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Small-world networks

e On of the first paper of
Network Science...

D.J. Watts and S. Strogatz,

”"Collective dynamics of 'small-world'
networks”, Nature 393, 440—442, 1998

Contradiction: Real-world networks have

High clustering AND Short
coefficient distances



Clustering vs. Interconnectedness

Random networks

- Logarithmically short distance among nodes d = o9 \/
log(k)
e Vanishing clustering coefticient for large size O = %(l@ =t

Real-world networks

Network Size (k) / o C @ Reference
WWW, site level, undir. ESSRIY Sl Sl 3200 0.1078  0.00023 Adamic, 1999
Internet, domain level = 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 4.79 0.43 1.8X10™* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x107°> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 7S 4.0 a2 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11 994 3.59 9.7 UL 0.496 3x10"* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 S 9.5 8.2 0.59 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209 293 L) 6 S0l W7o 2Bkl Barabasi et al., 2001
E. coli, substrate graph 267 {55 29 3.04 GL57 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Solé, 2000
Silwood Park food web 154 4.75 3.40 S 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001
Words, synonyms 223N 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 NG 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 e 0.28 0.05 Watts and Strogatz, 1998

Albert, R. et.al. Rev. Mod. Phy. (2002)
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Power grid 4941 2061 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
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Albert R. et.al. Rev. Mod. Phy. (2002)



The Watts-Strogatz model

A model to capture large clustering coefficient and short
distances observed in real networks

- It interpolates between an ordered finite lattice and a random graph
3 F|Xed parameters Regular Small-world
* n - system size

« K - initial coordination number

- Variable parameters:

* p - rewiring probability p=0 > p=1

Increasing randomness

D.J. Watts and S. Strogatz, Nature (1998)

» Algorithm:

1.Start with a ring lattice with » nodes in which every node is connected to its
first K neighbours (K/2 on either side).

2.Randomly rewire each edge of the lattice with probability p such that self-
connections and duplicate edges are excluded.

By varying p the network can be transformed from a completely ordered (p=0) to

a completely random (p=1) structure



The Watts-Strogatz model

(Global) Clustering coefficient (Definition 2)

Regular Small-world Random

\
r‘

AR . 3(K —2 P

- p=0 - regular ring with constant clustering: C' = 4(K 1) “d \XK

-0sC =<3/ =1 g . o

= Independent Of n Increasing randomness
« p>0 - we can count triangles and tuples
Global clustering coefficient

1 NK 1 K 1 * Independent of n

C = 4 (5 1 ) X — 3(K % 2) - if p—0 it recovers the ring value

INK(K —1)+ NK?p+ iNK?p? 4(K —1)+8Kp + 4Kp?

« if p—1 it well approximates 1




The Watts-Strogatz model

Average path length (Definition 2)

« No closed form solution %

Regular Small-world Random

|
\

\
r‘

‘.“ A L
N

Increasing randomness

= & m ]
gl C(p)/ C(0) © ]
. . . L [ ) J
* From numerical simulations: =
0.6 |
: % ]
04 2 A 1
X Newman, M. E. (2000). Models of the small world. Journal of i 1
See Statistical Physics, 101(3-4), 819-841. 0.2 L Lip) /LO) | * > a
L ® d
for details ; -
0.0001 0.001 0.01 0.1 1




The Watts-Strogatz model

Degree distribution (Definition 2)

Regular Small-world Random

S SV
- p=0 - each node has the same degree K (Dirac delta % %
; p>0 - each node has degree K + shortcut links ' TN
1
* Number of shortcut edges: s=;NK Xp p=0 > p=

2 Increasing randomness

- Each node will have on average Kp number of shortcuts

- The degree distribution is

—Kp (Kp)(k_K)
© =0

P(k) = e if k=K and P(k)=0 if k<K

- p>0 - approximates a Poisson distribution just like a random network



ER Random Network - catch up

Clustering
coefficient

Network Degree distribution Path length

ACEITEL broad short large
networks

Regular lattices constant long

ER random

Poissonian
networks

Configuration
Model

Watts & Strogatz

(in SW regime) Poissonian



Scale-free
hetworks
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Scale-free networks

A network is called Scale-free when its degree distribution
follows (to some extent) a Power-law distribution

Power-law distribution: (PDF)

1
P(k) ~ Ck™% = C—

ka a (sometimes y) called the exponent
of the distribution

Positive values

Here, defined as continuous (approximation)
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Scale-free networks - first observations

