
Network Science
Cheatsheet

Made by

Remy Cazabet

Dynamic Networks

Disclaimer

Dynamic network analysis as introduced here is a recent and

still not fully mature �eld, with a large number of contributions,

for which we cannot know yet which one will stand the test of

time. This is therefore my vision of the dynamic network �eld

as of today.

Ubiquity of Dynamic Networks

Most real networks are in fact dynamic: nodes and edges appear
and disappear with time. Think of friendship in social networks,
�ight routes or any human interactions. Networks are often an-
alyzed as static objects because 1)it’s harder to obtain dynamic
information, 2)Taking dynamic into account makes some analysis
more di�cult.
While more and more aspects of our life become linked to digital
technology, datasets with �ne temporal information also become
more and more common.

Snapshots & Aggregated Networks

Static networks representing dynamic information can be ob-
tained by two processes:

• Snapshots correspond to the state of a network at a partic-
ular point in time, e.g., all follower/followees relationship
at a particular second

• Aggregated Networks are obtained by cumulating infor-
mation over a period of time, e.g., in a phone call network,
in the snapshot representing year 2020, an edge exists
between two individuals if they called each other at least
once over the year 2020.

Interactions or Relation?
Dynamic networks can be used to represent di�erent types of real
data. In particular, they can be used to represent networks of re-
lations and networks of interactions. For instance, friendships, ac-
quaintances, physical wires, roads, etc. can be thought as rela-
tions, while e-mails, phone calls, instant messages, physical con-
tacts, etc. are interactions.
There is often a relation between these two notions: interactions
tend to occur between entities having a relation, and/or relations
tend to form between entities having interactions.

Dynamic Network Properties

Independently of the studied data, dynamic networks can have
various properties:

• Edge presence can be punctual or with duration

• Node presence can be unspeci�ed, punctual or contin-
uous

• If time is continuous, it can be bounded on a period of
analysis or ubounded

• If nodes have attributes, they can be constant or time-
dependent

• If edges have weights, they can be constant or time-
dependent

Vocabulary

Many di�erent names have been used to for networks changing
with time, but there is no broad consensus in the literature on the
meaning of those terms, unless they are used with an explicit ref-
erence to a paper de�ning those terms. Here is a list of the most
popular:

• Dynamic Networks and Dynamic Graphs

• Longitudinal Networks

• Evolving Graphs

• Link Streams & Stream Graphs (Latapy, Viard, and Mag-
nien 2018)

• Temporal Networks, Contact Sequences and Interval
Graphs (Holme and Saramäki 2012)

• Time Varying Graphs (Casteigts et al. 2012)

Slowly Evolving/Degenerate

Beyond the nature of the data and the chosen representation, a
critical di�erence de�ning how a dynamic network can be ana-
lyzed is whether it is a Slowly Evolving Network (SEN) or Degen-
erate. In a SEN network, to each instant corresponds a well de-
�ned graph, that can be studied with usual tools of network sci-
ence. In a degenerate temporal network, a meaningful graph can
be obtained only when aggregating it over a period ∆.

Analyzing SEN

A slowly evolving network can easily be studied by the tools al-
ready de�ned on static graphs. For any instant (discrete or contin-
uous), one can compute network descriptors (density, clustering
coe�cient, etc.), node descriptors (centralities), reachability, etc.

Analyzing degenerate networks

A degenerate network can always be transformed into a SEN by
aggregating it using time windows, �xed (yielding snapshots, i.e.,
discrete SEN) or sliding (yielding continuous SEN). But a more
powerful solution is to study them in their original form, without
loosing any temporal information through aggregation. This how-
ever requires new de�nitions.

Stream Graph (SG)- De�nition

Stream Graphs have been proposed ina as a generic formalism –
it can represent any type of dynamic networks, continuous, dis-
crete, with or without duration, with the objective or rede�ning
typical notions of graphs on dynamic networks, including degen-
erate ones.
Let’s de�ne a Stream Graph

S = (T, V,W,E)

T Set of Possible times (Discrete or Time intervals)
V Set of Nodes
W Vertices presence time V × T
E Edges presence time V × V × T

aLatapy, Viard, and Magnien 2018.

