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Spatial networks

A network is said spatial if the distance between nodes affect the
probability of observing edges between them

- Can be seen as a special case of Assortativity, generalizing the notion of
distance through several dimensions.

Distance
 Physical distance
- Economical distance
« Social distance

- Difference in professional
categories
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Spatial networks

Examples of 1D spaces

The watts-Strogatz random graph is defined on a (circular)
1D space: each node is (initially) connected to its k closest
nodes in this space.

In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on 1D space. The same is true about political opin-
lons, if we consider a Left-Right spectrum.
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Spatial networks

Examples of 3+D spaces

- If we consider altitude, geographical networks are 3D
spaces

- If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to define the distance between nodes, which can
be tricky to define if dimensions are of different natures.

- Methods such as graph embedding assign locations in ar-
bitrary large dimensions to nodes that summarize some of
the network properties (see later class).




J

Spatial networks

The distance between each pair of nodes can be computed in
different ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

- Euclidean distance, or L?distance is the usual, straight
line distance

- Great-Circle distance is used to measure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

+ Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

- Manhattan distance, or L!distance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply defined as the sum of differences in each of
the dimensions.)

- Observed distance can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or traffic, the time distance between dots might be only

loosely proportional to geographical distance.
—
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Spatial networks

Notation

Metric distance between v and v (Euclidean, Man-
hattan, etc.)

Route distance between u and v, i.e., sum of Metric
distances between nodes on the shortest path be-
tween u and v

Distance strength, cumulative distance from a node
to its neighbors. s2 = 2_weN (u) Duv. The relation

between k, and s2* can be studied, for instance to
see if larger nodes tend to connect at longer dis-
tance.
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Spatial networks

Route factor - Accessibility

Q(u,v)| Route Factor, also called the detourindex, measures
how efficiently the network allows to go from a node
to another, it is defined as the ratio between the met-
ric distance and the route distance:

A’LL’U
gu’u B

Q(’LL, U) —

(Q(u)) | Node Accessibility: Average route factor from a
node to all others:

Q) = —— 3" Qu, )
N —1

(Q) Accessibility. Average route factor for the whole
network:

1
@ =y =D ;Q(u,v)




Simple models

spatial networks
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Random geometric graphs

General definition:
 Take a space and distribute nodes randomly
* Nodes are small spheres with radius r

- Two nodes are connected if their spheres overlap — separated with
distance smaller than 2r

- Also called: disk-percolation

Degree distribution — Poisson distribution

Clustering coefficient (d=dimensions)

s [2 (3 T
(Cq) ﬁ(i)

Independent of N contrary to random networks

Jesper Dall and Michael Christensen. "Random geometric
graphs”. In: Physical review E 66.1 (2002), p. 016121. 11




Soft RGG

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphs?, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f, i.e,
a function defining how distance affects the probability of observ-
INg edges between nodes.

The Soft RGG can model an ER random graph if f is constant func-
tion, f(A) = p. It can model a classic RGG if f is a threshold func-

tion with:
1 A<r
d) = —
f( ) {O A >r

“\Waxman 1988.
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Deterrence function

Deterrence function

A deterrence function defines how the distance affects the prob-
ability of observing an edge. It can be a probability (bounded on
0, 1]), or define a change ratio.

1. It can be defined a priori, usually as a classic monotonically
decreasing function, e.g.. Negative exponential(f(A) =

e~ %) or Negative power (f(A) = A~9), with o a param-
eter. A typical example of negative power in geographi-
cal data is when the probability of observing an edge de-

creases as the square of the distance, i.e., f(A) = ﬁ

. It can also be learned from data, either by fitting parame-
ters of a predefined function (e.g., the a parameter above),
or by using an Ad-Hoc deterrence function.

13



The gravity
law
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Formal description

Origin-destination matrix
- Describe flow of individuals between locations
- Used since decades by geographers
« Definition:
- divide the area of interest into zones (cells) labelled by i=/..N
- count the number of individuals going from location i to location j

. 0/D Matrix

- directed T T T
» weighted A| 0|0 5 00|50
. Beware: N B o ofe[o]w]a
T(ij)=|c|[o[o|[o]2]o]
» strongly depends on the zone D | 20| 0|8 | 0|20 |12
definition E| 0| o9 1][o0 |10
T | 20 | o [280] 40 [ 50 |39

07

§==0
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The gravity law
Number of trips from location i to location j is scaling as

PP
T; =K
dO’

. where di = dr(i.)) s the distance betweer! i and j

. Piy isthe population size at location I(j)

* ¢ a parameter chosen or learned from data

oo
T

Inter-city phone communication (Krings et.al.)