R. Albert, H. Jeong, A-L Barabasi, Nature (1999)

Diameter of the world wide web
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Scale-free networks - other examples

The Iinternet

- Nodes: routers
- Links: Physical wires

10000 e e
: "971108.0ut" ©
: exp(7.68585) * x ** ( -2.15632) — 1
1000 -5
100 :
10 :
1 " " " " PR | " " " " P

1 10 100

(a) Int-11-97

Faloutsos, Faloutsos and Faloutsos (1999)
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Scale-free networks - other examples

a E _“JDEH .
= s E : Guimera et.al. (2004)
Airline route map network 2 | ;
g 107 3
* Nodes: airports 2 | :
+ Links: airplane connections S 107
; i :
F10°F
E : Note: the cumulative distribution of a
O 10'140.1 B 5 .P,{eﬂ e gy 1:31 _— power law is also a line on a log-log plot

Scaled degree, k/z
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Scale-free networks - other examples

Scientific collaborations

Nodes: scientists (here geo-localised)

Links: common papers

Map of scientific collaborations from 2005 to 2009

Computed by Olivier H. Beauchesne @ Science-Metrix, Inc.

Data from Scopus, using books, trade journals and peer-reviewed journals
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Scale-free networks - other examples

Liljeros et.al. (2001)

Sexual-interaction networks

- Nodes: individuals
- Links: sexual incursion

o
E
»
»
>
»

10_1 3

10_2 3

Bearman et.al. (2004) 108 - 1

Cumulative distribution, P(ktgt)

The Structure of Romantic and Sexual Relations at "JefTerson High School" ©) Females A
2o A Males ]
\ ( ‘ , — M ' B A | 1 [T I I | 1 R N |
ST NS ey, ; / 2 100 10° 102 103
R 3
ot ¥ Y, ﬁ" el . \L Total number of partners, k,
¢ 2 AT TN et e "N*®
-"\)3 |\1 .;_.r*k’ /
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> F R Y 4 9
R Y
o BT 3 o™ ,:'_._ -l
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»
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>
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|

Fach circle represents a student and lines connecting students represent romantic relations occuring within the 6 months
preceding the interview, Numbers under the figure count the number of times that pattern was observed (i.e. we found 63
pairs unconnected to anyone ¢lse)



Scale-free networks - other examples

Online social networks

- Nodes: individuals
- Links: online interactions

Social network of Steam
http://85.25.226.110/mapper
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http://85.25.226.110/mapper

Scale-free distribution

What does it mean?

Bell Curve

=

Number of nodes with % links

Most nodes have
the same number of links

No highly

connected nodes

Number of nodes with & links

Power Law Distribution

A
:
)
X Very many nodes
» with only a few links
"
.

A few hubs with
large number of links

AL. Barabasi, Linked (2002)

Degree fluctuations have no characteristic scale (scale invariant)



Scale-free networks

|dea of scale free

AL Barabasi, Network Science Book (2013)
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Scale-free distribution

Proper definition

A 1
Initial definition:  P(k) ~ Ck™% = C—

‘0 have a proper degree distribution, we need R m—

Pk =1 = [cw = ch-a.

10_1 3

-3 | .
10 t O Females A§

We also know that in most cases, there Is a lower bound O fema |
from which the law holds. (k. ;) T LA LI

Total number of partners, ki,

Cumulative distribution, P(ktot)
=

From this, we define the normalisation constant:

1
[ k-adk

min

C

= (a — k%]

min
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Scale-free distribution

Proper definition

1
|, k-odk

min

— (a — k%!

min

P(k) ~ Ck™ ¢

P(k) = (0 — Dk* k=

min

a—1 kK \ "
P(k) =
() kmin (kmin>
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Scale-free networks

Power law plotted with a linear scale, for k<=10
(100 000 samples)

Distribution
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Scale-free networks

Power law plotted with a linear scale, for k100000
(100 000 samples)

Distribution
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Scale-free networks

Power law plotted with a log-log scale, for k<100000
(100 000 samples)

- power-law y =2

——  power-law y =3

107 1

11111




Scale-free networks

Comparing a poisson distribution and a power law

g4
k!
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Scale-free networks

Comparing a poisson distribution and a power law
/lke_’l
k!

