variable parameters:
• p - rewiring probability

• Algorithm:
1.Start with a ring lattice with n nodes in which every node is connected to its 

first K neighbours (K/2 on either side).
2.Randomly rewire each edge of the lattice with probability p such that self-

connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered (p=0) to
a completely random (p=1) structure

D.J. Watts and S. Strogatz, Nature (1998)

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p

W
at

ts
 &

 S
tr

og
at

z, 
N

at
ur

e 
3

9
3

, 4
40

–4
42

, 1
99

8

Monday, February 1, 2010



The Watts-Strogatz model
(Global) Clustering coefficient (Definition 2)

• p=0 - regular ring with constant clustering:

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter
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C =
3(K � 2)

4(K � 1)- 0 ≤ C ≤ 3/4
- Independent of n

• p>0 - we can count triangles and tuples

Global clustering coefficient

C =
1
4NK( 12K � 1)⇥ 3

1
2NK(K � 1) +NK2p+ 1

2NK2p2
=

3(K � 2)

4(K � 1) + 8Kp+ 4Kp2

• Independent of n

• if p→0 it recovers the ring value

• if p→1 it well approximates 1



The Watts-Strogatz model
Average path length (Definition 2)
• No closed form solution

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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• From numerical simulations:

• See
for details 

Newman, M. E. (2000). Models of the small world. Journal of 
Statistical Physics, 101(3-4), 819-841.
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1
p

L(p) / L(0)

C(p) / C(0)

Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Small-world 
regime



The Watts-Strogatz model
Degree distribution (Definition 2)

• p=0 - each node has the same degree K (Dirac delta function)
• p>0 - each node has degree K + shortcut links

• Number of shortcut edges:

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p

W
at

ts
 &

 S
tr

og
at

z, 
N

at
ur

e 
3

9
3

, 4
40

–4
42

, 1
99

8

Monday, February 1, 2010

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p

W
at

ts
 &

 S
tr

og
at

z, 
N

at
ur

e 
3

9
3

, 4
40

–4
42

, 1
99

8

Monday, February 1, 2010

The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p

W
at

ts
 &

 S
tr

og
at

z, 
N

at
ur

e 
3

9
3

, 4
40

–4
42

, 1
99

8

Monday, February 1, 2010

s =
1

2
NK ⇥ p

• Each node will have on average Kp number of shortcuts

• The degree distribution is

P (k) = e�Kp (Kp)(k�K)

(k �K)!
if k≥K  and  P(k)=0  if  k<K

• p>0 - approximates a Poisson distribution just like a random network



ER Random Network - catch up

Network Degree distribution Path length Clustering 
coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

Configuration 
Model

Custom, can be 
broad short small

Watts & Strogatz 
(in SW regime) Poissonian short large



Scale-free
networks



Scale-free networks

A network is called Scale-free when its degree distribution 
follows (to some extent) a Power-law distribution

Power-law distribution: (PDF)

P(k) ∼ Ck−α = C
1
kα  (sometimes ) called the exponent 

of the distribution
α γ

Positive values

Here, defined as continuous (approximation)



Scale-free networks - first observations
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ki!1 outgoing (or incoming) links is less
than NPout(ki!1) (or NPin(ki!1)).

A particularly important quantity in a
search process is the shortest path between
two documents, d, defined as the smallest
number of URL links that must be followed
to navigate from one document to the
other. We find that the average of d over all
pairs of vertices is "d#$0.35!2.06log(N)
(Fig. 1c), indicating that the web forms a
small-world network5,7, which characterizes
social or biological systems. For N$8%108,
"dweb#$18.59; that is, two randomly chosen
documents on the web are on average 19
clicks away from each other.

For a given N, d follows a gaussian distri-
bution so "d# can be interpreted as the diam-
eter of the web, a measure of the shortest
distance between any two points in the sys-
tem. Despite its huge size, our results indi-
cate that the web is a highly connected graph
with an average diameter of only 19 links.
The logarithmic dependence of "d# on N is
important to the future potential of the web:
we find that the expected 1,000% increase in
the size of the web over the next few years
will change "d# very little, from 19 to only 21.

The relatively small value of "d# indicates
that an intelligent agent, who can interpret
the links and follow only the relevant one,
can find the desired information quickly by
navigating the web. But this is not the case
for a robot that locates the information
based on matching strings. We find that
such a robot, aiming to identify a docu-
ment at distance "d#, needs to search
M("d#)&0.53×N 0.92 documents, which,
with N$8%108, leads to M$8%107, or
10% of the whole web. This indicates that
robots cannot benefit from the highly con-
nected nature of the web, their only success-
ful strategy being to index as much of the
web as possible.

The scale-free nature of the link distrib-
utions indicates that collective phenomena
play a previously unsuspected role in the
development of the web8, forcing us to look
beyond the traditional random graph mod-
els3–5,7. A better understanding of the web’s
topology, aided by modelling efforts, is cru-
cial in developing search algorithms or
designing strategies for making information
widely accessible on the World-Wide Web.
Fortunately, the surprisingly small diameter
of the web means that all that information
is just a few clicks away.
Réka Albert, Hawoong Jeong, 
Albert-László Barabási
Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556, USA
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incoming links, the probability of finding
very popular addresses, to which a large
number of other documents point, is non-
negligible, an indication of the flocking
nature of the web. Furthermore, while the
owner of each web page has complete free-
dom in choosing the number of links on a
document and the addresses to which they
point, the overall system obeys scaling laws
characteristic only of highly interactive self-
organized systems and critical phenomena6.