- mobile call communication intensity between Belgian
cities

®»

AN
- |
.

N

Observed intensity (log scale)

| | | |

2 4 6 8
Intensity estimated by gravity model (log scale)
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The gravity law - empirical summary

Both exponential and power-law dependence is observable

Network [Ref.] N Gravity law form Results

Railway express [ 164] 13 PiP;/d oc=1.0

Korean highways [161] 238 PiP;/dj o=2.0

Global cargo ship [104] 951 0il;d;° exp(—djj/k) o = 0.59

Commuters (worldwide) [162] n/a P,.“Pjyl exp(—di/«k) (o, y) = (0.46, 0.64) for d < 300 km
(o, ¥) = (0.35,0.37) for d > 300 km

US commuters by county [163] 3109 P{"Pjy/dg- (o, y,0) = (0.30,0.64, 3.05) ford < 119 km
(o, y,0) =(0.24,0.14,0.29) ford > 119 km

Telecommunication flow [134] 571 PiPid;; ° o=20
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The gravity law

Number of trips from location i to location j is scaling as

- where d; = dg(i,j) is the distance between i and;

Piy s the population size at location i(j)

» In a general form: Ty ~ PiPif (d(i, j))

- where  f(d(i,))) Is the deterrence function describing the effect of space

18



Ad-hoc deterrence function

Agnostic deterrence function

- The influence of distance might be more complex than a power-law or an exponential. In particular, it is
often non-monotonic (first increasing, then decreasing. Think of airplanes, bicyles, public transports...
unlikely to use for short distances)

- A deterrence function can be learned from data

- Computed by comparing the number of trips observed at a given distance with the number of trip
expected if distance has no effect (a configuration model)

fid) -

Distance d

19



Ad-hoc deterrence function

Observed edges

Expected edges

0 100 200 30

ZiaﬂAij:d Aij

f(d) =
2 ijl Ay =d Mij

with A;; the adjacency matrix (or weight matrix) of the observed
graph and M;; the probability of observing an edge (or weight
of edges) between nodes ¢ and j according to the chosen null

model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, V; ;, M;; = d.

20



The gravity law - as a network null model

Usage as a network null model
‘Consider a spatial network (e.g., phone calls, trips, etc.)

‘Fit a gravity model best explaining the observed network. If the
population is unknown or not relevant, the degrees of nodes (in/out
degrees in directed networks) can be used as a “population”

-=>Random model with a given edge probability for each pair of node

‘The obtained network is a null model to which the observed network
can be compared

21



The gravity law - as a network null model

Example of application: Space-independent communities

- In the usual modularity, the fraction of internal edges is compared between the observed network and a
configuration model.

- One can replace the configuration model by a gravity model
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- Space-independent communities
Space-dependent communities

Expert, P., Evans, T. S., Blondel, V. D., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of
Sciences, 108(19), 7663-7668. 29



Deterrence function and gravity model

Observed edges
Expected edges

0 100 200 30

iJ
i,4|A 5 =d ")
with A;; the adjacency matrix (or weight matrix) of the observed f(d ) —

graph and M;; the probability of observing an edge (or weight

of edges) between nodes i and j according to the chosen null kk
model. For instance, with the simplest hypothesis that edges oc- l

cur completely at random, V; ;, M;; = d.
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The gravity law - example
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The gravity law - example

== fDist3

fid) =

0 2000 4000 6000 8000 10000 12000 14000

Distance d (meters)
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The gravity law - example
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The gravity law - example
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The radiation
law




The radiation law

Limitations of the gravity law
1. Requires previous data to fit

2. The number of travelers between destinations
depends only on their populations and distances.
In reality, this value depends probably of other
opportunities




The radiation law

Intuition: Model how people move for jobs

1.Individuals look for job in all cities
2.Each city has a number of job opportunities
- Each job has a value of interest, considered random

3. What is the probability for a job-seeker to choose a job in city ¢
located at distance d?

« Depends only on how many jobs offered in cities at a
distance equal or lower than d (probability to find a better job

closer)

The model is parameter-free!