10° - Distribution
- power-law y=2.5
poissen A =3
—— poisson A =2
- poisson A=1
- poisson A =0.5
107 - poisson A =0.1
10-2 g
=
a
10-3 g
107%
L

10° 10? 10?2 10° 10% 10°
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Scale-free networks

Comparing a poisson distribution and a power law
/1k€_/1
k!

10° - Distribution
- power-law y=2.5
poissen A =3

——  poisson A =2
- poisson A=1
- poisson A =0.5

] - poisson A =0.1

10-2 p

= [ ]
: [ he “long tail”
10-3 ] — e 2 g
“ = \\\\
77
' \\§‘>
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Scale-free networks

Comparing an exponential distribution and a power law

le ™ k>0,
0 k <O.
Distribution
107 5 —— power-lawy=2.5
exponential A=3
- exponential A =2
- exponential A=1
- exponential A =05
1071 — exponential A=0.1
1072
=
B \
1073 4 \
A
\
\
\l'
107 1 Ml
l
L
)
l ,L‘
| |
107 A U L
10° 101 107 10° 104 10°
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Scale-free distribution

Moments

Distribution: P(k) = (a — DkZ k™

(central) Moments: (k™) = [ k" p(k)dk
-

Reminder:

(k') Average
(k*y  Variance

K’y  Skewness
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Scale-free distribution

Moments

Distribution: P(k) = (a — DkZ k™

(central) Moments: (k™) = J k" p(k)dk

kmin

(k™) = (@~ Dk

min\

Defined fora > m + 1, (k™Y = k"
Otherwise diverge (+inf) min

1
Ix”dx =—x""+e,n#-1
n+1

http://tuvalu.santafe.edu/~aaronc/courses//000/csci/000-00 1 _201 | _L2.pdf
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Scale-free distribution

Moments

a—1 kK \
Distribution: P(k) = (k . )

kmin

a—1 Defined fora > m + 1,
a—1—m Otherwise diverge (+inf)

(central) Moments: (k") = k&“m(

a—1

=> Mean: (k) = k

min
a—?2

(But diverges for a < 2)

. | ~1
=> Variance: (i) =~ o (But diverges for & < 3)
a —
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Scale-free distribution

Moments

What does divergence means in practice !

We can always compute the mean and variance, given samples of a
distribution (e.g., an observe degree distribution)

=>The value computed depends on the size of the sample, it is not a
characteristic of the distribution.

Moments are dominated by elements in the long tall. Some events are
rare, but they have so large values, that if observed, they are strong
enough to modify substantially the corresponding moment. And they
appear frequently enough so that the mean will continue to shift when
increasing the sample size
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Scale-free distribution

Moments

0 <2 2<a<3 a>3
M Ji Mean well defined, Mean and variance
can dliverge \Var di d f d
driance diverge crine
10° e \ \ 10° \ \ \ \ 10° \ \ \ \

8/ o Sample mean |o°° ,_1 7 | 8- --Population mean _ 8- --Population variance| -3 o1
10 _ a=1.7 10 a=2.0 10 0=3.01
10’} ° Sample variance 10t , 10’1 ,
100 0, o 107 " o0 107)

104 >o 104 0 % °°°o o° 104
100 o, i 10 | © a0 ° 10 |
102' °°o° . o . 0© o ooo oooooooooo 102 o % o° °o o °o° 102
10,0 ° " o°0° o % 100 o ° 10 o7 TTT T e
- 00 ©00° - -;6030 ) -; -o:) -O-O:);o-oaao-o;60-050-0350-035 o o o° 000000000000000000000
100 ° ‘ ‘ ‘ ‘ 10(}) g ° 000070 o‘ ‘ ‘ ? 100 90898988908309989900990099069909900992
10 1 2 3 4 5 6 10 1 2 3 4 5 6 10 1 2 3 4 5 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Size of sample, n Size of sample, n Size of sample, n

=> Even when well defined, moments converge very slowly
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Computing the exponent of an observed network

Method 1:find the slope of the line of the log-log plot

Problem: most of data is on first values, so we overfit based on a
few values in the long tall

Analysis of fitting methods for vibrating sandpiles dataset

empirical |

More advanced method:
Maximum Likelihood Estimation (MLE)

10° 10°
number of references

[Frtting to the Power-Law Distribution, Goldstein et al.]
https://arxiv.org/vc/cond-mat/papers/0402/0402322v | .pdf
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Scale-free networks

