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Spatial networks

A network is said spatial if the distance between nodes affect the 
probability of observing edges between them

G
eisel et.al. (2011)

Distance
• Physical distance
• Economical distance
• Social distance
• Difference in professional 

categories
• …

• Can be seen as a special case of Assortativity, generalizing the notion of 
distance through several dimensions.
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a b s t r a c t

Complex systems are very often organized under the form of networks where nodes and
edges are embedded in space. Transportation and mobility networks, Internet, mobile
phone networks, power grids, social and contact networks, and neural networks, are all
examples where space is relevant and where topology alone does not contain all the
information. Characterizing and understanding the structure and the evolution of spatial
networks is thus crucial for many different fields, ranging from urbanism to epidemiology.
An important consequence of space on networks is that there is a cost associated with the
length of edges which in turn has dramatic effects on the topological structure of these
networks. We will thoroughly explain the current state of our understanding of how the
spatial constraints affect the structure and properties of these networks.Wewill review the
most recent empirical observations and the most important models of spatial networks.
We will also discuss various processes which take place on these spatial networks, such
as phase transitions, random walks, synchronization, navigation, resilience, and disease
spread.
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Spatial networks
Types of spatial networks

• Transportation networks
• Airline networks
• Bus, subway, railway, and commuters 
• Cargo ship networks

• Infrastructure networks
• Road and street networks
• Power grids and water distribution 

networks
• The internet

• Neural networks
• Protein networks
• Mobility networks
• Social networks
• …
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Spatial networks
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Spatial Networks

De�nition

A spatial network is a network in which �)Nodes are associated to
positions, �) The probability to observe edges between a pair of
nodes depend on their distance.
In most cases, the probability of being connected tends to de-
crease with distance, but this is not a necessary requirement.

Position of nodes - Dimension

The position of each node is described by a vector, i.e., a list of
values. The number of values in the vector is the dimension(d) of
the space in which nodes are located. The most common space
is geographical space: nodes are located by a pair (latitude, lon-
gitude). It is therefore considered a �D space (even though earth
is a sphere). But spatial networks can exist in spaces with more or
less dimensions, as long as the distance between nodes positions
is meaningful.

Examples of �D spaces

• The watts-Strogatz random graph is de�ned on a (circular)
�D space: each node is (initially) connected to its k closest
nodes in this space.

• In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on �D space. The same is true about political opin-
ions, if we consider a Left-Right spectrum.

Examples of �+D spaces

• If we consider altitude, geographical networks are �D
spaces

• If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.,
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to de�ne the distance between nodes, which can
be tricky to de�ne if dimensions are of di�erent natures.

• Methods such as graph embedding assign locations in ar-
bitrary large dimensions to nodes that summarize some of
the network properties (see later class).

Distances

The distance between each pair of nodes can be computed in
di�erent ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

• Euclidean distance, or L2distance is the usual, straight
line distance

• Great-Circle distance is used tomeasure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

• Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

• Manhattan distance, orL1distance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply de�ned as the sum of di�erences in each of
the dimensions.)

• Observed distance can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or tra�c, the time distance between dots might be only
loosely proportional to geographical distance.

Metric Space

In most cases, we can consider that a spatial network is embed-
ded in ametric space, a space associatedwith ametricwith prop-
erties of indiscernibility, symmetry and triangle inequality. However,
this is not always the case, in particular in directed networks, in
which it can be useful to consider di�erent distances for links (a, b)
and (b, a) (asymmetry).

Notation

�uv Metric distance between u and v (Euclidean, Man-
hattan, etc.)

`uv Route distance between u and v, i.e., sum of Metric
distances between nodes on the shortest path be-
tween u and v

s�u Distance strength, cumulative distance from a node
to its neighbors. s�u =

P
v2N(u) �uv . The relation

between ku and s�u can be studied, for instance to
see if larger nodes tend to connect at longer dis-
tance.

Route factor - Accessibility

Route Factor, also called the detour index, measures how e�-

ciently the networks allow to go from a node to another, it is de-
�ned as the ratio between the metric distance and the route dis-
tance:
Q(u, v) RouteFactor, also called thedetour index,measures

how e�ciently the networks allow to go from a node
to another, it is de�ned as the ratio between themet-
ric distance and the route distance:

Q(u, v) =
�uv

`uv

hQ(u)i Node Accessibility: Average route index from a
node to all others:

hQ(u)i =
1

N � 1

X

v

Q(u, v)

hQ(u)i Accessibility: Average route index for thewhole net-
work:

hQi =
1

N(N � 1)

X

u 6=v

Q(u, v)
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Fig. 5. Example of a detour index calculation. The ‘as crow flies’ distance between the nodes A and B is dE(A, B) =
p
10, while the route distance over the

network is dR(A, B) = 4, leading to a detour index equal to Q (A, B) = 4/
p
10 ' 1.265.

where N(k) is the number of nodes of degree k. If this ratio is small, the number of dead ends and ‘unfinished’ crossings
(k = 3) is small compared to the number of regular crossings (k = 4). In the opposite case of large rN , there is a dominance
of k = 4 nodes, which signals a more organized city.

The authors of [60] also define the ‘compactness’ of a city, which measures how much a city is ‘filled’ with roads. If we
denote by A the area of a city and by `T the total length of roads, the compactness  2 [0, 1] can be defined in terms of the
hull and city areas

 = 1 � 4A
(`T � 2

p
A)2

. (33)

In the extreme case of one square city of linear size L =
p
A with only one road encircling it, the total length is `T = 4

p
A

and the compactness is then  = 0. At the other extreme, if the city roads constitute a square grid of spacing a, the total
length is `T = 2L2/a, and in the limit of a/L ! 0 one has a very large compactness  ⇡ 1 � a2/L2.

We end this section bymentioning the ringness. Arterial roads (including freeways, major highways) provide a high level
of mobility and serve as the backbone of the road system [56]. Different measures (with many references) are discussed and
defined in [56] and, in particular, the ringness is defined as

�ring = `ring

`tot
(34)

where `ring is the total length of arterials on rings and the denominator `tot is the total length of all arterials. This quantity,
ranging from 0 to 1, is thus an indication of the importance of a ring and to what extent arterials are organized as trees.

2.2.2.3. Route factor, detour index. When the network is embedded in a two-dimensional space, we can define at least two
distances between the pairs of nodes. There is of course the natural Euclidean distance dE(i, j), which can also be seen as the
‘as crow flies’ distance. There is also the total ‘route’ distance dR(i, j) from i to j by computing the sum of length of segments
which belong to the shortest path between i and j. The route factor (also called the detour index or the circuity or directness
[61]) for this pair of nodes (i, j) is then given by (see Fig. 5 for an example)

Q (i, j) = dR(i, j)
dE(i, j)

. (35)

This ratio is always larger than one; and the closer it is to one, the more efficient is the network. From this quantity, we can
derive another one for a single node defined by

hQ (i)i = 1
N � 1

X

j

Q (i, j) (36)

which measures the ‘accessibility’ for this specific node i. Indeed, the smaller it is, the easier it is to reach the node i.
Accessibility is a subject in itself (see for example [62]) and there are many other measures for this concept (we refer the
interested reader to the articles [63–65]). This quantity hQ (i)i is related to the quantity called ‘straightness centrality’ [66]

CS(i) = 1
N � 1

X

j6=i

dE(i, j)
dR(i, j)

(37)

And if one is interested in assessing the global efficiency of the network, one can compute the average over all pairs of nodes
(also used in [67])

hQ i = 1
N(N � 1)

X

i6=j

Q (i, j) (38)
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Notation

�uv Metric distance between u and v (Euclidean, Man-
hattan, etc.)