SG - Time-Entity designation

Stream Graphs introduce some new notions mixing entities
(nodes, edges) and time:
Vt Nodes At Time: set of nodes present at time t
Et Edges At Time: set of edges present at time t
Gt Snapshot: Graph at time t, Gt = (Vt, Et)
vt Node-time: vt exists if node v is present at time t
(u, v)t Edge-time: (u, v)t exists if edge (u, v) is present at

time t, 0 otherwise
Tu Times Of Node: the set of times during which u is

present
Tuv Times Of Edge: the set of times during which edge

(u, v) is present

SG - Node/Edge presence

Nodes and Edges are typically present in the graph only for a frac-
tion of its total duration, Node/Edge presence is computed as the
fraction of the total times during which it is present. Note that if
time is continuous and edges are discrete, we take by convention
|T | = 1, i.e., we simply count nodes/edges presence time.
Nu Node presence: The fraction of the total time during

which u is present in the network |Tu|
|T |

Luv Edge presence: The fraction of the total time during
which (u, v) is present in the network |Tuv|

|T |

SG - Rede�ning Graph notions

Thegeneral idea of rede�ning static network properties onStream
Graphs is that if the network stays unchanged along time, then
properties computed on the stream graph should yield the same
values as the same properties computed on the aggregated
graph.

SG - N
The number/quantity of nodes in a stream graph is de�ned as the
total presence time of nodes divided by the dataset duration. In
general, it isn’t an integer.
More formally:

N =
∑

v∈V
Nv =

|W |
|T |

For instance, N = 2 if there are 4 nodes present half the time, or
two nodes present all the time.

SG - L
The number of edges is de�ned as the total presence of edges
divided by the total dataset duration.
More formally:

L =
∑

(u,v),u,v∈V
Luv =

|E|
|T |

For instance, L = 2 if there are 4 edges present half the time, or
two edges present all the time.

SG - Edge domain - Lmax

In StreamGraphs, several possible de�nitions ofLmax could exist:

• Ignoring nodes duration: L1
max = |V |2

• Ignoring nodes co-presence L2
max = N2

• Taking nodes co-presence into account:
Lmax

3 =
∑

(u,v),u,v∈V |Tu
⋂
Tv |

SG - Density - d

The density in static networks can be understood as the fraction
of existing edges among all possible edges,

d =
L

Lmax
.

The de�nition can naturally be extended by using the de�nitions
of L and Lmax introduced on Stream Graph. In (Latapy, Viard, and
Magnien 2018), the authors use Lmax

3 . This de�nition can also be
understood as the probability, if we take a time at random, and
two nodes alive a that time at random, for them to be connected.
Note that a common way to de�ne the density in static networks
is d = N2, because N2 is the only way to de�ne Lmax in static
networks, unlike in Stream Graphs.

a

b

c
0 1 time

a

b

c
0 1 time

Figure 2: Two stream graphs with n = 2 nodes, m = 1 link, but with di↵erent
densities: Left: � = 0.75. Right: � = 1.

In addition, �(L) is equal to the average density of Gt:
1

|T |
R

t
�(Gt) dt = 1

|T |
R

t
|Et|

|Vt⌦Vt| dt =

1
|T |·|V ⌦V |

R
t
|Et| dt =

R
t |Et| dtR

t |Vt⌦Vt| dt
= �(L), since, in L, Vt = V for all t.

Finally, if we consider a graph-equivalent stream, then its density is equal to the density
of the corresponding graph.

In addition to the global concept of density introduced above, we define the density
of a pair of nodes uv in V ⌦ V , the density of a node v in V , and the density at a
time instant t in T respectively as follows:

�(uv) =
|Tuv|

|Tu \ Tv|
, �(v) =

P
u2V,u 6=v |Tuv|P

u2V,u 6=v |Tu \ Tv|
and �(t) =

|Et|
|Vt ⌦ Vt|

.

If |Tu \ Tv| = 0,
P

u2V,u 6=v |Tu \ Tv| = 0 or |Vt ⌦ Vt| = 0, respectively, then we define �(uv),
�(v) and �(t) to be 0.

The density of uv is the probability that there is a link between u and v whenever this
is possible, i.e. when they are both present. The density of v is the probability that a link
between v and any other node exists whenever this is possible, and the density of t is equal
to �(Gt), the density of the graph Gt, i.e. the probability that a link exists between any
two nodes present at time t.