To investigate the connectivity and the
large-scale topological properties of the
web, we constructed a directed random
graph consisting of N vertices, assigning to
each vertex k outgoing (or incoming) links,
such that k is drawn from the power-law
distribution of Fig. 1a,b. To achieve this, we
randomly selected a vertex i and increased
its outgoing (or incoming) connectivity to
ki!1 if the total number of vertices with

Internet

Diameter of the 
World-Wide Web
Despite its increasing role in communica-
tion, the World-Wide Web remains uncon-
trolled: any individual or institution can
create a website with any number of docu-
ments and links. This unregulated growth
leads to a huge and complex web, which
becomes a large directed graph whose ver-
tices are documents and whose edges are
links (URLs) that point from one docu-
ment to another. The topology of this
graph determines the web’s connectivity
and consequently how effectively we can
locate information on it. But its enormous
size (estimated to be at least 8%108 docu-
ments1) and the continual changing of docu-
ments and links make it impossible to
catalogue all the vertices and edges.

The extent of the challenge in obtaining
a complete topological map of the web is
illustrated by the limitations of the com-
mercial search engines: Northern Light, the
search engine with the largest coverage, is
estimated to index only 38% of the web1.
Although much work has been done to
map and characterize the Internet’s infra-
structure2, little is known about what really
matters in the search for information —
the topology of the web. Here we take a step
towards filling this gap: we have used local
connectivity measurements to construct a
topological model of the World-Wide Web,
which has enabled us to explore and char-
acterize its large-scale properties.

To determine the local connectivity of
the web, we constructed a robot that adds to
its database all URLs found on a document
and recursively follows these to retrieve the
related documents and URLs. We used the
data collected to determine the probabilities
Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively.
We find that both Pout(k) and Pin(k) follow a
power law over several orders of magnitude,
remarkably different not only from the
Poisson distribution predicted by the classi-
cal theory of random graphs3,4, but also
from the bounded distribution found in
models of random networks5.

The power-law tail indicates that the
probability of finding documents with a
large number of links is significant, as the
network connectivity is dominated by
highly connected web pages. Similarly, for
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Figure 1 Distribution of links on the World-Wide Web. a, Outgoing

links (URLs found on an HTML document); b, incoming links (URLs

pointing to a certain HTML document). Data were obtained from

the complete map of the nd.edu domain, which contains 325,729

documents and 1,469,680 links. Dotted lines represent analytical

fits used as input distributions in constructing the topological

model of the web; the tail of the distributions follows P(k)&k'(,

with (out$2.45 and (in$2.1. c, Average of the shortest path

between two documents as a function of system size, as predicted

by the model. To check the validity of our predictions, we deter-

mined d for documents in the domain nd.edu. The measured

"dnd.edu#$11.2 agrees well with the prediction "d3%105#$11.6

obtained from our model. To show that the power-law tail of P(k) is

a universal feature of the web, the inset shows Pout(k) obtained by

starting from whitehouse.gov (squares), yahoo.com (triangles) and

snu.ac.kr (inverted triangles). The slope of the dashed line is

(out$2.45, as obtained from nd.edu in a.

R. Albert, H. Jeong, A-L Barabási, Nature (1999)
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Scale-free networks - other examples
The internet

• Nodes: routers
• Links: Physical wires
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Scale-free networks - other examples
Airline route map network

• Nodes: airports
• Links: airplane connections

Guimera et.al. (2004)

where ! ! 0.9 " 0.1 is the power law exponent, g(u) is a
truncation function, and b# is a crossover value that depends on
the size of the network.

A question prompted by the previous results regarding the
degree and the centrality of cities is: ‘‘Are the most connected cities
also the most central?’’ To answer this question, we analyzed first the
network obtained by randomizing the worldwide air transportation
network (Fig. 1b). We found that the distribution of betweennesses
still decays as a power law but, in this case, with a much larger
exponent value, ! ! 1.5 " 0.1. This finding indicates the existence
of anomalously large betweenness centralities in the air transpor-
tation network.

For the randomized network, the degree of a node and its
betweenness centrality are strongly correlated; i.e., highly con-
nected nodes are also the most central (Fig. 2a). In contrast, for the
worldwide air transportation network, it turns out that there are
cities that are not hubs, i.e., have small degrees but that nonetheless
have very large betweennesses (Fig. 2a).

To better illustrate this finding, we plotted the 25 most connected
cities and contrasted such a plot with another of the 25 most central
cities according to their betweenness (Fig. 2 b and c). Although the
most connected cities are located mostly in Western Europe and
North America, the most central cities are distributed uniformly
across all of the continents. Significantly, each continent has at least

one central city, which is typically highly connected when compared
with other cities in the continent, i.e., Johannesburg in Africa or
Buenos Aires and São Paulo, Brazil, in South America. Interest-
ingly, besides these cities with relatively large degree, there are
others, such as Anchorage (AK) and Port Moresby (Papua New
Guinea), that, despite having small degrees, are among the most
central in the network (Table 2).

Degree-Betweenness Anomalies and Multicommunity
Networks
Nodes with small degree and large centrality can be regarded as
anomalies. Other complex networks that have been described in the

Fig. 1. Degree and betweenness distributions of the worldwide air transpor-
tationnetwork. (a)Cumulativedegreedistributionplotted indouble-logarithmic
scale. The degree k is scaled by the average degree z of the network. The
distribution displays a truncated power-law behavior with exponent " ! 1.0 "
0.1. (b) Cumulative distribution of normalized betweennesses plotted in double-
logarithmic scale. The distribution displays a truncated power-law behavior with
exponent ! ! 0.9 " 0.1. For a randomized network with exactly the same degree
distribution as the original air transportation network, the betweenness distri-
bution decays with an exponent ! ! 1.5 " 0.1. A comparison of the two cases
clearly shows the existence of an excessive number of large betweenness values
in the air transportation network. Fig. 2. Most-connected versus most-central cities in the worldwide air

transportation network. (a) Betweenness as a function of the degree for the
cities in the worldwide air transportation network (circles). For the random-
ized network, the betweenness is well described as a quadratic function of the
degree (dashed line) with 95% of all data falling inside the gray region. In
contrast to the strong correlation between degree and betweenness found
for randomized networks, the air transportation network comprises many
cities that are highly connected but have small betweenness and, conversely,
many cities with small degree and large betweenness. We define a blue region
containing the 25 most central cities in the world and a yellow region con-
taining the 25 most connected cities. Surprisingly, we find there are only a few
cities with large betweenness and degree (green region, which is the inter-
section of the blue and yellow regions). (b) The 25 most connected cities in the
world. (c) The 25 most central cities in the world.