`uv Route distance between u and v, i.e., sum of Metric
distances between nodes on the shortest path be-
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s�u Distance strength, cumulative distance from a node
to its neighbors. s�u =
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Random geometric graphs
General definition:

• Take a space and distribute nodes randomly
• Nodes are small spheres with radius r
• Two nodes are connected if their spheres overlap — separated with 

distance smaller than 2r
• Also called: disk-percolation
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Degree distribution — Poisson distribution

Clustering coefficient (d=dimensions)

M. Barthélemy / Physics Reports 499 (2011) 1–101 43

In the context of continuum percolation this quantity is the excluded volume Ve ⌘ p. The average degree is then given by
hki = Np and we can then express R as a function of hki

R = 1p
⇡

 hki
N

�

✓
d + 2
2

◆�1/d

(95)

which shows that for a given average degree hki the nodes (spheres) have to become smaller when more nodes are added.
Similarly to the usual ER random graph, there is a critical average degree above which there is a non empty giant

component. The authors of [186] computed this critical value hkic numerically for different dimensions and proposed the
scaling hkic = 1+bd�� with b = 11.78(5) and � = 1.74(2). This relation also states that in infinite dimensions the random
geometric graph behaves like a ER graph with hkic = 1.

In [189], the authors analytically compute the degree distribution for these random geometric graphs. If we assume
that the points are distributed according to a distribution p(x) and the condition for connecting to nodes i and j located at
positions xi and xj, respectively, is dE(i, j)  R, we can then estimate the degree distribution. If we denote by BR(x) the ball
of radius R centered at x, the probability qR(x) that a given node is located in BR(x) is

qR(x) =
Z

BR(x)
dx0p(x0). (96)

The degree distribution for a node located at x is thus given by the binomial distribution

P(k; x, R) =
✓
N � 1

k

◆
qR(x)k[1 � qR(x)]N�1�k. (97)

In the limit N ! 1 and R ! 0, the degree distribution for a node located at x is Poissonian and reads

P(k; x, ↵) = 1
k!↵

kp(x)ke�↵p(x) (98)

where ↵ = hki/
R
dxp2(x) fixes the scale of the average degree. For example, this expression gives for a uniform density

p(x) = p0 a degree distribution of the form

P(k) ⇠ (↵p0)k

k!kd (99)

which decays very rapidly with k. In contrast, if the density decays slowly from a point as p(r) ⇠ r�� , we then obtain
P(k) ⇠ k�d/� , showing that large density fluctuations can lead to spatial scale-free networks [189].

The average clustering coefficient can also be calculated analytically. The argument [186] is the following. If two vertices
i and j are connected to a vertex k it means that they are both in the excluded volume of k. Now, these vertices i and j are
connected only if j is in the excluded volume of i. Putting all the pieces together, the probability to have two connected
neighbors (ij) of a node k is given by the fraction of the excluded volume of i which lies within the excluded volume of k.
By averaging over all points i in the excluded volume of k we then obtain the average clustering coefficient. We thus have
to compute the volume overlap ⇢d of two spheres, which for spherical symmetry reasons depends only on the distance
between the two spheres. In terms of this function, the clustering coefficient is given by

hCdi = 1
Ve

Z

Ve
⇢d(r)dV . (100)

For d = 1, we have

⇢1(r) = (2R � r)/2R = 1 � r/2R (101)

and we obtain

hC1i = 3/4. (102)

For d = 2, we have to determine the area overlapping in Fig. 40, which gives

⇢2(r) = (✓(r) � sin(✓(r)))/⇡ (103)

with ✓(r) = 2 arccos(r/2R) and leads to

hC2i = 1 � 3
p
3/4⇡ ⇡ 0.58650. (104)

Similarly an expression can be derived in d dimensions [186] which for large d reduces to

hCdi ⇠ 3

r
2

⇡d

✓
3
4

◆ d+1
2

. (105)

Independent of N contrary to random networks

Radiation Law of Spatial Interactions

The Radiation Lawa is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from i to j depends
on P out

i , P in
j , and the sum of all P in

k for�ik < �ik , i.e., other op-
portunities accessible at a shorter distance. More formally:

Rij = kouti
kouti kini

(kouti + sij)(kouti + kini + sij)

With sij =
P

u2V,�iu<�ij

kinu the sum of opportunities at a shorter

distance than the target.

aSimini et al. ����.

Radiation Law of Spatial Interactions

Illustration of the zone sij in which opportunities decrease the
probability of interactions between i and j .

i
j

Sij

Radiation Law VS Gravity Law

The advantage of the radiation law compared with the gravity law
is that two nodes located at the same distance and of similar de-
grees can have di�erent edge probabilities depending on their
surroundings. Intuitively, the expected relation between two small
scale cities at distance l is di�erent if both cities are far from any
other large town, or if a Metropolies lies between them.
On the contrary, the weakness of the Radiation Law comes from
its simplicity: without deterrence function, it is impossible to take
into account non-linear and non-monotonic in�uence of the dis-
tance.

Space-Corrected Community Detection

Community detection applied to spatial networks tends to yield
communities corresponding to a spatial partition of space, even if
there is actually no boundary between those regions. Amethod as
been proposeda to remove the in�uence of space, and thus dis-
cover communities corresponding to non-spatial(social, etc.) ef-
fects, usually hidden behind the in�uence of spatial constraints.
The principle is to use a Modularity-maximization algorithm, in
which the null-model used byModularity (usually, a Con�guration
Model) is replaced by a spatial model (usually, a Gravity Model)

Map of Belgium. Black Line: communities without spatial
correction(geographic partitions). Colors: Space-corrected

partition(linguistic partition).

aExpert et al. ����.

Going further

Spatial Networks: Barthélemy ����
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Soft RGG

Random Geometric Graphs (RGG)

Random Geometric graphs(RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes are distance less than a parameter
r

Propertiesa are: Degree distribution: Poissionan, as ER random

graphs. Clustering coe�cient(in large graphs): C = 3
q

2
⇡d (

3
4

d+1
2 .

It does not depends on the number of nodes, unlike random
graphs, thus is not vanishing with network size for �xed average
degree.

aDall and Christensen ����.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG canmodel an ER randomgraph if f is constant func-
tion, f(�) = p. It can model a classic RGG if f is a threshold func-
tion with:

f(d) =

(
1 �  r

0 � > r

aWaxman ����.

Deterrence function

A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

�. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(�) =
e�↵) or Negative power(f(�) = ��↵), with↵ a parameter.
A typical example of negative power in geographical data
is when the probability of observing an edge decreases as
the square of the distance, i.e., f(�) = 1

�2

�. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the ↵ parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function

When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, ���km, etc., or using
bins of exponentially growing size, e.g., [�,�],[�,�],[�,�],[�,��],[��,��].
More formally, the deterrence function is de�ned as:

f(d) =

P
i,j|�ij=d Aij

P
i,j|�ij=d Mij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, 8i,j ,Mij = d.

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the functions start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the re-
lation between two places (countries, cities, etc.) is proportional to
they power of attraction and to the inverse of their distance. More
formally, the expected strength of interaction Gij between loca-
tions i and j is:

Gij = K
P out
i P in

j

�2
ij

Common examples would be a model of a job market between
cities, with P in

i the number of jobs in city i and P out
i the number

of job seeker in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P out
i P in

j f(�ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

P
i,j|dij=d Aij

P
i,j|dij=d

kikj

2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen ����.
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Deterrence function

Random Geometric Graphs (RGG)

Random Geometric graphs (RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes at distance less than a parameter
r

Propertiesa are:
Degree distribution: Poissionan, as ER random graphs.