For S defined in Figure 1 (left), for instance, we obtain �(ab) =
|Tab|

|Ta\Tb|
= 3

9
= 1

3
and

�(bd) =
|Tbd|

|Tb\Td| = 1
2

= 0.5. We also obtain �(d) =
|Tda|+|Tdb|+|Tdc|

|Td\Ta|+|Td\Tb|+|Td\Tc| = 0+1+0
2+2+0

= 0.25 and

�(2) =
|E2|

|V2⌦V2| = 2
3·2/2

= 2
3
.

Notice that uvt is strongly related to the concept of density: it is the probability that
u and v are linked together at time t, which is equal to 1 or 0 depending on whether

(t, uv) is in E or not. We then have �(uv) =
R

t2T uvt dtR
t2T ut·vt dt

, �(v) =
P

u2V

R
t2T uvt dtP

u2V

R
t2T ut·vt dt

, and

�(t) =
P

uv2V ⌦V uvtP
uv2V ⌦V ut·vt

. Likewise, �(S) =
P

uv2V ⌦V

R
t2T uvt dtP

uv2V ⌦V

R
t2T ut·vt dt

.

In a link stream L = (T, V, E), Tv = T for all v and Vt = V for all t, and so �(uv) =
|Tuv |
|T | = muv, �(t) =

|Et|
|V ⌦V | = lt, and, as shown above, �(L) is equal to the average of �(t). In

a graph-equivalent stream, �(uv) 2 {0, 1}, and �(t) is equal to the density of the induced
graph.

The density �(v) of node v is strongly related to its degree, that we introduce in Sec-
tion 8.

10

Examples of graphs with N = 2 nodes, L = 1 link, but with
di�erent densities, respectively 0.75 (left) and 1 (right).

SG - Clusters & Substreams
In static networks, a cluster is a set of nodes, and we have de�ned
an (induced) subgraph of this cluster as a graph composed of the
nodes of the cluster and the edges existing between those nodes.
In Stream Graphs, a clusters C is as subset of W , and the cor-
responding (induced) substream S(C) = (T, V, C,E(C)), with
E(C) = {(t, (u, v)) ∈ E, (t, u), (t, v) ∈ C}.

6 Substreams and clusters

A graph G0 = (V 0, E 0) is a subgraph of G = (V, E) if V 0 ✓ V and E 0 ✓ E. This is denoted
by G0 ✓ G.

Given two graphs G = (V, E) and G0 = (V 0, E 0), their intersection is the graph G\G0 =
(V \ V 0, E \ E 0). It is their largest (with respect to inclusion) common subgraph. Their
union is G [G0 = (V [V 0, E [E 0); it is the smallest graph having both G and G0 for
subgraphs.

A cluster C of G = (V, E) is a subset of V . The set of links between nodes in C is
E(C) = {uv 2 E, u 2 C and v 2 C}, and G(C) = (C, E(C)) denotes the subgraph of G
induced by C.

Given a cluster C, the properties of its induced subgraph are said to be the properties
of C; for instance, �(C) denotes �(G(C)).

We say that a stream S 0 = (T 0, V 0, W 0, E 0) is a substream of S = (T, V, W, E) if
T 0 ✓ T , V 0 ✓ V , W 0 ✓ W , and E 0 ✓ E. We denote this by S 0 ✓ S.

Given two stream graphs S = (T, V, W, E) and S 0 = (T 0, V 0, W 0, E 0), their intersection
is the stream graph S\S 0 = (T \T 0, V \V 0, W \W 0, E\E 0). It is their largest (with respect
to inclusion) common substream. Their union is S[S 0 = (T [T 0, V [V 0, W [W 0, E[E 0);
it is the smallest stream graph having both S and S 0 for substreams.

We define a cluster C of S = (T, V, W, E) as a subset of W . We define the set of links
between nodes involved in C as E(C) = {(t, uv) 2 E, (t, u) 2 C and (t, v) 2 C}, and we
denote by S(C) = (T, V, C, E(C)) the substream of S induced by C. See Figure 3.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 3: An example of cluster with its induced substream. Left: the cluster,
displayed in blue, is C = ([1, 4][[5, 8])⇥{a}[[5, 9]⇥{b}[[3, 8]⇥{c}. Right: the substream
induced by C is S(C) = ([0, 10], {a, b, c, d}, C, E(C)) with E(C) = [6, 8] ⇥ {ab} [[3, 4] ⇥
{ac} [[5, 8] ⇥ {bc}.