30



The radiation law

The model can be formulated in terms of radiation and absorption
- take locations i and j with populations (in-degree) m; and n; and at distance r;;

- denote s;; the total population in the circle with radius r; centered at i
(excluding the source and destination population)

. 1’ is the number of commuters (out-degree)

Radiation Law of Spatial Interactions

The Radiation Law* is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is

parameter—free.. !t is based on the pnnaplg of relatlye opportum— Radiation Law of Spatial Interactions

ties: the probability of observing an interaction from i to j depends . - -

on PP, Pi*, and the sum of all P for A < A, 1€, otherop- | | "Wsreioneliiefone sy noien copornis cressene
portunities accessible at a shorter distance. More formally:

out k?ﬁ)utk%n
Rij — k’b out out mn
(k2" + 555 ) (K™Y + K™ 4 545)

With s;; = > k™ the sum of opportunities at a shorter J
UEV, Ny <Ay

distance than the target.

9Simini et al. 2012.
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The radiation law

Comparison with census data and the
gravity law predictions
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Radiation Law VS Gravity Law

+ Radiation:

* No parameters

- Two nodes of same degrees at similar distance can have
different edge probability based on their location

+ Gravity:

- Customizable deterrence function... The real world is complex !

33



MULTI-PARTITE GRAPHS

» Bi-partite: there exists 2 kinds of nodes, and links can only

connect nodes of different types

» Multi-partite: similar but with more than 2 types. (less common)

» Not strictly different from normal graphs: if you don't know the two categories
of nodes, It looks like any network

* Bi-partite networks are quite commonly use

Actors - Films
Clients - Products
Reserchers - conferences/institutions

W

v
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MULTI-PARTITE GRAPHS

* [ he problem is that some definitions of normal graphs

become meaningless

» Clustering coefficient
» Modularity



MULTI-PARTITE GRAPHS

Modularity: do not count pairs of nodes of same types

QB — # Z Z(Auv - Puv)é(guahv) —
u=19=1




MULTI-PARTITE GRAPHS

Clustering Coefficient:

Of a pair Of a Node: Average among
nodes N at distance 2
ety — V@O N
YT NG UN@) D cce(uv)
ceu(u) = LENN@)

IN(N ()]

—

cc(u,v)

%M\/N\%M\

2/6




MULTI-PARTITE GRAPHS

* Large literature on the topic, In particular applications to

recommendation
» Users - products => propose the right products to the right user

Kunegis, J., De Luca, E. W., & Albayrak, S. (2010, June). The link prediction problem in bipartite networks. In International Conference on Information Processing and
Management of Uncertainty in Knowledge-based Systems (pp. 380-389). Springer, Berlin, Heidelberg.

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102.

Zhang, P., Wang, J., Li, X,, Li, M., Di, Z., & Fan, Y. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its
Applications, 387(27), 6869-6875.



MULTI-PARTITE GRAPHS

* A bipartite graph can be projected on one of its node-set

B@e el of of nodes remaln as nodes

* Those nodes are connected If they share a neighbor In the
bipartite graphs

» Variations: threshold, corrected by a null-model, etc.
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HYPERGRAPHS



HYPERGRAPHS

» “Generalization” of graph

* An edge Is not limited to 2 extremities

0 Q‘Z
o ¢ : ‘




HYPERGRAPHS

» Most common usage: represent a single event involving several
nodes

* In social networks: |0 students attending a same course A

» Normal network: 45 undirected edges. Giant clique.Very dense

- Problem: if 5 attend another course B and the others another course C => no way to see
who worked with whom (a single clique, with double links or weights=2)

» Hypergraph: A single link with ten endpoints

- And we can add 2 single links with 5 endpoints and still differentiate attendances

* Another example: In Bitcoin, transactions are multi-input, multi-
output. Some transactions have 000 input, 1000 output

» 500 000 links for a single transaction in a normal network!

255



HYPERGRAPHS

* In practice, very few direct usages

» Too difficult to handle ? Too different from normal networks!?