Clustering coe�cient (in large graphs): C = 3
q

2
⇡d (

3
4 )

d+1
2 . It

does not depends on the number of nodes, unlike randomgraphs,
thus is not vanishing with network size for �xed average degree.

aDall and Christensen ����.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG can model an ER random graph if f is a constant
function, f(�) = p. It can model a classic RGG if f is a threshold
function with:

f(d) =

(
1 �  r

0 � > r

aWaxman ����.

Deterrence function

A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

�. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(�) =
e�↵�) or Negative power (f(�) = ��↵), with ↵ a param-
eter. A typical example of negative power in geographi-
cal data is when the probability of observing an edge de-
creases as the square of the distance, i.e., f(�) = 1

�2

�. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the ↵ parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function

When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, ���km, etc., or using
bins of exponentially growing size, e.g., [�,�],[�,�],[�,�],[�,��],[��,��].
More formally, the deterrence function is de�ned as:

f(�) =

P
i,j|�ij=� Aij

P
i,j|�ij=� Mij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, 8i,j ,Mij = d (with d the network den-
sity).

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the function start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the
relation between two places (countries, cities, etc.) is proportional
to they power of attraction P and to the inverse of their distance.
More formally, the expected strength of interaction Gij between
locations i and j is:

Gij = K
P out
i P in

j

�2
ij

Common examples would be a model of a job market between
cities, with P in

i the number of jobs o�ered in city i and P out
i the

number of job seekers in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P out
i P in

j f(�ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

P
i,j|dij=d Aij

P
i,j|dij=d

kikj

2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen ����.

13



The gravity
law

14



Formal description
Origin-destination matrix

• Describe flow of individuals between locations
• Used since decades by geographers
• Definition:

• divide the area of interest into zones (cells) labelled by    i=1…N 
• count the number of individuals going from location i to location j

• directed
• weighted
• Beware:

• strongly depends on the zone 
definition

T(i,j)=

15



The gravity law
Number of trips from location i to location j is scaling as

• where                         is the distance between i and j 
•                  is the population size at location I(j) 
•  a parameter chosen or learned from dataσ
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Fig. 33. Distribution of total length of daily trips. The exponential fits gives a slope L0 ' 25 km.
Source: From [157].
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Fig. 34. Ride distance distribution. (a) Plot of the histogram of distances for observed rides. This distribution can be fitted by a negative binomial law
with parameters r = 2.61 and p = 0.0273, corresponding to a mean µ = 9.28 km and standard deviation � = 5.83 km. This distribution is not a broad
law (such as a Levy flight for example), in contrast with previous findings using indirect measures of movements [152,154]. (b) Ride distance propensity.
Propensity of achieving a ride at a given distance with respect to a null-model of randomized rides.
Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).

3.3.3. The gravity law
The origin–destination matrix contains a large amount of information and allows one to test some ideas about the

structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
that the number of trips from location i to location j follows the ‘Gravity’ law

Tij = K
PiPj
d�
ij

(64)

where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as
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Inter-city phone communication (Krings et.al.)
• mobile call communication intensity between Belgian 

cities

Urban Gravity: a Model for Intercity Telecommunication Flows 4

Brussels

AntwerpBruges

Liège

Charleroi

Namur

Ghent

(a) (b)

Figure 2. (a) Illustration of the macroscopic communication network (only the top
30% of the links (having the strongest intensity) are represented). Colors indicate the
intensity of communication between the cities: bright colors indicate a strong intensity.
(b) Intensity distribution of the macroscopic network, self edges are not considered.
The red curve shows the lognormal best fit, with parameters µ = 3.93 and � = 1.03

lognormal intensity distribution is sharply di↵erent from what is typically observed in

social networks but is consistent with observations in other macroscopic networks, such

as the intensity of trade between countries, obtained by aggregating the individual trades

made by agents [21].

Many studies have been made on human-to-human communications but few

analyses are available on how these communications, once aggregated at the city level,

are reliant on the properties of that city. In the following, we model the communication

intensity between cities as a function of the population sizes and of the distance between

them.

First, we analyze how communication flowing into and out of cities, scale with population

size. For doing this, for each of the 571 cities we compare the total incoming (L⇤A) and

outgoing (LA⇤) communication intensities, as defined below, to the population sizes of

these cities.

L⇤A =
X

i /2A,j2A

lij, LA⇤ =
X

i2A,j /2A

lij.

As shown on Figure 3 (a), both incoming and outgoing inter-city communication

intensities scale linearly with city size (LA⇤, L⇤A = kP �
A, � = 0.96, confidence interval:

[0.93 0.99], R2 = 0.87). Also, incoming and outgoing communications are strongly

symmetric (LA⇤ ⇡ L⇤A, 8A), that is, calls in one direction always find a match in the

opposite direction.

Another parameter that influences communication intensity between cities is distance.

Urban Gravity: a Model for Intercity Telecommunication Flows 6

Figure 4. Communication intensity between pairs of cities versus the ratio PAPB

d2
AB

.
The black line shows the gravitational law.

the intensity of communication between any pair of Belgian cities, based on population,

distance and duration of the considered period. Let us finally observe that this gravity

model is consistent with the results presented in [14] that described the probability of

connection between customers based on their distance. One can check that the intensity

of communication between two customers that make a link does not vary much with the

distance between them (see Figure 5), so, the distance decay observed in Figure 3 (b),

does not result from a weaker intensity of communication between customers, but from

a smaller fraction of customers communicating with each other.

The gravity model for inter-city communication intensity is analogous to other models

Figure 5. Average intensity of communication between pairs of nodes, if they make
a link, versus the distance separating them.

of economic and transportation networks, but has to be considered cautiously as it

might be biased by the nature of the data. First of all, Belgium is a small country with

a specific demography and two main language communities. Secondly, we note that our

study relies on the definition of census areas, as defined by the Belgian National Institute
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The gravity law - empirical summary

36 M. Barthélemy / Physics Reports 499 (2011) 1–101

Table 1
List of various empirical studies on the gravity law (we essentially focused on recent and illustrative results).

Network [Ref.] N Gravity law form Results

Railway express [164] 13 PiPj/d�
ij � = 1.0

Korean highways [161] 238 PiPj/d�
ij � = 2.0

Global cargo ship [104] 951 OiIjd��
ij exp(�dij/) � = 0.59

Commuters (worldwide) [162] n/a P↵
i P

�
j exp(�dij/) (↵, � ) = (0.46, 0.64) for d < 300 km

(↵, � ) = (0.35, 0.37) for d > 300 km
US commuters by county [163] 3109 P↵

i P
�
j /d�

ij (↵, � , � ) = (0.30, 0.64, 3.05) for d < 119 km
(↵, � , � ) = (0.24, 0.14, 0.29) for d > 119 km

Telecommunication flow [134] 571 PiPjd��
ij � = 2.0

studies. Indeed, in [162], the granularity is defined by a Voronoi decomposition, while in [163], counties are used which
are administrative boundaries and not necessarily spatially consistent with mobility processes (a problem known as the
modifiable areal unit problem in geography). In addition, the different exponents could depend on the transportation mode
used, of the scale, or other effects linked to the heterogeneity of users and trips.

In this short discussion, we thought that it could be useful to recall the classical optimization problem and one of themost
important derivations of the gravity law which uses entropy maximization, and also to give a simple statistical argument
which could shed light on the most important mechanisms in this problem.
Optimization

We first recall the classical approach which is at the basis of many studies (see for example [158]). We are interested in
this problem in determining the OD matrix Tij given the constraints

X

j

Tij = Ti (71)

X

i

Tij = Tj. (72)

These represent 2N constraints for N2 unknowns and as long as N > 2 many different choices for Tij are possible. If we
assume that the transport from i to j has a cost Cij, we can then choose Tij such that the total cost

C =
X

ij

TijCij (73)

is minimum. This is the classical transportation problem and can be traced back to the 18th century and Monge [158].
Another approach consists in requiring that Tij = T 0

ij risj, where T 0 is a given set of interzonal weights and where sj and ri are
given constants. For an extensive discussion on this latter approach, see [158].
Entropy maximization

Interestingly enough, the gravity model can be shown to result essentially from the maximization of entropy [165].
Wilson, a physicist who became interested in transportation research, very early proposed that the trips Tij are such that the
quantity

⌦ = T !
⇧ijTij!