Given a cluster C, we say that the properties of its induced substream are the properties
of C; for instance, we denote �(S(C)) by �(C). For any v in V , we also denote by TC

v the
set of times at which v is in C, and for any u and v in V we denote by TC

uv the set of time
instants at which u and v are in C and are linked together. For any t in T , we denote by
V C

t the set of nodes present at time t in C and by EC
t the set of links between nodes in C

at time t.
In Figure 3, for instance, TC

a = [1, 4] [[5, 8], TC
b = [5, 9], TC

c = [3, 8] and TC
d = ;;

TC
ab = [6, 8], TC

ac = [3, 4] [{5}, and TC
bc = [5, 8]; V C

7 = {a, b, c} and EC
7 = {ab, bc}.

11

Example of subgraph and induced substream.

SG - Cliques

Having de�ned substreams and density, we can now naturally de-
�ne a clique by analogy with static networks as a substream of
density 1. A clique is said to be a maximal clique if it is not in-
cluded in any other clique.

Notice that the substreams of S induced by its clusters are defined over the same set
of nodes V and the same time space T as S. We therefore define the substream of S
induced by a subset V 0 of V as the substream induced by the node cluster (T ⇥ V 0) \ W ,
i.e. (T, V 0, (T ⇥ V 0) \ W, (T ⇥ V 0 ⌦ V 0) \ E) of S. Likewise, we define the substream of S
induced by a subset T 0 of T as the substream induced by (T 0 ⇥ V) \ W , i.e. (T 0, V, (T 0 ⇥
V) \ W, (T 0 ⇥ V ⌦ V) \ E) of S.

For the example in Figure 3, for instance, the substream induced by {a, b, c} and [6, 9]
is ([6, 9], {a, b, c}, [6, 9] ⇥ {a, b, c}, E 0) with E 0 = [6, 9] ⇥ {ab} [[6, 8] ⇥ {bc}.

7 Cliques

A clique of graph G is a cluster C of G of density 1. In other words, all pairs of nodes
involved in C are linked together in G. A clique C is maximal if there is no other clique
C 0 such that C ⇢ C 0.

We define a clique of stream graph S as a cluster C of S of density 1. In other words,
all pairs of nodes involved in C are linked in S whenever both are involved in C. A clique
C is maximal if there is no other clique C 0 such that C ⇢ C 0.

We say that a clique is compact (resp. uniform) if its induced substream is compact
(resp. uniform). It is then fully defined by a set of nodes and a time interval (resp. a time
set) meaning that all pairs of nodes are linked together at all these times.

a

b

c

d
0 2 4 6 8 time

Figure 4: Examples of maximal compact cliques. We display the two maximal com-
pact cliques involving three nodes of the link stream L of Figure 1 (right): [2, 4]⇥ {a, b, c}
and [7, 8] ⇥ {b, c, d}. Its other maximal compact cliques are [0, 4] ⇥ {a, b}, [6, 9] ⇥ {a, b},
[2, 5] ⇥ {a, c}, [1, 8] ⇥ {b, c}, [7, 10] ⇥ {b, d}, [6, 9] ⇥ {c, d} (involving two nodes each).

For instance, in Figure 4 the cluster [0, 1] ⇥ {a, b} is a compact clique. However, it is
not maximal, as it is included in [0, 4] ⇥ {a, b}, which is a maximal compact clique. This
clique intersects another maximal compact clique, [2, 4]⇥ {a, b, c}. There is a unique other
maximal compact clique involving three nodes, [8, 9] ⇥ {b, c, d}. The maximal compact
clique [0, 4]⇥{a, b} is not a maximal clique because it is for instance included in the clique
[0, 4]⇥ {a, b}[[6, 9]⇥ {c, d} (which is not compact). This clique is not maximal either, as
it is for instance included in the clique [0, 4] ⇥ {a, b} [[6, 9] ⇥ {c, d} [[5, 6] ⇥ {d}.

A clique in S does not in general induce a clique in G(S): for instance, [0, 1]⇥ {a, b}[
[8, 9] ⇥ {c, d} is a clique for the example in Figure 4 but {a, b, c, d} is not a clique in its
induced graph. Instead, for any [b, e] ✓ T and X ✓ V , if [b, e] ⇥ X is a compact clique

12

Red and Blue are the two maximal cliques of size three in this
Stream Graph.