* Hypergraphs can be transformed in bi-partite graphs

» Social Network: student nodes and class nodes
» Bitcoin: transaction nodes and address nodes

44



MULTILAYER NETWORKS



MULTILAYER NETWORKS

 Multiplex network
» Multislice network
» Multitype network

» Heterogenous information network

Kivela 20147

46



MULTILAYER NETWORKS

» Can be used to represent:

» Several types of relations between the same nodes

Bus transportation network

Bicycle transportation network

Car transportation network

Figure 2. Superlayer representation of the Madrid transportation system. The figure represents the three transportation modes
considered: tram (yellow nodes, upper layer), metro (purple nodes, mid layer) and buses (white nodes, bottom layer). See
Tablel for statistics of these layers.

17




MULTILAYER NETWORKS

RECRRoElsed to represent:

» Several snapshots of the same network
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MULTILAYER NETWORKS

Both/Other

255



MULTILAYER NETWORKS

» Relations can be:
» Only between same nodes in different layers

- Public transport interconnection
» Between different nodes in different layers
- Information transfert form person A on Facebook to person B on Instagram.

@)




MULTILAYER NETWORKS

« All usual definitions on static networks can be extended to
multilayer networks

» Degree, clustering coefficient, community detection...

* [ he problem is that there are many ways to do it, and 1t
depends on what your layers represent

» Degree of a person on a multilayer network of facebook, Twitter, Linked-in?

* If you used a multilayer network, it Is because it was not well
summarized by a single network...

Sl



MULTILAYER NETWORKS

A simple idea: multilayers networks can be
transformed Iinto simple networks

S



MULTILAYER NETWORKS

» Matrix representation:

» Many algorithms on networks work on adjacency matrices

» Solution: Supra-adjacency matrix

» Or flattened tensors

16



MULTILAYER NETWORKS

advice friendship
1234'1234]1234|123 1234/1234/12341234

Blue, green: intra-layer
oray: Inter-layer |

black: inter-layerZ

"= "om Cognitive map: relations between
————— 4 people seen by each of theseruEEEINlE
i




Interdependent networks

Interdependent networks:

- links between networks assign the dependency between nodes in different
layers

- The identities of nodes are not necessarily the same in different layers

55



Infrastructure networks

Example: 2003 Italy blackout

A power line between ltaly and Switzerland was damaged by storm

Power outage for 12 hours in ltaly and spread to Switzerland for 3 hours

56 millions of people without electricity

110 trains cancelled, All flights were cancelled
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Infrastructure networks

Fuels, Lubricarnt
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Interdependent infrastructure networks
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HIGHER ORDER NETWORKS
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HIGHER ORDER NETWORKS

» Many networks are built using logs of sequence of items

encountered by actors

» People travelling in public transport go through stations
» Consumer buy products on amazon one after the other

» Normal network: split sequences in pairs

» Higher order: conserve the memory of previous items
» From first-order Markovian to second-order Markovian

5\



HIGHER ORDER NETWORKS

a First-order Markov

140'0
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Seattle

Atlanta
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44%

b Second-order markov

Seattle

Atlanta

San Francisco

New York

Round trips

Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D., & Lambiotte, R. (2014). I\gf)mory in network flows and its effects on spreading dynamics and community detection.

Nature communications, 5, 4630.



HIGHER ORDER NETWORKS

Raw event sequence data
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HIGHER ORDER NETWORKS

- Random walk approaches generalize naturally to higher order

networks

» Centrality: PageRank
» Communities: Infomap

» At each step, the random walker decides to follow an out-going
ink

» [ his probability can depend on the walker origin
» Actually representing the HON or not.
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HIGHER ORDER NETWORKS

* Applying a community detection algorithm to a HON
* A node Is now a tuple (node, history)

* Results of a community detection algorithm:

» Communities are composed of (node, history) vertices

» We can go back to a traditional community partition:
- We forget the memory part of nodes
- Several instances of same nodes in same community
- Same node In different communities
- =>Qverlapping communities
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HIGHER ORDER NETWORKS

* Weakness: complexity

* Number of nodes multiplied by number of possible arrival
sources

= Nidlc cases could be 1gnored, current researcnitople

Lambiotte, R., Rosvall, M., & Scholtes, I. (2019). From networks to optimal higher-order models of complex systems. Nature physics, 15(4), 313-320.
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