(74)

is maximal, which corresponds to trip arrangements with the largest number of equivalent configurations (ormicrostates in
the statistical physics language). In this expression, T = P

ij Tij is the total number of trips and the maximization is subject
to the natural constraints on the origin–destination matrix

X

j

Tij = Ti (75)

X

i

Tij = Tj (76)

and to a cost constraint
X

ij

TijCij = C (77)

where Cij is the cost to travel from i to j and where C is the total quantity of resources available. This maximization is easy
to perform with the help of Lagrange multipliers, and one obtains

Tij = AiBjTiTje��Cij (78)

Both exponential and power-law dependence is observable

17



The gravity law

Number of trips from location i to location j is scaling as

• where                         is the distance between i and j 
•                  is the population size at location i(j)

• In a general form:
• where                         is the deterrence function describing the effect of space
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Fig. 34. Ride distance distribution. (a) Plot of the histogram of distances for observed rides. This distribution can be fitted by a negative binomial law
with parameters r = 2.61 and p = 0.0273, corresponding to a mean µ = 9.28 km and standard deviation � = 5.83 km. This distribution is not a broad
law (such as a Levy flight for example), in contrast with previous findings using indirect measures of movements [152,154]. (b) Ride distance propensity.
Propensity of achieving a ride at a given distance with respect to a null-model of randomized rides.
Source: From [95].

individual trajectories were analyzed, displaying evidence for a polycentric organization of activity in this urban area. These
authors also found that in agreement with many other transportation networks, the traffic is broadly distributed (according
to a power law with exponent ⇡1.3) but also that the displacement length distribution is peaked (see Fig. 34).

3.3.3. The gravity law
The origin–destination matrix contains a large amount of information and allows one to test some ideas about the

structure of human movements. In particular, it was suggested (see for example the book [158]) more than 50 years ago
that the number of trips from location i to location j follows the ‘Gravity’ law

Tij = K
PiPj
d�
ij

(64)

where dij = dE(i, j) is the Euclidean distance between these two locations, Pi(j) is the population at location i (j) and where
� is an exponent whose value actually depends on the system. This idea was generalized to many other situations, such as
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Fig. 35. Traffic flow between i and j as a function of the variable PiPj/d2ij . The line has a slope equal to 1.02.
Source: From [161].

the important case in economics of international trade [159,160]. In this case, the volume of trade between two countries is
given in terms of their economical activity and their distance.

More generally the gravity law (see the theoretical discussion in the Section 3.3.3.5) is written in the form

Tij ⇠ PiPjf (d(i, j)) (65)

where the deterrence function f describes the effect of space.
In the next sections, wewill focus on themost recent measures concerning highways [161], commuters [162], cargo ship

movements [104], and phone communications [134]. We then end this chapter with a theoretical discussion on the gravity
law.

3.3.3.1. Worldwide commuters. Balcan et al. [162] recently studied flows of commuters on the global scale. They studied
more than 104 commuting flows worldwide between subpopulations defined by a Voronoi decomposition and found that
the best fit is obtained by a gravity law of the form

Tij = CP↵
i P

�
j e

�dij/ (66)

where C is a proportionality constant, andwhere the exponents are: for d  300 km, (↵, � ) ' (0.46, 0.64),  = 82 km, and
for d > 300 km: (↵, � ) ' (0.35, 0.37), and  not available. We note an asymmetry in the exponent at small scales which
probably reflects the difference between homes and offices, and which does not hold at large scale where homogenization
seems to prevail.

At this granularity level, there is then a dependence of the traffic on populations and distances with specific exponents
andwith exponentially decreasing deterrence function. At a smaller scale, different results for US commuters were obtained
in [163], and as suggested in [162] the observed differencesmight have originated in the different granularities used in these
studies (a problem known as the ‘modifiable areal unit problem’ in geography). Indeed, in [162], the granularity is defined
by a Voronoi decomposition, while in [163], counties are used which are administrative boundaries, not necessarily well
consistent spatially with gravity centers of mobility processes.

3.3.3.2. Korean highways. In [161], Jung et al. studied the traffic on the Korean highway system for the year 2005. The system
consists of 24 routes and 238 exits, and the total length of the system is about 3000 km. The highway network is described by
a symmetrizedweightmatrix Tij, which represents the traffic flow between i and j. The in- and out-traffic are well correlated
with population, as already seen in the worldwide airline network [143], where the population Pi of city i scales with the
strength si as

Pi ⇠ s↵i (67)

with ↵ ⇡ 0.5, while it is close to one in [98,161]. For 30 cities with population larger than 200,000, Jung et al. study the
traffic flow Tij as a function of the population of the two cities Pi and Pj, with the distance dij between i and j, and used the
original formulation of the gravity law

wij ⇠ PiPj
d�
ij

(68)

with � = 2 (see Fig. 35).
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Fig. 35. Traffic flow between i and j as a function of the variable PiPj/d2ij . The line has a slope equal to 1.02.
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in [163], and as suggested in [162] the observed differencesmight have originated in the different granularities used in these
studies (a problem known as the ‘modifiable areal unit problem’ in geography). Indeed, in [162], the granularity is defined
by a Voronoi decomposition, while in [163], counties are used which are administrative boundaries, not necessarily well
consistent spatially with gravity centers of mobility processes.

3.3.3.2. Korean highways. In [161], Jung et al. studied the traffic on the Korean highway system for the year 2005. The system
consists of 24 routes and 238 exits, and the total length of the system is about 3000 km. The highway network is described by
a symmetrizedweightmatrix Tij, which represents the traffic flow between i and j. The in- and out-traffic are well correlated
with population, as already seen in the worldwide airline network [143], where the population Pi of city i scales with the
strength si as

Pi ⇠ s↵i (67)

with ↵ ⇡ 0.5, while it is close to one in [98,161]. For 30 cities with population larger than 200,000, Jung et al. study the
traffic flow Tij as a function of the population of the two cities Pi and Pj, with the distance dij between i and j, and used the
original formulation of the gravity law

wij ⇠ PiPj
d�
ij

(68)

with � = 2 (see Fig. 35).
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Ad-hoc deterrence function

Agnostic deterrence function
• The influence of distance might be more complex than a power-law or an exponential. In particular, it is 

often non-monotonic (first increasing, then decreasing. Think of airplanes, bicyles, public transports… 
unlikely to use for short distances)

• A deterrence function can be learned from data
• Computed by comparing the number of trips observed at a given distance with the number of trip  

expected if distance has no effect (a configuration model)

Distance d

f(d)
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Ad-hoc deterrence function

Random Geometric Graphs (RGG)

Random Geometric graphs(RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes are distance less than a parameter
r

Propertiesa are: Degree distribution: Poissionan, as ER random

graphs. Clustering coe�cient(in large graphs): C = 3
q

2
⇡d (

3
4

d+1
2 .

It does not depends on the number of nodes, unlike random
graphs, thus is not vanishing with network size for �xed average
degree.

aDall and Christensen ����.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG canmodel an ER randomgraph if f is constant func-
tion, f(�) = p. It can model a classic RGG if f is a threshold func-
tion with:

f(d) =

(
1 �  r

0 � > r

aWaxman ����.