SG - Neighborhood N(u)

The neighborhood N(u) of node u is de�ned as the cluster com-
posed of node-times such as an edge-time exists between it and
a node-time of u, i.e.,

N(u) = {vt, (u, v)t ∈ E}

SG - Degree k(u)

The degree k(u) of node u is de�ned as the quantity of node in
the Neighborhood of node u, i.e.

k(u) = |N(u)|

in S then X necessarily is a clique in G(S). However, if [b, e] ⇥ X is maximal in S then
X is not necessarily maximal in G(S), see for instance [0, 4] ⇥ {a, b} in Figure 4 ({a, b}
is a clique in G(S) but it is included in its other clique {a, b, c}). Conversely, if a cluster
X of G(S) is a clique then in general there is no [b, e] such that [b, e] ⇥ X is a compact
clique in S. Finally, if one considers a graph-equivalent stream, then its maximal cliques
are necessarily compact, and they correspond exactly to the maximal cliques of its induced
graph.

8 Neighborhood and degree

In the graph G = (V, E), the neighborhood N(v) of v 2 V is the cluster N(v) = {u, uv 2 E},
and the degree d(v) of v is the number of nodes in this cluster, which is equal to the number
of links involving v. We then have

P
v2V d(v) = 2 · m.

The average degree in G is d(G) = 1
n

· Pv2V d(v), and the following relation between

density and average degree holds: �(G) = d(G)
n�1

.

In a stream graph S = (T, V, W, E), we define the neighborhood of a node v as the
following cluster:

N(v) = {(t, u), (t, uv) 2 E}
and the degree d(v) of v as the number of nodes in this cluster. As with graphs, this is
equal to the number of links involving v:

d(v) =
|N(v)|

|T | =
X

u2V

|Tuv|
|T | =

X

u2V

muv.

With this definition, each node u contributes to the degree of v proportionally to the
duration of its links with v. See Figure 5 for an illustration.

As with graphs, the sum of the degree of all nodes in S is equal to twice the number of
links in S:

P
v2V d(v) =

P
v2V

P
u2V

|Tuv |
|T | = 2 · m.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 5: Two examples of neighborhoods and degrees of nodes. We display
in black the links involving the node under concern, and in grey the other links. Left:
N(a) = ([1, 3] [[7, 8]) ⇥ {b} [[4.5, 7.5] ⇥ {c} is in blue, leading to d(a) = 3

10
+ 3

10
= 0.6.

Right: N(c) = [2, 5]⇥ {a}[[1, 8]⇥ {b}[[6, 9]⇥ {d} is in blue, leading to d(c) = 13
10

= 1.3.

We now define the average node degree of S as follows:

d(V) =
1

n
·
X

v2V

nv · d(v) =
X

v2V

|Tv|
|W | · d(v)

13

Example, the neighborhood of node c is highlighted in blue.
k(c) = 1.3

(|[1,8]|+|[2,5]|+|[6,9]|).

SG - Ego-network

The Ego network Gu of node u is de�ned as the substream in-
duced by its neighborhood, i.e., Gu = (T, V,N(u), E(N(u))).

SG - Clustering coe�cient

The clustering coe�cientC(u) of node u is de�ned as the density
of the ego-network of u, i.e.,

C(u) = d(N(u))

SG - Paths
In a Stream Graph S=(T,V,W,E), a path P from node-time xα to
node-time yω is a sequence (t0, x, v0), (t1, v0, v1), ..., (tk, vk, y) of
elements of T × V × V such that t0 ≥ α,tk ≤ ω, ((ti, ui, vi)) ∈ E.
We say that P starts at t0, arrives at tk , has length k + 1 and
duration tk − t0 .

(hence vi�1 = ui = vj = uj+1) then P 0 = (u0, v0), . . . , (ui�1, vi�1), (uj+1, vj+1), . . . , (uk, vk)
also is a path from u to v. If one iteratively removes the cycles of P in this way, one
eventually obtains a simple path from u to v.

The path P is a shortest path from u to v if there is no path in G of length lower than
k. Then, k is called the distance between u and v and it is denoted by @(u, v). If there is
no path between u and v then their distance is infinite. The diameter of G is the largest
finite distance between two nodes in V .

In a stream graph S = (T, V, W, E), a path P from (↵, u) 2 W to (!, v) 2 W is a
sequence (t0, u0, v0), (t1, u1, v1), . . . , (tk, uk, vk) of elements of T ⇥V ⇥V such that u0 = u,
vk = v, t0 � ↵, tk !, for all i, ti ti+1, vi = ui+1, and (ti, uivi) 2 E, [↵, t0] ⇥ {u} ✓ W ,
[tk,!] ⇥ {v} ✓ W , and for all i, [ti, ti+1] ⇥ {vi} ✓ W .