7796 ! www.pnas.org"cgi"doi"10.1073"pnas.0407994102 Guimerà et al.

Note: the cumulative distribution of a 
power law is also a line on a log-log plot 



Scale-free networks - other examples
Scientific collaborations

• Nodes: scientists (here geo-localised)
• Links: common papers

Newman (2001)

how small it is. The hundreds strong megacollaborations of
CERN and Fermilab are sufficiently diluted by theoretical
and smaller experimental groups that the number is only 9,
and not 100.!
Distributions of numbers of authors per paper are shown

in Fig. 2, and appear to have power-law tails with widely
varying exponents of !6.2(3) "Medline!, !3.34(5) "Los
Alamos Archive!, !4.6(1) "NCSTRL!, and !2.18(7)
"SPIRES!. The SPIRES data, which are again shown in a
separate inset, also display a pronounced peak in the distri-
bution around 200–500 authors. This peak presumably cor-
responds to the large experimental collaborations that domi-
nate the upper end of this histogram.
The largest number of authors on a single paper was 1681

"in high-energy physics, of course!.

D. Numbers of collaborators per author

The differences between the various disciplines repre-
sented in the databases are emphasized still more by the
numbers of collaborators that a scientist has, the total num-
ber of people with whom a scientist wrote papers during the
five year period. The average number of collaborators is
markedly lower in the purely theoretical disciplines (3.87 in
high-energy theory, 3.59 in computer science! than in the
wholly or partly experimental ones (18.1 in biomedicine,
15.1 in astrophysics!. But the SPIRES high-energy physics
database takes the prize once again, with scientists having an
impressive 173 collaborators, on average, over a five year
period. This clearly begs the question whether the high-
energy coauthorship network can be considered an accurate
representation of the high-energy physics community at all;
it seems unlikely that many authors would know 173 col-
leagues well.
The distributions of numbers of collaborators are shown

in Fig. 3. In all cases they appear to have long tails, but only
the SPIRES data "inset! fit a power-law distribution well,
with a low measured exponent of !1.20. Note also the small

peak in the SPIRES data around 700—presumably again a
result of the presence of large collaborations.
For the other three databases, the distributions show some

curvature. This may, as we have previously suggested #50$,
be the signature of an exponential cutoff, produced once
again by the finite time window of the study. Redner #57$ has
suggested an alternative origin for the cutoff using growth
models of networks—see Ref. #10$. Another possibility has
been put forward by Barabási #58$, based on models of the
collaboration process. In one such model #51$, the distribu-
tion of the number of collaborators of an author follows a
power law with slope !2 initially, changing to slope !3 in
the tail, the position of the crossover depending on the length
of time for which the collaboration network has been evolv-
ing. We show slopes !2 and !3 as dotted lines on the
figure, and the agreement with the curvature seen in the data
is moderately good, particularly for the Medline data. "For
the Los Alamos and NCSTRL databases, the slope in the tail
seems to be somewhat steeper than !3.!

E. Size of the giant component

In the theory of random graphs #24,59–61$ it is known
that there is a continuous phase transition with increasing
density of edges in a graph at which a ‘‘giant component’’
forms, i.e., a connected subset of vertices whose size scales
extensively. Well above this transition, in the region where
the giant component exists, the giant component fills a large
portion of the graph, and all other components "i.e., con-
nected subsets of vertices! are small, with average size inde-
pendent of the number n of vertices in the graph. We see a
situation reminiscent of this in all of the graphs studied here:
a single large component of connected vertices that fills the
majority of the volume of the graph, and a number of much
smaller components filling the rest. In Table I we show the
size of the giant component for each of our databases, both
as total number of vertices and as a fraction of system size.

FIG. 2. Histograms of the number of authors on papers in Med-
line, the Los Alamos Archive, and NCSTRL. The dotted lines are
the best fit power-law forms. Inset: the equivalent histogram for the
SPIRES database, showing a clear peak in the 200 to 500 author
range.

FIG. 3. Histograms of the number of collaborators of authors in
Medline, the Los Alamos Archive, and NCSTRL. The dotted lines
show how power-law distributions with exponents !2 and !3
would look on the same axes. Inset: the equivalent histogram for the
SPIRES database, which is well fitted by a single power law "dotted
line!.

SCIENTIFIC COLLABORATION NETWORKS . . . . I. . . . PHYSICAL REVIEW E 64 016131
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Scale-free networks - other examples
Sexual-interaction networks

• Nodes: individuals
• Links: sexual incursion

Liljeros et.al. (2001)

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the

brief communications
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The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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Scale-free networks - other examples
Online social networks

• Nodes: individuals
• Links: online interactions

Social network of Steam
http://85.25.226.110/mapper

http://85.25.226.110/mapper


Scale-free distribution

AL. Barabási, Linked (2002)

What does it mean?

Degree fluctuations have no characteristic scale (scale invariant)

In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks



Scale-free networks

THE SCALE-FREE PROPERTY INTRODUCTION4

A visualization of the web sample that led to 
the discovery of the scale-free property. The 
sequence of images shows an increasingly 
magnified local region of the network. The 
first panel displays all 325,725 nodes, offer-
ing a global view of the full dataset. Nodes 
with more than 50 links are shown in red and 
nodes with more than 500 links in purple. The 
increasingly magnified closeups reveal the 
presence of a few highly connected nodes, 
called hubs, that accompany scale-free net-
works (Image by M. Martino).