Deterrence function

A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

�. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(�) =
e�↵) or Negative power(f(�) = ��↵), with↵ a parameter.
A typical example of negative power in geographical data
is when the probability of observing an edge decreases as
the square of the distance, i.e., f(�) = 1

�2

�. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the ↵ parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function

When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, ���km, etc., or using
bins of exponentially growing size, e.g., [�,�],[�,�],[�,�],[�,��],[��,��].
More formally, the deterrence function is de�ned as:

f(d) =

P
i,j|�ij=d Aij

P
i,j|�ij=d Mij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, 8i,j ,Mij = d.

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the functions start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the re-
lation between two places (countries, cities, etc.) is proportional to
they power of attraction and to the inverse of their distance. More
formally, the expected strength of interaction Gij between loca-
tions i and j is:

Gij = K
P out
i P in

j

�2
ij

Common examples would be a model of a job market between
cities, with P in

i the number of jobs in city i and P out
i the number

of job seeker in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P out
i P in

j f(�ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

P
i,j|dij=d Aij

P
i,j|dij=d

kikj

2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen ����.

0 100 200 300 …

Observed edges
Expected edges
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The gravity law - as a network null model

Usage as a network null model
•Consider a spatial network (e.g., phone calls, trips, etc.)

•Fit a gravity model best explaining the observed network. If the 
population is unknown or not relevant, the degrees of nodes (in/out 
degrees in directed networks) can be used as a “population”

•=>Random model with a given edge probability for each pair of node

•The obtained network is a null model to which the observed network 
can be compared
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The gravity law - as a network null model

Example of application: Space-independent communities
• In the usual modularity, the fraction of internal edges is compared between the observed network and a 

configuration model.
• One can replace the configuration model by a gravity model

Expert, P., Evans, T. S., Blondel, V. D., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of 
Sciences, 108(19), 7663-7668.

PSpa
ij ¼ NiNjf ðdijÞ [5]

where Ni is, as in Eq. 1, a notion of importance of node i and
where the deterrence function

f ðdÞ ¼
∑

i;jjdij¼d

Aij

∑

i;jjdij¼d

NiNj
; [6]

is the weighted average of the probability Aij∕ðNiNjÞ for a link to
exist at distance d. It is thus directly measured from the data† and
not fitted by a determined functional dependence, as is often the
case (15). By construction, the total weight of the network is
conserved as required. Depending on the system under scrutiny,
Ni may be the number of inhabitants in a city or the degree of a
node when it corresponds to a single person in a social network.
It is worth mentioning that in the latter case and if the embedding
in space does not play a role—i.e., where f ðdÞ is flat—the stan-
dard NG model is exactly recovered (SI Text).

From now on, let us denote by QSpa the version of modularity
(3) whose null model PSpa

ij is given by Eq. 5. QSpa incorporates
nonstructural information about the nodes (i.e., their position
in physical space). By definition, QSpa favors communities made
of nodes i and j such that Aij − PSpa

ij is large—i.e., pairs of nodes
which are more connected than expected for that distance. Com-
pared to QNG, QSpa tends to give larger contributions to distant
nodes and its optimization is expected to uncover modules driven
by nonspatial factors.

Numerical Validation
Belgian Mobile Phone Data. To compare the partitions obtained by
optimizing QNG and QSpa, let us first focus on a Belgian mobile
phone network made of 571 communes (the 19 communes form-
ing Brussels are merged into one) and of the symmetrized num-
ber of calls fAijg571i;j¼1 between them during a time period of 6 mo
(see ref. 38 for a more detailed description of the data). This net-
work is aggregated from the anonymized customer–customer
communication network of a large mobile phone provider by
using the billing commune associated to each customer. The
number of customers in each commune i is given by Ni. This net-
work provides an ideal test for our method because of the impor-
tance of nonspatial factors driving mobile phone communication,
namely, the existence of two linguistic communities in Belgium:‡ a
Flemish community and a French community mainly concen-
trated in the north and the south of the country, respectively.
As reported in ref. 38, when the weights between communes
are given by the average duration of communication between
people, a standard NG modularity optimization recovers a bipar-
tition that closely follows the linguistic border.

Both versions of modularity are optimized using the spectral
method described in ref. 62. Visualization of the results are shown
in Fig. 1. The NG modularity uncovers 18 spatially compact
modules, similar to those observed in other spatially extended
networks and mainly determined by short-range interactions
between communes. Although boundaries of this partition coin-
cide with the linguistic separation of the country (38), the una-
ware would not discover the existence of two linguistic
communities only from Fig. 1. The spatial modularity uncovers

a strikingly different type of structure: an almost perfect biparti-
tion of the country where the two largest communities account for
about 75% of all communes (see SI Text for more details) and
nicely reproduce the linguistic separation of the country. More-
over, Brussels is assigned to the French community, in agreement
with the fact that approximately 80% of its population is French
speaking and despite the fact that it is spatially located in
Flanders. The remaining smaller communities (not bigger than
10 communes each) originate from the constraints imposed by
a hard partitioning, which is blind to overlapping communities
and might thus misclassify Flemish communes strongly interact-
ing with Brussels and communes that have mixed language popu-
lations. A similar bipartition is found by considering only the signs
of the dominant eigenvector of the modularity matrix (see
SI Text).

Statistical Tests. The values for the optimal modularities can be
found in Table 1. It is important to stress that a direct comparison
of QNG and QSpa is meaningless because modularity is a way to
compare different partitions of the same graph and so its absolute
value is inconsequential. Moreover, the value of modularity is
expected to be lower when its null model is closer to the real

Fig. 1. Decomposition of a Belgianmobile phone network into communities
(see main text). Each node represents a commune and its size is proportional
to its number of clients Ni . (Upper) Partition into 18 communities found by
optimizing NG modularity. (Lower) Partition into 31 communities found
by optimizing Spa modularity.

†In practice, when analyzing empirical data, the distance between two cities is binned
such as to smoothen f ðdÞ. The dependence of our results on bin size is explored
in SI Text.

‡There also exists a German-speaking community made of 0.73% of the national
population

Expert et al. PNAS ∣ May 10, 2011 ∣ vol. 108 ∣ no. 19 ∣ 7665
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PSpa
ij ¼ NiNjf ðdijÞ [5]

where Ni is, as in Eq. 1, a notion of importance of node i and
where the deterrence function

f ðdÞ ¼
∑

i;jjdij¼d

Aij

∑

i;jjdij¼d

NiNj
; [6]

is the weighted average of the probability Aij∕ðNiNjÞ for a link to
exist at distance d. It is thus directly measured from the data† and
not fitted by a determined functional dependence, as is often the
case (15). By construction, the total weight of the network is
conserved as required. Depending on the system under scrutiny,
Ni may be the number of inhabitants in a city or the degree of a
node when it corresponds to a single person in a social network.
It is worth mentioning that in the latter case and if the embedding
in space does not play a role—i.e., where f ðdÞ is flat—the stan-
dard NG model is exactly recovered (SI Text).

From now on, let us denote by QSpa the version of modularity
(3) whose null model PSpa

ij is given by Eq. 5. QSpa incorporates
nonstructural information about the nodes (i.e., their position
in physical space). By definition, QSpa favors communities made
of nodes i and j such that Aij − PSpa

ij is large—i.e., pairs of nodes
which are more connected than expected for that distance. Com-
pared to QNG, QSpa tends to give larger contributions to distant
nodes and its optimization is expected to uncover modules driven
by nonspatial factors.