We say that P involves (t0, u), (tk, v), and (t, vi) for all i 2 [1, k � 1] and t 2 [ti, ti+1].
We say that path P starts at t0, arrives at tk, has length k + 1 and duration tk � t0.
See Figure 13 for an illustration.

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

a

b

c

d
0 2 4 6 8 time

Figure 13: Paths in a stream graph. Left: a path P1 from (1, d) to (9, c):
P1 = (2, d, b), (3, b, a), (5, a, c). This path has length 3 and duration 3. Center:
another path P2 from (1, d) to (9, c): P2 = (2, d, b), (3, b, a), (7.5, a, b), (8, b, c). This
path has length 4 and duration 6. Right: a path P3 from (0, b) to (8, a): P3 =
(2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a). This path has length 4 and duration 5.5.

If there exists a path from (↵, u) to (!, v) in S, we say that (!, v) is reachable from
(↵, u), which we denote by (↵, u) 99K (!, v). Notice that reachability is asymmetric: if
(↵, u) 99K (!, v) then in general (!, v) X99K (↵, u) (in particular this is always true if ↵ 6= !).
We say that v is reachable from u if there exists ↵ and ! such that (↵, u) 99K (!, v), which
we also denote by u 99K v. Reachability is asymmetric in this case too: in Figure 13, for
instance, d 99K c (through P1) but c X99K d. We discuss reachability in more details and we
give more complex examples in Section 15.

A subpath Q of path P is a subsequence (ti, ui, vi), (ti+1, ui+1, vi+1), . . . , (tj, uj, vj) of
the sequence defining P , with j � i. Then, Q is a path from (ti, ui) to (tj, vj). In Figure 13,
for instance, Q1 = (5, a, c), Q2 = (3, b, a), (7.5, a, b) and Q3 = (5, a, c), (6.5, c, b), (7.5, b, a)
are subpaths of P1, P2 and P3, respectively.

The path P is a cycle if u = v and [↵,!]⇥ {v} ✓ W . In other words, it is a path from
v at time ↵ to itself at time ! such that v is present at all times from ↵ to !. This means
that there is a path of length and duration 0 (i.e. the empty sequence) from (↵, v) to (!, v)
in S. For instance, Q3 defined above is a cycle, but Q2 is not since b is not present from
time 3 to time 7.5.

22

Examples of two paths. The left one starts at 2, arrives at 5, has
length 3 and duration 3. The right one starts at 2, arrives at 8, has

length 4 and duration 6.

SG - Shortest - Fastest - Foremost
• Shortest Paths, as in static networks, are paths ofminimal
length.

• Fastest Paths are paths of minimal duration.

• Foremost Paths are paths arriving �rst.

Furthermore, one can combine those properties, de�ning for in-
stance:
Fastest shortest paths (paths of minimum duration among those
of minimal length)
Shortest fastest paths (paths of minimal length among those of
minimal duration)

SG - Connected Components

Various de�nitions for connected components have been pro-
posed for temporal networks, see (Latapy, Viard, and Magnien
2018) for details. Oneof the simplest one is theweakly connected
component, de�ned such as two node-times belong to the same
connected component if and only if there is a path from one to the
other, ignoring time.

paths have the same length. As a consequence, the distance between two nodes is the same
in the stream and its corresponding graph, and a path is a cycle in the stream if and only
if the corresponding path is a cycle in the graph.

15 Connectedness and connected components

A graph G = (V, E) is connected if for all u and v in V there is a path between u and v in G.
A cluster C is connected if G(C) is connected, and it is a maximal connected cluster if it is
included in no other connected cluster. These clusters are called the connected components
of G, and they form a partition 3 of V . The reachability graph of G is the graph R = (V, E 0)
where uv 2 E 0 if u— v in G. The connected components of G are exactly but the cliques
of R.

