
Complex Networks - TD1

Remy Cazabet, Lorenza Pacini

2019

1 Choose you path

For this first TD, choose among the two of the following possibilities:

• If you feel comfortable with python and Gephi, i.e., if you have done
without difficulties the experiments of last week, continue this TD.

• Otherwise, use this session to practice python. Here is a good tutorial for
instance: https://www.w3schools.com/python and a networkx tutorial:
https://networkx.github.io/documentation/stable/tutorial.html

2 Graph manipulation - The hard way

In this problem set we will be dealing with a graph G = (V,E) where V is
a set of vertices and E a set of edges. In graph theory, the adjacency list
representation of a graph is a collection of unordered lists, one for each vertex
in the graph. Since real world networks are often large and sparse, this is much
more efficient than an adjacency matrix representation. In our python library,
we define our graph with a dictionary, where node indices are keys, and values
are the corresponding neighbour sets.

1 graph = {

2 "a" : {"c", "d", "g"},

3 "b" : {"c", "f"},

4 "c" : {"a", "b", "d", "f"},

5 "d" : {"a", "c", "e", "g"},

6 "e" : {"d"},

7 "f" : {"b", "c"},

8 "g" : {"a", "d"}

9 }

Listing 1: Python example

The aim of this problem set is to develop a rudimentary graph library, and
to code from scratch some non-trivial network properties. The skeleton of the
library is provided in the complementary material, leaving you room to develop
the class Graph through solving the problems below. The following code is
provided as a .py file.

Start by adding the following methods to the Graph class:

1

https://www.w3schools.com/python
https://networkx.github.io/documentation/stable/tutorial.html


1. edges : return the edges of the graph

2. add vertex : add a vertex to the graph G

3. add edge : add an edge to the graph G

3 Simple function

We will now add some functions allowing to describe roughly a network

1. Add a function vertexdegree that output the degrees of every node, in the
format of your choice

2. Add a function degrees that output the list of degrees of all nodes

3. Add a function density to compute the network density.

4 Getting serious

We will now add some more complex capabilities

1. Add a function shortest path, that computes the shortest path between
two provided nodes. Do not worry about computational time, yet.

2. Add a function diameter, that computes the diameter. Do not worry about
computation time, yet.

5 Importation

Analyzing graphs with 7 nodes is fun, but there is even more fun: analyzing
real graphs. To do that, we will need to import graphs, and therefore to write
a function to do so. There are several collections of datasets on the web, but
this one has the advantage of having all of them in a standard format: http:

//konect.uni-koblenz.de/networks/. Choose some graphs of moderate size,
and write a function to import those networks in your library.

6 Scalability

Try to compute the diameter of a network with a few hundred nodes. What
happens ? Let’s try to solve this problem. Go to https://en.wikipedia.

org/wiki/Floyd-Warshall_algorithm. Try to implement this method on your
library. Compare the speed with your original implementation.

2

http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm


7 Bonus question

You think it is a fun problem? You’re not the only one. Search for something
like fast computation diameter network in Google, choose a fun method (exact
or approximate), and implement it ! Compete with your friends for the fastest
computation on the largest graph :)

References

3


	Choose you path
	Graph manipulation - The hard way
	Simple function
	Getting serious
	Importation
	Scalability
	Bonus question