Figure 4.1
The topology of the WWW

In contrast in Fig. 4.1 numerous small-degree nodes coexist with a few 
hubs, nodes with an exceptionally large number of links. The purpose of 
this chapter is to show that these hubs are not unique to the Web, but we 
encounter them in many real networks. They represent a signature of a 
deeper organizing principle that we call the scale-free property.

AL Barabási, Network Science Book (2013)

Idea of scale free



Scale-free distribution

Proper definition 

To have a proper degree distribution, we need 
.

We also know that in most cases, there is a lower bound 
from which the law holds. ( )

From this, we define the normalisation constant:

∫ P(k) = 1 = ∫ Ck−α = C∫ k−α

kmin

Initial definition: 

Unlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the
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The web of human sexual contacts
Pro m isc u o us in d ivid u a ls are th e vu ln era b le n o d e s to targ e t in sa f e -s e x c a m p a ig ns.

Figure 1 It’s a small world: social networks have small average
path lengths between connections and show a large degree of
clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-
ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the
range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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P(k) ∼ Ck−α = C
1
kα

C =
1

∫ ∞
kmin

k−αdk
= (α − 1)kα−1

min



Scale-free distribution

Proper definition 

P(k) =
α − 1
kmin ( k

kmin )
−α

C =
1

∫ ∞
kmin

k−αdk
= (α − 1)kα−1

minP(k) ∼ Ck−α

P(k) = (α − 1)kα−1
min k−α



Scale-free networks

Power law plotted with a linear scale, for k<=10
(100 000 samples)



Scale-free networks

Power law plotted with a linear scale, for k<100000
(100 000 samples)



Scale-free networks

Power law plotted with a log-log scale, for k<100000
(100 000 samples)



Scale-free networks

Comparing a poisson distribution and a power law
λke−λ

k!



Scale-free networks

Comparing a poisson distribution and a power law
λke−λ

k!



Scale-free networks

Comparing a poisson distribution and a power law

The “long tail”

λke−λ

k!



Scale-free networks
Comparing an exponential distribution and a power law

{λe−λk k ≥ 0,
0 k < 0.



Scale-free distribution

Moments 

Distribution: 

(central) Moments: 

Reminder: 

⟨km⟩ = ∫
∞

kmin

kmp(k)dk

⟨k1⟩ Average
⟨k2⟩ Variance
⟨k3⟩ Skewness
…

P(k) = (α − 1)kα−1
min k−α



Scale-free distribution

Moments 

Distribution: 

(central) Moments: ⟨km⟩ = ∫
∞

kmin

kmp(k)dk

⟨km⟩ = (α − 1)kα−1
min ∫

∞

kmin

k−α+mdk

⟨km⟩ = km
min ( α − 1

α − 1 − m )Defined for ,
Otherwise diverge (+inf)

α > m + 1

P(k) = (α − 1)kα−1
min k−α

http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001_2011_L2.pdf

Common Derivatives and Integrals 

Visit http://tutorial.math.lamar.edu for a complete set of Calculus I & II notes. © 2005 Paul Dawkins 

Integrals 
Basic Properties/Formulas/Rules 
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Scale-free distribution

Moments 

Distribution: 

(central) Moments: ⟨km⟩ = km
min ( α − 1

α − 1 − m ) Defined for ,
Otherwise diverge (+inf)

α > m + 1

=> Mean: ⟨k⟩ =
α − 1
α − 2

kmin (But diverges for )α ≤ 2

=> Variance: ⟨k2⟩ =
α − 1
α − 3

k2
min (But diverges for )α ≤ 3

P(k) =
α − 1
kmin ( k

kmin )
−α



Scale-free distribution

Moments 

What does divergence means in practice ?

We can always compute the mean and variance, given samples of a 
distribution (e.g., an observe degree distribution)

=>The value computed depends on the size of the sample, it is not a 
characteristic of the distribution.

Moments are dominated by elements in the long tail. Some events are 
rare, but they have so large values, that if observed, they are strong 
enough to modify substantially the corresponding moment. And they 
appear frequently enough so that the mean will continue to shift when 
increasing the sample size



Scale-free distribution

Moments 
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α=3.01Population variance

Figure 2: The sample mean and variance for power-law distributions with α = {1.7, 2.05, 3.01}, for
a wide range of sample sizes n. For each value of n, the mean and variance estimates are for the
same set of synthetic observations. See Section 2 for Matlab code for these figures.

1.3 Scale invariance

Another interesting property of power-law distributions is “scale invariance.” If we compare the
densities at p(x) and at some p(c x), where c is some constant, they’re always proportional. That is,
p(c x) ∝ p(x). This behavior shows that the relative likelihood between small and large events is the
same, no matter what choice of “small” we make. That is, the density “scales.” Mathematically:

p(c x) = (α− 1)xα−1
min (c x)

−α

= c−α
[

(α− 1)xα−1
min x

−α
]

∝ p(x) .

Further, it can be shown6 that a power law form is the only function that has this property.

Here’s another way of seeing this behavior. If we take the logarithm of both sides of Eq. (1), we
get an expression for ln p(x) that’s linear in lnx. That is,

ln p(x) = ln
[

(α− 1)xα−1
min (x)

−α
]

= lnC − α lnx .

That is, rescaling x → c x simply shifts the power law up or down on a logarithmic scale. This
shows another of the more well-known properties of a power-law distribution: it’s a straight line on a
log-log plot. This is in contrast to the strongly curved behavior of, say, an exponential distribution,
as in Fig. 1.

6An exercise left to the reader.