Exponent
Network Size (k) K Your Yin L real ‘rand ¢ pow Reference
WWW 325729 4.51 900 2.45 2.1 11.2 832 4.77 Albert, Jeong, and Barabasi 1999
WWW 4 %107 7 2.38 2.1 Kumar et al., 1999
WWW 2% 108 7.5 4000 2.72 2.1 16 885 7.61 Broder et al., 2000
WWW, site 260 000 1.94 Huberman and Adamic, 2000
Internet, domain® 3015-4389 3.42-3.76 30-40 2.1-22 2.1-22 4 6.3 52 Faloutsos, 1999
Internet, router™ 3888 2.57 30 2.48 248 1215 875 7.67 Faloutsos, 1999
Internet, router™ 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000
Movie actors® 212250 28.78 900 2.3 2.3 454 3.65 4.01 Barabasi and Albert, 1999
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 212 1.95 Newman, 2001b
Co-authors, neuro.* 209293 11.54 400 2.1 2.1 6 5.01 3.86 Barabasi et al., 2001
Co-authors, math.™ 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabasi et al., 2001
Sexual contacts™ 2810 3.4 34 Liljeros et al., 2001
Metabolic, E. coli 778 7.4 110 2.2 2.2 32 332 289 Jeong et al., 2000
Protein, S. cerev.™ 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001
Ythan estuary™ 134 8.7 35 1.05 1.05 243 226 1.71 Montoya and Sol€, 2000
Silwood Park* 154 4.75 27 1.13 1.13 34 323 2 Montoya and Sol€, 2000
Citation 783 339 8.57 3 Redner, 1998
Phone call 53x10° 3.16 2.1 2.1 Atello et al., 2000
Words, co-occurrence® 460902 70.13 2.7 2.7 Ferrer i Cancho and Solée, 2001
Words, synonyms™ 22311 13.48 2.8 2.8 Yook et al., 2001b

Albert, R. et.al. Rev. Mod. Phy. (2002)

Exponents of real-world networks are usually between 2 and 3
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Scale-free networks

Exponent
Network Size (k) K Your Yin _ _
— o o e « Average values are not reliable since
WWW 1107 ; 528 g the convergence is very slow
www 2X10° 75 4000 272 21 - Furthermore, average values are
WWW, site 260000 L meaningless since the fluctuations are
Internet, domain* 3015-4389 3.42-3.76 30-40 2.1-2.2 2.1-2.2 . pe . . .
Internet, router® 3888 257 30 248 248 infinitely large (diverging variance)
Internet, router™ 150 000 2.66 60 2.4 2.4
Movie actors® 212250 28.78 900 2.3 2.3
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1
Co-authors, math.™ 70975 3.9 120 2.5 2.5
Sexual contacts™ 2810 3.4 34
Metabolic, E. coli 778 7.4 110 2.2 2.2
Protein, S. cerev.™ 1870 2.39 2.4 2.4
Ythan estuary™ 134 8.7 35 1.05 1.05
Silwood Park*™ 154 4.75 27 1.13 1.13
Citation 783 339 8.57 3
Phone call 53x10° 3.16 2.1 2.1
Words, co-occurrence™ 460902 70.13 2.7 2.7
Words, synonyms™ 22311 13.48 2.8 2.8

Albert, R. et.al. Rev. Mod. Phy. (2002)
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Scale-free networks

Why do most of the real networks have
degree exponent between 2 and 37

- If the exponent is smaller than 2, the distribution is so skewed that we expect to
find nodes with a degree larger than the size of the network => not possible in finite
networks
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Scale-free networks

Why do most of the real networks have
degree exponent between 2 and 37

 To detect a scale-free network its degree distribution needs to span through several
(at least 2-3) orders of magnitude = Ku~103

- If the exponent is large (>3), large degrees become so rare that the size of the

sample (i.e., size of observed network) must be enormous to indeed observe such
an edge

- Example: let’s choose y=5, Kuin=1 and Kpu~103

1
K. =K_ N
i We need to observe 102 nodes to observe a

(K )“ o node of degree 1000 for exponent=5
N = | —max ~ 102

=> Forget about (single planet) social networks...
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Scale-free networks - distances

const. y = ) Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
of it, thus the average path length will be independent of the system size.
The average path length increases slower than logarithmically. In a random network all
Ultra InlnN nodes have comparable degree, thus most paths will have comparable length. In a
Small 2< Y < 3 scale-free network the vast majority of the path go through the few high degree hubs,
Weorld 111()/ -1) reducing the distances between nodes.
< l >~ S
InN Some key models produce y=3, so the result is of particular importance for them. This
—_— Y = 3 was first derived by Bollobas and collaborators for the network diameter in the context of
InIn N a dynamical model, but it holds for the average path length as well.
Small The second moment of the distribution is finite, thus in many ways the network behaves
InN >3 -
World L Y as a random network. Hence the average path length follows the result that we derived

for the random network model earlier.