Numerical Validation
Belgian Mobile Phone Data. To compare the partitions obtained by
optimizing QNG and QSpa, let us first focus on a Belgian mobile
phone network made of 571 communes (the 19 communes form-
ing Brussels are merged into one) and of the symmetrized num-
ber of calls fAijg571i;j¼1 between them during a time period of 6 mo
(see ref. 38 for a more detailed description of the data). This net-
work is aggregated from the anonymized customer–customer
communication network of a large mobile phone provider by
using the billing commune associated to each customer. The
number of customers in each commune i is given by Ni. This net-
work provides an ideal test for our method because of the impor-
tance of nonspatial factors driving mobile phone communication,
namely, the existence of two linguistic communities in Belgium:‡ a
Flemish community and a French community mainly concen-
trated in the north and the south of the country, respectively.
As reported in ref. 38, when the weights between communes
are given by the average duration of communication between
people, a standard NG modularity optimization recovers a bipar-
tition that closely follows the linguistic border.

Both versions of modularity are optimized using the spectral
method described in ref. 62. Visualization of the results are shown
in Fig. 1. The NG modularity uncovers 18 spatially compact
modules, similar to those observed in other spatially extended
networks and mainly determined by short-range interactions
between communes. Although boundaries of this partition coin-
cide with the linguistic separation of the country (38), the una-
ware would not discover the existence of two linguistic
communities only from Fig. 1. The spatial modularity uncovers

a strikingly different type of structure: an almost perfect biparti-
tion of the country where the two largest communities account for
about 75% of all communes (see SI Text for more details) and
nicely reproduce the linguistic separation of the country. More-
over, Brussels is assigned to the French community, in agreement
with the fact that approximately 80% of its population is French
speaking and despite the fact that it is spatially located in
Flanders. The remaining smaller communities (not bigger than
10 communes each) originate from the constraints imposed by
a hard partitioning, which is blind to overlapping communities
and might thus misclassify Flemish communes strongly interact-
ing with Brussels and communes that have mixed language popu-
lations. A similar bipartition is found by considering only the signs
of the dominant eigenvector of the modularity matrix (see
SI Text).

Statistical Tests. The values for the optimal modularities can be
found in Table 1. It is important to stress that a direct comparison
of QNG and QSpa is meaningless because modularity is a way to
compare different partitions of the same graph and so its absolute
value is inconsequential. Moreover, the value of modularity is
expected to be lower when its null model is closer to the real

Fig. 1. Decomposition of a Belgianmobile phone network into communities
(see main text). Each node represents a commune and its size is proportional
to its number of clients Ni . (Upper) Partition into 18 communities found by
optimizing NG modularity. (Lower) Partition into 31 communities found
by optimizing Spa modularity.

†In practice, when analyzing empirical data, the distance between two cities is binned
such as to smoothen f ðdÞ. The dependence of our results on bin size is explored
in SI Text.

‡There also exists a German-speaking community made of 0.73% of the national
population

Expert et al. PNAS ∣ May 10, 2011 ∣ vol. 108 ∣ no. 19 ∣ 7665
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Space-dependent communities
Space-independent communities
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Deterrence function and gravity model

f(d) =
∑i,j|dij=d Aij

∑i,j|dij=d

kikj

2L

Random Geometric Graphs (RGG)

Random Geometric graphs(RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes are distance less than a parameter
r

Propertiesa are: Degree distribution: Poissionan, as ER random

graphs. Clustering coe�cient(in large graphs): C = 3
q

2
⇡d (

3
4

d+1
2 .

It does not depends on the number of nodes, unlike random
graphs, thus is not vanishing with network size for �xed average
degree.

aDall and Christensen ����.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG canmodel an ER randomgraph if f is constant func-
tion, f(�) = p. It can model a classic RGG if f is a threshold func-
tion with:

f(d) =

(
1 �  r

0 � > r

aWaxman ����.

Deterrence function

A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

�. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(�) =
e�↵) or Negative power(f(�) = ��↵), with↵ a parameter.
A typical example of negative power in geographical data
is when the probability of observing an edge decreases as
the square of the distance, i.e., f(�) = 1

�2

�. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the ↵ parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function

When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, ���km, etc., or using
bins of exponentially growing size, e.g., [�,�],[�,�],[�,�],[�,��],[��,��].
More formally, the deterrence function is de�ned as:

f(d) =

P
i,j|�ij=d Aij

P
i,j|�ij=d Mij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, 8i,j ,Mij = d.

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the functions start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the re-
lation between two places (countries, cities, etc.) is proportional to
they power of attraction and to the inverse of their distance. More
formally, the expected strength of interaction Gij between loca-
tions i and j is:

Gij = K
P out
i P in

j

�2
ij

Common examples would be a model of a job market between
cities, with P in

i the number of jobs in city i and P out
i the number

of job seeker in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P out
i P in

j f(�ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

P
i,j|dij=d Aij

P
i,j|dij=d

kikj

2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen ����.
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Expected edges
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The gravity law - example

Nodes: Vélo’v station (2D position)
Edges: number of trips over a period

(a) Spatial Eccentricity (b) Degree bias

Fig. 1: Illustration of computed spatial eccentricity and degree bias for Lyon’s
BSS dataset and typical gravity null model.

follows [7]:

f(d) =

P
i,j|dij=d

AijP
i,j|dij=d

ninj

(2)

with Aij the observed flow (number of trips, communications, etc.) between
nodes i and j.

We can note that in the particular case where the distance has no e↵ect, the
deterrence function is a constant function, and the gravity-based model becomes
exactly the configuration model

2.1 Limits of the gravity-based model

There is a bias when computing directly the gravity-based null-model on a col-
lected spatial network, as it has been done in [6,7] on BSS or any other dataset:
the observed strength of nodes (number of incoming/outgoing trips) is chosen
as a proxy for the intrinsic strength. Because the observed strength of a node
in a network generated according to the gravity null-model depends both on its
intrinsic strength and on its distance to other nodes, this result systematically
underestimates the intrinsic strength of nodes with few nodes around (those lo-
cated at the periphery) and overestimate the strength of those located in the
centre. This bias can be checked on any dataset, as we illustrate in Fig.1, by
computing the spatial eccentricity of nodes, defined as the average distance to
all other stations, and the degree bias db for in/out degrees, defined as :

db(i) =
degGM (i)

degD(i)
(3)

with degGM the degree according to the gravity model and degD the degree
observed in original data.
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The gravity law - example

Distance d (meters)

f(d)
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The gravity law - example

(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Radiation

Fig. 3. Communities found on the Lyon BSS dataset, using di↵erent null models.

Fig. 4. Details of the two communities discovered using DCgravity null-model that
correspond to enjoyable/convenient trips in the city, that were hidden by the influence
of space proximity.

We could also investigate other usages besides community detection: null
models are used as references for properties such as clustering coe�cient, motif
frequencies, or, more straightforwardly, to discover the most significant edges
and nodes in a network.

Space-dependent communities
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The gravity law - example
(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Details DCgravity

Fig. 2: Communities found on the Lyon BSS dataset, using di↵erent null models.

and 343 nodes (stations). We use the great circle distance between stations to
learn the deterrence function, although the di↵erence with euclidean distance is
negligeable for such short distances.

In Fig. 2, we can observe the communities discovered using the Louvain
algorithms and di↵erent null-models. Using the usual configuration model, com-
munities correspond to geographical areas of the city, matching more or less
arrondissements (city districts) of Lyon. Results obtained using Gravity and
Degree Constrained Gravity are comparable, but the DC ones are even less
spacially constrained. The most remarkable ones, highlighted in Fig. 2(d), cor-
respond to convenient and enjoyable routes along banks of the rivers and parcs.
These clusters were only partially discovered using the usual gravity null-model,
and arguably correspond to typical usage patterns of Lyon’s BSS.

4 Conclusion

In this article, we have shown the interested of using a degree-corrected null-
model, by focusing on community detection. Such a null-model has many other
potential applications: it can be used by bike sharing planners as a model of trip
prediction, and as such, can help to predict the activity impact on the global
activity of adding or removing stations. It could also be used to estimate the
interest of users toward a station, independently of its relative position to others,
or to estimate more accurately the influence of distance.