4

Mean diverge
α < 2 Mean well defined, 

Variance diverge

2 < α < 3
Mean and variance 

defined

α > 3

=> Even when well defined, moments converge very slowly



Computing the exponent of an observed network

[Fitting to the Power-Law Distribution, Goldstein et al.] 
https://arxiv.org/vc/cond-mat/papers/0402/0402322v1.pdf

Method 1: find the slope of the line of the log-log plot 

Problem: most of data is on first values, so we overfit based on a
few values in the long tail

More advanced method:
Maximum Likelihood Estimation (MLE)



Scale-free networks

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are usually between 2 and 31). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size !k" # $out $ in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4!107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2!108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53!106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).

51R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Exponent



Albert, R. et.al. Rev. Mod. Phy. (2002)

• Average values are not reliable since 
the convergence is very slow

• Furthermore, average values are 
meaningless since the fluctuations are 
infinitely large (diverging variance)

1). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.
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Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
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Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
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Scale-free networks



Scale-free networks
Why do most of the real networks have 
degree exponent between 2 and 3?

• If the exponent is smaller than 2, the distribution is so skewed that we expect to 
find nodes with a degree larger than the size of the network => not possible in finite 
networks



Scale-free networks
Why do most of the real networks have 
degree exponent between 2 and 3?

• To detect a scale-free network its degree distribution needs to span through several 
(at least 2-3) orders of magnitude ⇒ Kmax~103 

• If the exponent is large (>3), large degrees become so rare that the size of the 
sample (i.e., size of observed network) must be enormous to indeed observe such 
an edge

• Example: let’s choose γ=5,  Kmin=1  and  Kmax~103

€ 

Kmax = KminN
1
γ −1

In order to document a scale-free networks, we need 2-3 orders of magnitude scaling. 
That is, Kmax~ 103 
 

However, that constrains on the system size we require to document it.  
For example, to measure an exponent γ=5,we need to maximum degree a system size of 
the order of 

€ 

N =
Kmax

Kmin

" 

# 
$ 

% 

& 
' 

γ −1

≈1012

Onella et al. PNAS 2007 

N=4.6x106 

γ=8.4 

 

Mobile Call 
Network 

Why don’t we see networks with exponents in the range of γ=4,5,6,  etc?  

Network Science: Scale-Free Property 2012 

We need to observe  nodes to observe a 
node of degree 1000 for exponent=5
=> Forget about (single planet) social networks…

1012



Scale-free networks - distancesDistances in scale-free networks 

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.  
 
The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes.  
 
 
Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well. 
 
 
The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier. 
  
 

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001 
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DISTANCES IN SCALE-FREE NETWORKS 

€ 

Kmax = KminN
1
γ −1

THE SCALE FREE PROPERTY 24 ULTRA-SMALL PROPERTY

(a) The scaling of the average path length 
in the four scaling regimes characterizing a 
scale-free network: lnN (scale-free networks 
with�ਠ�> 3 and random networks), lnN/lnlnN 
߶ਠ = 3) and lnlnN (2 < ਠ< 3). The dotted lines 
mark the approximate size of several real net-
works of practical interest. For example, given 
their modest size, in biological networks the 
differences in the node to node distances are 
relatively small in the four regimes. The dif-
ferences become quite relevant for networks 
of the size of the social network or the WWW. 
For these the small-world formula consider-
ably underestimates the real value of ࢭdࢮ.

(b)(c)(d) Distance distribution for networks 
of size N = 102, 104, 106, illustrating that while 
for small N ( = 102) the distance distributions 
is not too sensitive to ਠ, for large N ( = 106) pd 
and ࢭdࢮ�changes visibly with ਠ. As (d) shows, 
the smaller ਠ, the shorter are the distances be-
tween the nodes. The networks were generat-
ed using the static model [29] with ࢭk3 = ࢮ.

Figure 4.12
Distances in scale-free networks

Slide from CCNR Complex Networks Course
A. L. Barabási 2012



Scale-free networks - summary

Slide from CCNR Complex Networks Course
A. L. Barabási 2014

SUMMARY OF THE BEHAVIOR OF SCALE-FREE NETWORKS!

THE SCALE-FREE PROPERTY THE ROLE OF THE DEGREE EXPONENT25
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Scale-free networks
• Are real networks really Scale Free ? 
• In most real networks, the scale free stands only for a range of degrees, i.e., 

between a minimum degree and maximum degree different than those observed 
(cut-offs)

• Some other distributions, in particular log-normal distributions, might “look like” 
power-law

Aaron ClausetAlbert-László Barabási
Emergence of scaling in random networks (1999)

Scale-free networks are rare (2018)
Love is All You Need -  Clauset's fruitless search for scale-free networks (2018)

Rare and everywhere: Perspectives on scale-free networks (2019)

Petter Holme



Scale-free networks

Comparing a log-normal distribution and a power law
1

kσ 2π
exp − (ln k − μ)2

2σ2 k−α

Log-normal distribution = Probability distribution of a random variable whose logarithm is normally distributed

μ
σMean, std of the log of the variable

Small σ

large σ
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Scale-free networks

Aaron Clauset Albert-László Barabási

-Power law is a good, simple model of 
degree distributions of a class of networks 

-20 years of fruitful research based on this 
model

-Rigorous statistical tests show 
that observed degree distributions are 

not compatible with a power law 
distribution (high p-values)

-Networks are real objects, not 
mathematical abstraction, 

therefore they are sensible to 
noise (real life limits…)

-Compared with different 
distributions, in particular log-normal, 
most degree distributions are more 
likely to be generated by something 

else than power laws

A whole scientific article dedicated to the controversy: 
Jacomy, M. (2020). Epistemic clashes in network science: Mapping the tensions 
between idiographic and nomothetic subcultures. Big Data & Society, 7(2), 
2053951720949577.



The Barabási-Albert 
model 

of scale-free 
networks



Emergence of hubs
What did we miss with the earlier network models?