Cohen, Havlin Phys. Rev. Lett. 90, 58701(2003); Cohen, Havlin and ben-Avraham, in Handbook of Graphs and Networks, Eds. Bornholdt and
Shuster (Willy-VCH, NY, 2002) Chap. 4; Confirmed also by: Dorogovtsev et al (2002), Chung and Lu (2002); (Bollobas, Riordan, 2002; Bollobas,
1985; Newman, 2001

4 Human Internet
PF’I (20_11]

Society Www
30 :

_~TaN
i (v > 3 and random)

InN ( B 3)
InlnN !

10 |
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Scale-free networks - summary

ANOMALOUS SCALE-FREE RANDOM
REGIME REGIME REGIME
No large network Indistinguishable
can exist here from a random network
Q
QS N S & Q§\\0
RN S0 & S L
SR S NN & S S\
: : s |
1 2 3 Y
(k)  DIVERGES (k) FNTE (k) FINTE
<k2> DIVERGES =2 <k2> DIVERGES 73 2
ky— . (k> i In N <k > FINITE
max InlnN
CRITICAL
POINT InN
(d)~InInN (d)~
ln<k>
kmax GROWS FASTER THAN N ULTRA-SMALL SMALL
WORLD WORLD
kmax~N%—1

Slide from CCNR Complex Networks Course
A. L. Barabasi 2014
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Scale-free networks

- Are real networks really Scale Free ?

 In most real networks, the scale free stands only for a range of degrees, i.e.,
between a minimum degree and maximum degree different than those observed
(cut-offs)

- Some other distributions, in particular log-normal distributions, might “look like”
power-law

Albertl3s718 Barabdsi Aakere

Emergence of scaling in random networks (1999)

Feset

Scale-free networks are rare (2018)
Love is All You Need - Clauset's fruitless search for scale-free networks (2018)

Rare and everywhere: Perspectives on scale-free networks (2019)

Petter Ho
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Scale-free networks

Comparing a log-normal distribution and a power law

Log-normal distribution = Probability distribution of a random variable whose logarithm is normally distributed
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Scale-free networks

a" Albert-Laszl6 Barabasi

@barabasi

@aaronclauset Every 5 years someone is shocked to re-
discover that a pure power law does not fit many
networks. True: Real networks have predictable
deviations. Hence forcing a pure power law on these is

like...fitting a sphere to the cow. Sooner or later the hoof
will stick out.

+rward proces
rocess
1000

weli-known f' ,d Network Science, Chapter 4, pg 159
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Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
Replying to @barabasi

Chapter 6 in Network Science networksciencebook.com/chapter/6
discusses what you should be fitting to the degree distribution of *real*
scale-free networks. You are right: Pure power laws are predictably rare.
Scale-free networks are not.

O 1 21 Q 45 g
Aaron Clauset @aaronclauset - Jan 15, 2018 v
Replying to @barabasi

Yes, science is hard and real data often messy. But it is worrying how
criticisms of harsh statistical evaluations can be interpreted as a belief
that "disagreement with data" (as Feynman would put it) should not be
held against a favored theory or model.

Q 3 s QO 18 N

Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
We are on the same page. The question is, what you test and what you
conclude. There are multiple processes that contribute to the degree
distribution that modify the power law. Hence testing for power laws only
you are ignoring them all, leading to misleading takeway message.
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Aaron Clauset @aaronclauset - Jan 15, 2018 v
Perhaps. | feel good about the accuracy of our conclusions: we used
rigorous statistical methods, tested 5 distributions, considered 5 levels of
evidence, across nearly 1000 network datasets. The goal was to be
thorough and to treat the SF hypothesis as falsifiable.
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Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
The effort is amazing. The conclusions are less so. The feather falls
slower than the rock, yet gravitation is not wrong. We add friction. You
need to fit for each system the Pk that is right for it. That is hard, | know.
Otherwise you ignore 20 year of work by hundreds.

Q 2 1 4 O 6 o

Aaron Clauset @aaronclauset - Jan 15, 2018 v
It seems easy to get confused here: an empirical power-law degree
distribution is evidence for SF structure, but no deviation from the power
law can be evidence against SF structure? It is reasonable to believe a
fundamental phenomena would require less customized detective work.