Some (social) space-independent communities that were previously hidden by spatial constraints
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The radiation
law
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The radiation law
Limitations of the gravity law

1.  Requires previous data to fit

2.  The number of travelers between destinations 
depends only on their populations and distances. 
In reality, this value depends probably of other 
opportunities
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The radiation law

Intuition: Model how people move for jobs
1.Individuals look for job in all cities 

2.Each city has a number of job opportunities

• Each job has a value of interest, considered random

3. What is the probability for a job-seeker to choose a job in city c 
located at distance d?

• Depends only on how many jobs offered in cities at a 
distance equal or lower than d (probability to find a better job 
closer)

The model is parameter-free!
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The radiation law
The model can be formulated in terms of radiation and absorption

• take locations i and j with populations (in-degree) mi and nj and at distance rij 

• denote sij the total population in the circle with radius rij centered at i 
(excluding the source and destination population)

•  is the number of commuters (out-degree)Ti

Radiation Law of Spatial Interactions

The Radiation Lawa is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from i to j depends
on P out

i , P in
j , and the sum of all P in

k for�ik < �ik , i.e., other op-
portunities accessible at a shorter distance. More formally:

Rij = kouti
kouti kini

(kouti + sij)(kouti + kini + sij)

With sij =
P

u2V,�iu<�ij

kinu the sum of opportunities at a shorter

distance than the target.

aSimini et al. ����.

Radiation Law of Spatial Interactions

Illustration of the zone sij in which opportunities decrease the
probability of interactions between i and j .

i
j

Sij

Radiation Law VS Gravity Law

The advantage of the radiation law compared with the gravity law
is that two nodes located at the same distance and of similar de-
grees can have di�erent edge probabilities depending on their
surroundings. Intuitively, the expected relation between two small
scale cities at distance l is di�erent if both cities are far from any
other large town, or if a Metropolies lies between them.
On the contrary, the weakness of the Radiation Law comes from
its simplicity: without deterrence function, it is impossible to take
into account non-linear and non-monotonic in�uence of the dis-
tance.

Space-Corrected Community Detection

Community detection applied to spatial networks tends to yield
communities corresponding to a spatial partition of space, even if
there is actually no boundary between those regions. Amethod as
been proposeda to remove the in�uence of space, and thus dis-
cover communities corresponding to non-spatial(social, etc.) ef-
fects, usually hidden behind the in�uence of spatial constraints.
The principle is to use a Modularity-maximization algorithm, in
which the null-model used byModularity (usually, a Con�guration
Model) is replaced by a spatial model (usually, a Gravity Model)

Map of Belgium. Black Line: communities without spatial
correction(geographic partitions). Colors: Space-corrected

partition(linguistic partition).

aExpert et al. ����.

Going further

Spatial Networks: Barthélemy ����
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The radiation law
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Comparison with census data and the 
gravity law predictions
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Simini. et.al, Nature 2010
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Radiation Law VS Gravity Law

+ Radiation:
• No parameters

• Two nodes of same degrees at similar distance can have 
different edge probability based on their location

+ Gravity:
• Customizable deterrence function… The real world is complex !
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MULTI-PARTITE GRAPHS

• Bi-partite: there exists 2 kinds of nodes, and links can only 
connect nodes of different types
‣ Multi-partite: similar but with more than 2 types. (less common)
‣ Not strictly different from normal graphs: if you don’t know the two categories 

of nodes, it looks like any network

• Bi-partite networks are quite commonly use
‣ Actors - Films
‣ Clients - Products
‣ Reserchers - conferences/institutions
‣ …



MULTI-PARTITE GRAPHS

• The problem is that some definitions of normal graphs 
become meaningless
‣ Clustering coefficient
‣ Modularity
‣ …



MULTI-PARTITE GRAPHS

Modularity: do not count pairs of nodes of same types



MULTI-PARTITE GRAPHS
Clustering Coefficient:

2/6 2/4 2/8

Of a pair Of a Node: Average among 
nodes N at distance 2

cc(u,v)



MULTI-PARTITE GRAPHS

• Large literature on the topic, in particular applications to 
recommendation
‣ Users - products => propose the right products to the right user

Kunegis, J., De Luca, E. W., & Albayrak, S. (2010, June). The link prediction problem in bipartite networks. In International Conference on Information Processing and 
Management of Uncertainty in Knowledge-based Systems (pp. 380-389). Springer, Berlin, Heidelberg.

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102.

Zhang, P., Wang, J., Li, X., Li, M., Di, Z., & Fan, Y. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its 
Applications, 387(27), 6869-6875.



MULTI-PARTITE GRAPHS

• A bipartite graph can be projected on one of its node-set

• One set of of nodes remain as nodes

• Those nodes are connected if they share a neighbor in the 
bipartite graphs
‣ Variations: threshold, corrected by a null-model, etc.



SELECTION OF INTERESTING 
NETWORK REPRESENTATIONS
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HYPERGRAPHS
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HYPERGRAPHS

• “Generalization” of graph

• An edge is not limited to 2 extremities
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HYPERGRAPHS
• Most common usage: represent a single event involving several 

nodes

• In social networks: 10 students attending a same course A
‣ Normal network: 45 undirected edges. Giant clique. Very dense

- Problem: if 5 attend another course B and the others another course C => no way to see 
who worked with whom (a single clique, with double links or weights=2)

‣ Hypergraph: A single link with ten endpoints
- And we can add 2 single links with 5 endpoints and still differentiate attendances

• Another example: in Bitcoin, transactions are multi-input, multi-
output. Some transactions have 1000 input, 1000 output
‣ 500 000 links for a single transaction in a normal network!
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HYPERGRAPHS

• In practice, very few direct usages
‣ Too difficult to handle ? Too different from normal networks?

• Hypergraphs can be transformed in bi-partite graphs
‣ Social Network: student nodes and class nodes
‣ Bitcoin: transaction nodes and address nodes
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MULTILAYER NETWORKS
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MULTILAYER NETWORKS

• Multiplex network 

• Multislice network 

• Multitype network

• Heterogenous information network

[Kivela 2014]
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MULTILAYER NETWORKS
• Can be used to represent:

‣ Several types of relations between the same nodes
- Bus transportation network
- Bicycle transportation network
- Car transportation network
- …
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MULTILAYER NETWORKS

• Can be used to represent:
‣ Several snapshots of the same network
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MULTILAYER NETWORKS

Both/Other
49



MULTILAYER NETWORKS

• Relations can be:
‣ Only between same nodes in different layers

- Public transport interconnection 
‣ Between different nodes in different layers

- Information transfert form person A on Facebook to person B on Instagram.
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MULTILAYER NETWORKS

• All usual definitions on static networks can be extended to 
multilayer networks
‣ Degree, clustering coefficient, community detection…

• The problem is that there are many ways to do it, and it 
depends on what your layers represent
‣ Degree of a person on a multilayer network of facebook, Twitter, Linked-in?

• If you used a multilayer network, it is because it was not well 
summarized by a single network…
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MULTILAYER NETWORKS

A simple idea: multilayers networks can be 
transformed into simple networks
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MULTILAYER NETWORKS

• Matrix representation:
‣ Many algorithms on networks work on adjacency matrices

• Solution: Supra-adjacency matrix
‣ Or flattened tensors
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MULTILAYER NETWORKS

Blue, green: intra-layer

gray: inter-layer 1

black: inter-layer2

Cognitive map: relations between 
4 people seen by each of these 4 people
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Interdependent networks

Interdependent networks:
• links between networks assign the dependency between nodes in different 

layers
• The identities of nodes are not necessarily the same in different layers
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Infrastructure networks

continue this process until no further splitting and link removal can
occur (Fig. 2d). We find that this process leads to a percolation phase
transition for the two interdependent networks at a critical threshold,
p 5 pc, which is significantly larger than the equivalent threshold for a
single network. As in classical network theory21–25, we define the giant
mutually connected component to be the mutually connected cluster
spanning the entire network. Below pc there is no giant mutually
connected component, whereas above pc a giant mutually connected
cluster exists.