1. Networks are evolving
• Networks are not static but growing in time as new 

nodes are entering the system

6THE BARABÁSI-ALBERT MODEL

NODES PREFER TO LINK TO THE MORE CONNECTED NODES

The random network model assumes that we randomly choose the in-
teraction partners of a node. In most real networks, however, new nodes 
prefer to link to the more connected nodes, a process called preferential 
attachment. Consider a few examples:

• We are familiar with only a tiny fraction of the trillion or more doc-
uments available on the WWW. The nodes we know are not entirely 
random, but we all heard about Google and Facebook, but we rarely 
encounter the billions of less-prominent nodes that populate the Web. 
As our knowledge is biased towards the more connected nodes, we are 
more likely to link to a high-degree node than to a node with only few 
links.

• With more than a million scientific papers published each year, no 
scientist can attempt to read them all. The more cited is a paper, the 
more likely that we will notice it. Therefore, our citations are biased 
towards the more cited publications, representing the high-degree 
nodes of the citation network.

• The more movies an actor has played in, the more familiar is a casting 
director with her skills. Hence, the higher the degree of an actor in the 
actor network, the higher are the chances that she will be considered 
for a new role.

In summary, the random network model differs from real networks in 
two important characteristics:

GROWTH

While the random network model assumes that the number of nodes, 
N, is fixed (time invariant), real networks are the result of a growth pro-
cess that continuously increases N.

PREFERENTIAL ATTACHMENT

While nodes in random networks randomly choose their interaction 
partner, in real networks new nodes prefer to link to the more connect-
ed nodes.

There are many other differences between real and random networks, 
some of which will be discussed in the coming chapters. Yet, as we show 
next, growth and preferential attachment have a particularly important 
role shaping a network’s degree distribution.

(a) The evolution of the number of WWW 
hosts, documenting the Web’s rapid growth. 
After http://www.isc.org/solutions/survey/
history.

(b) The number of scientific papers published 
in Physical Review journals since the journal’s 
funding in 1893. The observed growth drives 
the growth of both the science collaboration 
network as well as the citation network. Over 
the century the Physical Review portfolio has 
split several times, responding to the expo-
nential growth of the number of research 
papers and to specialization. Today the cor-
pus features Physical Review Letters, Physical 
Review A, B, C, D, E, X and Reviews of Modern 
Physics.

(c) Number of movies listed in IMDB.com, re-
flecting the growth of the Hollywood movie 
enterprise, and with that the growth of the 
actor network.

Figure 5.2
The growth of networks

GROWTH AND PREFERENTIAL ATTACHMENT
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AL Barabási, Network Science Book (2013)

• Pólya urn model (1923)
• Yule process (1925)
• Zipf’s law (1941)
• Cumulative advantage (1968)
• Preferential attachement (1999)
• Pareto’s law - 80/20 rule
• The rich get richer phenomena
• etc.

2. Preferential attachement
• Nodes are not connected randomly but 

tends to link to more attractive nodes



The Barabási-Albert model

1. Start with m0 connected nodes

2. At each timestep we add a new node with 
m (≤ m0) links that connect the new node to 
m  nodes already in the network.

3. The probability π(k) that one of the links of 
the new node connects to node i depends 
on the degree ki of node i as

THE BARABÁSI-ALBERT
MODEL

SECTION 5.2

The recognition that growth and preferential attachment coexist in 
real networks has lead to the introduction of a minimal model capable of 
generating networks with power-law degree distribution [1]. The model is 
defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, 
as long as each node has at least one link. The network develops following 
two steps Fig. 5.3:

(A) GROWTH

At each timestep we add a new node with m (≤ m0) links that connect 
the new node to m nodes already in the network.

(B)  PREFERENTIAL ATTACHMENT

The probability ʌ(k) that one of the links of the new node connects to 
node i depends on the degree ki of node i as

Preferential attachment is a probabilistic rule: a new node is free to 
connect to any node in the network, whether it is a hub or has a single 
link. Eq. 5.1 implies, however, that if a new node has a choice between a de-
gree-two and a degree-four node, it is twice as likely that it connects to 
the degree-four node. The model defined by steps (A) and (B) is called the 
Barabási-Albert model after the authors of the paper that introduced it in 
1999 [1]. One may also encounter it in the literature as the BA model or the 
scale-free model. After t timesteps the Barabási-Albert model generates a 
network with N = t + m0 nodes and m0 + mt links.  As Fig. 5.4 shows, the net-
work generated by the model has a power-law degree distribution, a with a 
degree exponent ਠ=3. 

As Fig. 5.3 indicates, while most nodes in the network have only a few 
links, a few gradually turn into hubs. The hubs are the result of a rich-gets-

THE BARABÁSI-ALBERT MODEL 8

Figure 5.3 
Time evolution of the Barabási-Albert model

The sequence of images shows the gradual 
emergence of a few highly connected nodes, 
or hubs, through growth and preferential at-
tachment. White circles mark the newly add-
ed node to the network, which decides where 
to connect its two links (m=2) through prefer-
ential attachment Eq. 5.1. After [9].

(5.1)
k k

k
( ) .i

i

j
j∑

Π =

⇧(ki) =
kiP
j kj

• The emerging network will be scale-free with 
degree exponent γ=3 independently from the 
choice of m0 and m

The degree distribution of a network gen-
erated by the Barabási-Albert model. The 
plot shows pk for a single network of size 
N=100,000 and m=3. It shows both the lin-
early-binned (red symbols) as well as the 
log-binned version (green symbols) of pk. The 
straight line is added to guide the eye and has 
slope ਠ=3, corresponding to the resulting net-
work’s degree distribution.

Figure 5.4
The degree distribution

richer phenomenon: due to preferential attachment new nodes are more 
likely to connect to the more connected nodes than to the smaller degree 
nodes. Hence, the more connected nodes will acquire links at the expense 
of the less connected nodes, eventually turning into hubs.