Scale-free networks
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Aaron ClaUset

-Rigorous statistical tests show -Networks are real objects, not
that observed degree distributions are mathematical abstraction,
not compatible with a power law therefore they are sensible to
distribution (high p-values) noise (real life imits...)
-Compared with different -Power law is a good, simple model of
distributions, in particular log-normal, degree distributions of a class of networks

most degree distributions are more
ikely to be generated by something

else than power laws 20 years of fruitful research based on this
model

A whole scientific article dedicated to the controversy:

Jacomy, M. (2020). Epistemic clashes in network science: Mapping the tensions
between idiographic and nomothetic subcultures. Big Data & Society, 7(2),
2053951720949577.
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Emergence of hubs

What did we miss with the earlier network models?

u 9:108 a
1. Networks are evolving g el &
- Networks are not static but growing in time as new 5
nodes are entering the system 5
. Years
2. Preferential attachement
- Nodes are not connected randomly but g ol )
tends to link to more attractive nodes |
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AL Barabasi, Network Science Book (2013)



The Barabasi-Albert model

1. Start with my connected nodes / /]

2. At each timestep we add a new node with
m (< my) links that connect the new node to
m nodes already in the network.

3. The probability z(k) that one of the links of
the new node connects to node i depends
on the degree k; of node i as

k. 10° p
H(k@) — ’ 10'1;- .
=ik
- The emerging network will be scale-free with e eokon e
degree exponent y=3 independently from the
choice of mo and m =8 W,

108
10% 10l 102 103

AL Barabasi, Network Science Book (2013)



The BA model - path length

const. y = P Size of the biggest hub is of order O(N). Most nodes can be connected within two layers
of it, thus the average path length will be independent of the system size.
The average path length increases slower than logarithmically. In a random network all
Ultra Inln N nodes have comparable degree, thus most paths will have comparable length. In a
Small 1 2< Y < 3 scale-free network the vast majority of the path go through the few high degree hubs,
World H(Y -1) reducing the distances between nodes.
<[>~
lnN Some key models produce y=3, so the result is of particular importance for them. This
S Y = 3 was first derived by Bollobas and collaborators for the network diameter in the context of
InIn N a dynamical model, but it holds for the average path length as well.
Small InN 3 The second moment of the distribution is finite, thus in many ways the network behaves
World L n Y > as a random network. Hence the average path length follows the result that we derived

for the random network model earlier.
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O BA model
lnN [ O random graph
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Ultra Small World network

Bollobas, Riordan (2001)

10° 10°
N Albert, Barabasi (2002)



The BA model - clustering coefficient

L] I
Albert, Barabasi (2002) ]

» The clustering coefficient 10" |
decreases with the system
Size as 102 L
m (InN)*
C = 4 N © 40

* [t is 5 times more than for 107
random graphs

O BA model
random graph
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ER Random Network - catch up

Degree
distribution

Clustering

Network coefficient

Path length
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Other scale-free models

The vertex-copying model 1. copy a vertex
* Motivation: ,:: //,2
. Citations network or WWW where links VN
are often copied @,
 Local explanation to preferential 2. rewire edges with p
attachement N

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4.  With probability p, move each edge of the - Asymptotically scale-free with
copy to point to a random vertex exponent y>3

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices



Other scale-free models

The HOIme'K|m mOdel 1.prefere\ntia|\attachment

* Motivation: more realistic
clustering coefficient

probability p ! \ probability 1-p
1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to 2A. connect to 2B. preferential
their degree £ (just like BA) neighbour attachment

(implicit preferential
attachment)

4.  With probability p, connect the next edge to
a random neighbour of the vertex of step 3., 1
otherwise do 3. again C (k/’) X =

K

for large N, ie clustering more
realistic! This type of clustering is found
iIn many real-world networks.

9. Repeat 2.-4. until the network
has grown to desired size
of N vertices



ER Random Network - catch up

Degree
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Complex models can have a

But what Is the point 1
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End notes

* “All models are wrong, but some are useful”

- ER models and Configuration models are used as
reference models in a very large number of applications

- WS, BA models are more “making a point” type models:
simple processes can explain some non-trivial properties
of networks, unfound in random networks.

 Correlation is not causation. Are these simple processes
the “cause” ? Maybe, maybe not, sometimes...