Our insight based on percolation theory is that when the network
is fragmented, the nodes belonging to the giant component connect-
ing a finite fraction of the network are still functional, whereas the
nodes that are part of the remaining small clusters become non-
functional. Therefore, for interdependent networks only the giant

mutually connected cluster is of interest. The probability that two
neighbouring A-nodes are connected by A « B links to two neigh-
bouring B-nodes scales as 1/N (Supplementary Information). Hence,
at the end of the cascade process of failures, above pc only very small
mutually connected clusters and one giant mutually connected clus-
ter exist, in contrast to traditional percolation, wherein the cluster
size distribution obeys a power law. When the giant component
exists, the interdependent networks preserve their functionality; if
it does not exist, the networks split into small fragments that cannot
function on their own.

We apply our model first to the case of two Erdo0 s–Rényi net-
works21–23 with average degrees ÆkAæ and ÆkBæ. We remove a random
fraction, 1 2 p, of the nodes in network A and follow the iterative
process of forming a1-, b2-, a3-, …, b2k- and a2k11-clusters as

a11

a12

a13

a11

a12

a13

a31

a32

a33

a34

b21

b22

b23

b24

b21

b22

b23

b24

Attack

Stage 1 Stage 2 Stage 3A B

a b c d

Figure 2 | Modelling an iterative process of a cascade of failures. Each
node in network A depends on one and only one node in network B, and vice
versa. Links between the networks are shown as horizontal straight lines, and
A-links and B-links are shown as arcs. a, One node from network A is
removed (‘attack’). b, Stage 1: a dependent node in network B is also
eliminated and network A breaks into three a1-clusters, namely a11, a12 and
a13. c, Stage 2: B-links that link sets of B-nodes connected to separate a1-
clusters are eliminated and network B breaks into four b2-clusters, namely

b21, b22, b23 and b24. d, Stage 3: A-links that link sets of A-nodes connected to
separate b2-clusters are eliminated and network A breaks into four a3-
clusters, namely a31, a32, a33 and a34. These coincide with the clusters b21, b22,
b23 and b24, and no further link elimination and network breaking occurs.
Therefore, each connected b2-cluster/a3-cluster pair is a mutually connected
cluster and the clusters b24 and a34, which are the largest among them,
constitute the giant mutually connected component.

a b c

Figure 1 | Modelling a blackout in Italy. Illustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
200320. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
network and as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)

at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. c, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).
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Example: 2003 Italy blackout
• A power line between Italy and Switzerland was damaged by storm
• Power outage for 12 hours in Italy and spread to Switzerland for 3 hours
• 56 millions of people without electricity
• 110 trains cancelled, All flights were cancelled
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Infrastructure networks
1 Network of Interdependent Networks 29

Fig. 1.11 Left: Power grid and Internet dependence in Italy. Analysis of this system can explain the
cascade failure that led to the 2003 blackout. Right: Inter-dependence of fundamental infrastructures.
A further example is a recent event in Cyprus (July 2011), where an explosion caused a failure of
the electrical power lines, which in turn caused the countries water supply to shut down, due to the
strong coupling between these two networks

significant cascading failures throughout the global economic system. Based on the
success of complex networks in modeling interconnected systems, applying complex
network theory to study economic systems has been given much attention [77–84].

The strong connectivity in financial and economic networks allows catastrophic
cascading node failure to occur whenever the system experiences a shock, especially
if the shocked nodes are hubs or are highly central in the network [7, 63, 76, 85, 86].
To thus minimize systemic risk, financial and economic networks should be designed
to be robust to external shocks.

In the wake of the recent global financial crisis, increased attention has been given
to the study of the dynamics of economic systems and to systemic risk in particular.
The widespread impact of the current EU sovereign debt crisis and the 2008 world
financial crisis show that, as economic systems become increasingly interconnected,
local exogenous or endogenous shocks can provoke global cascading system failure
that is difficult to reverse and that can cripple the system for a prolonged period of
time. Thus policy makers are compelled to create and implement safety measures
that prevent cascading system failures or that soften their systemic impact.

To study the systemic risk to financial institutions, we analyze a coupled (bipartite)
bank-asset network in which a link between a bank and a bank asset exists when the
bank has the asset on its balance sheet. Recently, Huang et al. [87] presented a

Interdependent infrastructure networks
• Power-grid networks
• Communication networks
• railway networks
• Water supply
• Gas supply
• Transportation and fuel

Motivation
• To understand correlated failure
• To assess risk of interdependency
• To design robust interdependent 

networks against attack and 
random failure

 

Figure 4. Interdependent Infrastructure Sectors 

Most critical infrastructure system vulnerabilities can be reduced below the level 
that potentially invites attempts to create a national catastrophe. By protecting key 
elements in each critical infrastructure and by preparing to recover essential services, the 
prospects for a terrorist or rogue state being able to achieve large-scale, long-term 
damage can be minimized. This can be accomplished reasonably and expeditiously. 

The most critical infrastructure system 
vulnerabilities can be reduced below 
those levels that invite attack or cause a 
national catastrophe. 

Such preparation and protection can be achieved over the next few years, given a 
dedicated commitment by the federal government and an affordable investment of 
resources. We need to take actions and allocate resources to decrease the likelihood that 
catastrophic consequences from an EMP attack 
will occur, to reduce our current serious level of 
vulnerability to acceptable levels and thereby 
reduce incentives to attack, and to remain a 
viable modern society even if an EMP attack 
occurs. Since this is a matter of national security, the federal government must shoulder 
the responsibility of managing the most serious infrastructure vulnerabilities.  

Homeland Security Presidential Directives 7 and 8 lay the authoritative basis for 
the Federal government to act vigorously and coherently to mitigate many of the risks to 
the Nation from terrorist attack. The effects of EMP on our major infrastructures lie 
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HIGHER ORDER NETWORKS
(HON)
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HIGHER ORDER NETWORKS

• Many networks are built using logs of sequence of items 
encountered by actors
‣ People travelling in public transport go through stations
‣ Consumer buy products on amazon one after the other

• Normal network: split sequences in pairs
‣ Higher order: conserve the memory of previous items
‣ From first-order Markovian to second-order Markovian
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HIGHER ORDER NETWORKS

Round trips
Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). Memory in network flows and its effects on spreading dynamics and community detection. 
Nature communications, 5, 4630. 60



HIGHER ORDER NETWORKS
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HIGHER ORDER NETWORKS

• Random walk approaches generalize naturally to higher order 
networks
‣ Centrality: PageRank
‣ Communities: Infomap

• At each step, the random walker decides to follow an out-going 
link

• This probability can depend on the walker origin
‣ Actually representing the HON or not.
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HIGHER ORDER NETWORKS
• Applying a community detection algorithm to a HON

• A node is now a tuple (node, history)

• Results of a community detection algorithm:
‣ Communities are composed of (node, history) vertices
‣ We can go back to a traditional community partition:

- We forget the memory part of nodes
- Several instances of same nodes in same community
- Same node in different communities
- =>Overlapping communities
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HIGHER ORDER NETWORKS

• Weakness: complexity

• Number of nodes multiplied by number of possible arrival 
sources

• => Rare cases could be ignored, current research topic

Lambiotte, R., Rosvall, M., & Scholtes, I. (2019). From networks to optimal higher-order models of complex systems. Nature physics, 15(4), 313-320.
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