In summary, the Barabási-Albert model indicates that two simple 
mechanisms, growth and preferential attachment, are responsible for the 
emergence of networks with a power-law degree distribution. The origin 
of the power law and the associated hubs is a rich-gets-richer phenomena 
induced by the coexistence of these two ingredients. Yet, to understand the 
model’s behavior and to quantify the emergence of the scale-free proper-
ty, we need to describe the model’s mathematical properties, which is the 
subject of the next section.

9THE BARABÁSI-ALBERT MODEL THE BARABÁSI-ALBERT MODEL
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The BA model - path lengthDistances in scale-free networks 

Size of the biggest hub is of order O(N). Most nodes can be connected within two layers 
of it, thus the average path length will be independent of the system size.  
 
The average path length increases slower than logarithmically. In a random network all 
nodes have comparable degree, thus most paths will have comparable length. In a 
scale-free network the vast majority of the path go through the few high degree hubs, 
reducing the distances between nodes.  
 
 
Some key models produce γ=3, so the result is of particular importance for them. This 
was first derived by Bollobas and collaborators for the network diameter in the context of  
a dynamical model, but it holds for the average path length as well. 
 
 
The second moment of the distribution is finite, thus in many ways the network behaves 
as a random network. Hence the average path length follows the result that we derived 
for the random network model earlier. 
  
 

Cohen, Havlin   Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and 
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas, 
1985; Newman, 2001 

 

 

 

Ultra 
Small 
World 

Small 
World 

DISTANCES IN SCALE-FREE NETWORKS 

€ 

Kmax = KminN
1
γ −1

degree distribution becomes a Gaussian around its mean
value. Indeed, Fig. 22(b) shows that the shape of P(k)
changes from the initial power law to a Gaussian.

Motivated by correlations between stocks in financial
markets and airline route maps, a prior model incorpo-
rating preferential attachment while keeping N constant
was independently proposed and studied by Amaral
et al. (1999).

The failure of models A and B to lead to a scale-free
distribution indicates that growth and preferential at-
tachment are needed simultaneously to reproduce the
stationary power-law distribution observed in real net-
works.

D. Properties of the Barabási-Albert model

While the Barabási-Albert model captures the power-
law tail of the degree distribution, it has other properties
that may or may not agree with empirical results on real
networks. As we discussed in Sec. I, a characteristic fea-
ture of real networks is the coexistence of clustering and
short path lengths. Thus we need to investigate whether
the network generated by the model has a small-world
character.

1. Average path length

Figure 23 shows the average path length of a
Barabási-Albert network with average degree !k"!4 as
a function of the network size N , compared with the
average path length of a random graph with the same
size and average degree. The figure indicates that the
average path length is smaller in the Barabási-Albert
network than in a random graph for any N , indicating
that the heterogeneous scale-free topology is more effi-
cient in bringing the nodes close than is the homoge-
neous topology of random graphs. We find that the av-
erage path length of the Barabási-Albert network

increases approximately logarithmically with N , the best
fit following a generalized logarithmic form

l !A ln#N"B $#C . (94)

Recent analytical results indicate that there is a double
logarithmic correction to the logarithmic N dependence,
i.e., l %ln(N)/lnln(N) (Bollobás and Riordan, 2001).

In Fig. 23 we also show the prediction of Eq. (60) for
these networks, using the numerically determined num-
ber of nearest and next-nearest neighbors. While the fit
is good for the random graph, Eq. (60) systematically
underestimates the average path length of the Barabási-

FIG. 22. Degree distribution
for two models: (a) Degree dis-
tribution for model A: !, m0
!m!1; ", m0!m!3; !, m0
!m!5; #, m0!m!7. The size
of the network is N!800 000.
Inset: time evolution for the de-
gree of two vertices added to
the system at t1!7 and t2!97.
Here m0!m!3. The dashed
line follows ki(t)!mln(m0#t
"1); (b) the degree distribution
for model B for N!10 000: !,
t!N ; ", t!5N ; and !, t
!40N . Inset: time dependence
of the degrees of two vertices.
The system size is N!10 000.
After Barabási, Albert, and
Jeong (1999).

FIG. 23. Characteristic path length l versus network size N in
a Barabási-Albert (BA) network with !k"!4 (!), compared
with a random graph of the same size and average degree gen-
erated with the algorithm described in Sec. III.A ("). The
dashed line follows Eq. (94), and the solid lines represent Eq.
(60) with z1!!k" and z2 the numerically obtained number of
next-nearest neighbors in the respective networks.
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hli =
lnN

lnlnN

UItra Small World network
Bollobás, Riordan (2001)

Albert, Barabási (2002)



The BA model - clustering coefficient
• The clustering coefficient 

decreases with the system 
size as

• It is 5 times more than for 
random graphs

Albert network, as it does the average path length of
real networks (see Table II, last three columns).

The failure of Eq. (60) underlies the fact that the to-
pology of the network generated by the Barabási-Albert
model is different from the topology of a random net-
work with power-law degree distribution (Sec. V). The
dynamical process that generates the network intro-
duces nontrivial correlations that affect all topological
properties.

2. Node degree correlations

In random-graph models with arbitrary degree distri-
bution (see Aiello et al., 2000 and Newman, Strogatz,
and Watts, 2001), the node degrees are uncorrelated.
Krapivsky and Redner (2001) have shown that in the
Barabási-Albert model correlations develop spontane-
ously between the degrees of connected nodes.

Let us consider all node pairs with degree k and l
connected by an edge. Without loss of generality we as-
sume that the node with degree k was added later to the
system, implying that k!l since, according to Eq. (81),
older nodes have higher degree than younger ones, and
for simplicity we use m"1. Denoting by Nkl(t) the
number of connected pairs of nodes with degree k and l ,
we have

dNkl

dt
"

!k#1 "Nk#1,l#kNkl

#
k

kN!k "

$
! l#1 "Nk ,l#1#lNkl

#
k

kN!k "

$! l#1 "Nl#1$k1 . (95)

The first term on the right-hand side accounts for the
change in Nkl due to the addition of an edge to a node
of degree k#1 or k that is connected to a node of de-
gree l . Since the addition of a new edge increases the
node’s degree by 1, the first term in the numerator cor-
responds to a gain in Nkl , while the second corresponds
to a loss. The second term on the right-hand side incor-
porates the same effects as the first applied to the other
node. The last term takes into account the possibility
that k"1; thus the edge that is added to the node with
degree l#1 is the same edge that connects the two
nodes.

This equation can be transformed into a time-
independent recursion relation using the hypotheses
#kkN(k)→2t and Nkl(t)→tnkl . Solving for nkl we ob-
tain

nkl"
4! l#1 "

k!k$1 "!k$l "!k$l$1 "!k$l$2 "

$
12! l#1 "

k!k$l#1 "!k$l "!k$l$1 "!k$l$2 "
. (96)

For a network with an arbitrary degree distribution, if
the edges are placed randomly, nkl"nknl . The most im-
portant feature of the result (96) is that the joint distri-
bution does not factorize, i.e., nkl%nknl . This indicates
the spontaneous appearance of correlations between the

degrees of the connected nodes. The only case in which
nkl can be simplified to a factorized expression is when
1%k%l , and nkl becomes

nkl!k#2l#2, (97)

but even then it is different from nkl"k#3l#3, as ex-
pected if correlations are absent from the network. This
result offers the first explicit proof that the dynamical
process that creates a scale-free network builds up non-
trivial correlations between the nodes that are not
present in the uncorrelated models discussed in Sec. V.

3. Clustering coefficient

While the clustering coefficient has been much inves-
tigated for the Watts-Strogatz model (Sec. VI.B.2), there
is no analytical prediction for the Barabási-Albert
model. Figure 24 shows the clustering coefficient of a
Barabási-Albert network with average degree &k'"4
and different sizes, compared with the clustering coeffi-
cient Crand"&k'/N of a random graph. We find that the
clustering coefficient of the scale-free network is about
five times higher than that of the random graph, and this
factor slowly increases with the number of nodes. How-
ever, the clustering coefficient of the Barabási-Albert
model decreases with the network size, following ap-
proximately a power law C(N#0.75, which, while a
slower decay than the C"&k'N#1 decay observed for
random graphs, is still different from the behavior of the
small-world models, where C is independent of N .

4. Spectral properties

The spectral density of the Barabási-Albert model is
continuous, but it has a markedly different shape from
the semicircular spectral density of random graphs (Far-
kas et al., 2001; Goh, Kahng, and Kim, 2001). Numerical
simulations indicate that the bulk of )(*) has a triangle-
like shape with the top lying well above the semicircle
and edges decaying as a power law (Fig. 25). This power-

FIG. 24. Clustering coefficient versus size of the Barabási-
Albert (BA) model with &k'"4, compared with the clustering
coefficient of a random graph, Crand!&k'/N .

75R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Albert, Barabási (2002)

  

€ 

Nrl () = di dj
j=1

N

∫
i=1

N

∫ P(i, j)P(i,l)P( j, l) =
m3

8
di dj

j=1

N

∫
i=1

N

∫ (ij)
−
1
2 (il)

−
1
2 ( jl)

−
1
2 =

m3

8l
di
i

dj
jj=1

N

∫ =
i=1

N

∫ m3

8l
(lnN)2

Calculate P(i,j). 

€ 

ki(t) = m t
ti

" 

# 
$ 
% 

& 
' 

1/ 2

= m j
i
" 

# 
$ 
% 

& 
' 
1/ 2

€ 

P(i, j) = mΠ(ki( j)) = m ki( j)

kl
l=1

j

∑
= m ki( j)

2mj
Node j arrives at time tj=j and the probability that it 
will link to node i with degree ki already in the 
network is determined by preferential attachment: 

Where we used that the arrival time of node 
j is tj=j and the arrival time of node is ti=i 
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ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient

Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

WS small-world 
networks exponential short large

BA scale-free 
networks power-law short Rather small



(some)
Other random 

models



Other scale-free models
The vertex-copying model

• Motivation:
• Citations network or WWW where links 

are often copied

• Local explanation to preferential 
attachement

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p

other scale-free network models: 
vertex copying

Tuesday, November 6, 12

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p

other scale-free network models: 
vertex copying

Tuesday, November 6, 12

• Asymptotically scale-free with 
exponent γ≥3



Other scale-free models
The Holme-Kim model

• Motivation: more realistic 
clustering coefficient

other scale-free network models: 
Holme-Kim

• the Holme-Kim Model
– motivation: to get realistic

clustering

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

probability p probability 1-p

1. preferential attachment

2A. connect to
neighbour
(implicit preferential 
attachment)

2B. preferential
attachment

for large N, ie clustering more 
realistic! This type of clustering is found
in many real-world networks.

Tuesday, November 6, 12
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in many real-world networks.
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ER Random Network - catch up

Network Degree 
distribution Path length Clustering 

coefficient
Real world 
networks broad short large

Regular lattices constant long large

ER random 
networks Poissonian short small

WS small-world 
networks exponential short large

BA scale-free 
networks power-law short Rather small

Other models power-law short Large 

Complex models can have all three properties,
But what is the point if they are themselves quite 

complex?



End notes

• “All models are wrong, but some are useful”

• ER models and Configuration models are used as 
reference models in a very large number of applications

• WS, BA models are more “making a point” type models: 
simple processes can explain some non-trivial properties 
of networks, unfound in random networks.

• Correlation is not causation. Are these simple processes 
the “cause” ? Maybe, maybe not, sometimes…