Given a stream graph S = (T, V, W, E), we say that (!, v) is weakly reachable from
(↵, u), which we denote by (↵, u) - - - (!, v), if there is a sequence (t0, u0, v0), (t1, u1, v1),
. . . , (tk, uk, vk) of elements of T ⇥ V ⇥ V such that u0 = u, vk = v, for all i, vi = ui+1, and
(ti, uivi) 2 E, [↵, t0] ⇥ {u} ✓ W , [tk,!] ⇥ {v} ✓ W , and for all i, [ti, ti+1] ⇥ {vi} ✓ W .
This sequence is similar to a path from (↵, u) to (!, v), except for time constraints: we do
not necessarily have t0 � ↵, ti+1 � ti, nor ! � tk. As a consequence, weak reachability
is symmetric: if (↵, u) - - - (!, v) then (!, v) - - - (↵, u). In Figure 14 for instance, we have
(9, d) - - - (3, g) through the sequence (8, d, e), (3, e, f), (1, f, g).

We say that S is weakly connected if for all (↵, u) and (!, v) in W , (↵, u) - - - (!, v).
We say that a cluster C ✓ W is weakly connected if its induced substream S(C) is weakly
connected. It is a weakly connected component of S if it is a maximal weakly connected
cluster of S. Intuitively, this corresponds to the disconnected parts of a drawing of S, see
Figure 14 for an illustration.

a

b

c

d

e

f

g
0 2 4 6 8 time

Figure 14: Weakly connected components of a stream graph. This stream graph
has four weakly connected components, each displayed with a di↵erent color: [5, 7]⇥{a, b}
in blue, ([0, 3] [[8, 10]) ⇥ {b} [[0, 10] ⇥ {c} [[3, 7] ⇥ {d} in pink, ([0, 2] [[8, 10]) ⇥ {d} [
[0, 10] ⇥ {e} [[0, 4] ⇥ {f, g} in green, and [7, 10] ⇥ {f} [[5, 10] ⇥ {g} in orange.

3A partition of a set X into k parts is a family (P1, P2, · · · , Pk) of k subsets of X such that [iPi = X
and Pi \ Pj = ; for all i 6= j.

25

Example of a Stream Graph decomposed in 4 weakly connected
components.

RandomModels
We have seen that comparing an observed network with a ran-
domized version of it hasmany applications. In dynamic networks,
many variants have been proposed. In (Gauvin et al. 2018), the
authors consider methods de�ned on sequences of snapshots
that conserve nodes and number of events, and grouped them
in 4 main families, Snapshot Shu�ing, Sequence Shu�ing, Link
Shu�ing and Timeline Shu�ing.

Snapshot Shu�ing

Snapshot Shu�ing keeps the order of snapshots, randomize
edges inside snapshots. Any randommodel for static network can
be used, such as ER random graphs or the Con�guration Model.

10

models as they all conserve the nodes V, the temporal
duration tmax ≠ tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(⌧) = [·q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.

Example II.7. The most random event shu�ing pos-
sible, P[p(⌧)], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)œL, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) œ � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) œ �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.

Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]tœT ,

1 2

3 4

1

2

3

4

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)œE , as well as any additional con-
straints on the individual snapshot graphs �t œ �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Sequence Shu�ing

Sequence Shu�ing keeps each snapshot identical, switch ran-
domly their order.

10

models as they all conserve the nodes V, the temporal
duration tmax ≠ tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(⌧) = [·q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.

Example II.7. The most random event shu�ing pos-
sible, P[p(⌧)], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)œL, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) œ � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) œ �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.

Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]tœT ,

1 2

3 4

1

2

3

4

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)œE , as well as any additional con-
straints on the individual snapshot graphs �t œ �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

Link Shu�ing

Link Shu�ing keeps activation time per node pairs, randomize
the aggregated graph. For instance, a simple way to achieve this
is to pick two node pairs at random (connected or not) of the ag-
gregated graph, and to exchange activation time of these node
pairs, e.g.:

10

models as they all conserve the nodes V, the temporal
duration tmax ≠ tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(⌧) = [·q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.

Example II.7. The most random event shu�ing pos-
sible, P[p(⌧)], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)œL, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) œ � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) œ �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.

Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]tœT ,

1

2

3

4

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)œE , as well as any additional con-
straints on the individual snapshot graphs �t œ �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

10

models as they all conserve the nodes V, the temporal
duration tmax ≠ tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(⌧) = [·q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.

Example II.7. The most random event shu�ing pos-
sible, P[p(⌧)], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)œL, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) œ � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) œ �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.

Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]tœT ,

1 2

3 4

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)œE , as well as any additional con-
straints on the individual snapshot graphs �t œ �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

10

models as they all conserve the nodes V, the temporal
duration tmax ≠ tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(⌧) = [·q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.

Example II.7. The most random event shu�ing pos-
sible, P[p(⌧)], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)œL, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) œ � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) œ �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.

Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]tœT ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)œE , as well as any additional con-
straints on the individual snapshot graphs �t œ �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

10

models as they all conserve the nodes V, the temporal
duration tmax ≠ tmin and the number of events (C or
E). Event shu�ings furthermore conserve the multiset of
the events’ durations, p(⌧) = [·q]Cq=1. Di�erent shu�ing
methods additionally constrain other network features,
but they all conserve at least the above features.

Example II.7. The most random event shu�ing pos-
sible, P[p(⌧)], is the one that conserves only the events’
durations and otherwise redistributes them completely at
random, while the most random instant-event shu�ing is
P[E], which conserves only the number of instantaneous
events.

We furthermore define several more restricted classes
of shu�ing methods that randomize specific temporal or
topological aspects of a network using the two level rep-
resentations introduced in Section II A 2 above.

1. Link and timeline shu�ings

Based on the link-timeline representation (Def. II.6), we
define link shu�ings, which randomize the static graph
of a network but not the individual timelines, and time-
line shu�ings, which randomize the timelines but not the
static topology.

Link shu�ings conserve the content of the timelines i.e.
the multiset pL(�) = [�(i,j)](i,j)œL, as well as any con-
straints on the static topology (i.e. on the configuration
L of links in Gstat). In practice they are implemented
by randomizing the links L in the static graph and re-
distributing the timelines �(i,j) œ � on the new links
without replacement.

Timeline shu�ings, on the other hand, constrain the
network’s static topology, Gstat = (V,L), as well as any
constraints on the content of the individual timelines
�(i,j) œ �. In practice they are implemented by re-
distributing the (instantaneous) events in or between the
timelines.

Example II.8. Using the Erdős-Rényi model for ran-
domizing the static graph leads to the most random link
shu�ing possible, P[pL(�)] [Fig. II.5(a)]. The most ran-
dom timeline shu�ing, P[L, E], is obtained by redis-
tributing the instantaneous events in an instant-event
network at random between the timelines [Fig. II.5(b)].

2. Sequence and snapshot shu�ings

Based on the snapshot-sequence representation
(Def. II.7), we define sequence shu�ings, which
randomize the order of the snapshots but not the
individual snapshot graphs, and snapshot shu�ings,
which randomize individual snapshot graphs but not
their order.

Sequence shu�ings constrain the content of instanta-
neous snapshot graphs, i.e. the multiset pT (�) = [�t]tœT ,

(a)

(b)

FIG. II.5: Illustration of the most random link
and timeline shu�ings. (a) The most random link
shu�ing, P[pL(�)], completely randomizes the static

graph but conserves the content of the individual
timelines. (b) The most random timeline shu�ing,

P[L, E], redistributes the instantaneous events between
all timelines at random while conserving the static

topology.

(a)

(b)

FIG. II.6: Illustration of the most random
sequence and snapshot shu�ings. (a) The most

random sequence shu�ing, P[pT (�)], conserves all the
individual snapshot graphs but randomizes their
temporal order. (b) The most random sequence

shu�ing, P[t], completely randomizes each snapshot
graph while conserving the temporal ordering of the

snapshots.

as well as possible additional constraints on the order of
the snapshots. They are implemented simply by reshuf-
fling the order of the snapshots.

Snapshot shu�ings instead constrain the time of each
event, i.e. t = (t)(i,j,t)œE , as well as any additional con-
straints on the individual snapshot graphs �t œ �. They
are typically implemented by randomizing the snapshot
graphs individually and independently using any shuf-
fling method for static graphs.

Example II.9. Shu�ing the temporal order of the in-
dividual snapshots completely at random leads to the
most random sequence shu�ing, P[pT (�)] [Fig. II.6(a)].
Using the ER model to randomize each individual snap-
shot graph leads to the snapshot shu�ing P[t], which is
the most random snapshot shu�ing [Fig. II.6(b)].

(1,2)
(1,3)
(2,3)
(2,4)

(2,4)
(3,4)
(1,3)
(1,2)

Timeline Shu�ing

Timeline Shu�ing keeps the aggregated graph, randomize
edges activation time. For instance, a simple way to achieve this
is to redistribute randomly activation period among all edges, e.g.:

More constrained Shu�ing

Variants of these shu�ings with additional constraints have been
proposed, for instance the Local timeline shu�ing, randomizing
events time edge by edge, or the Weight constrained timeline
shu�ing, randomizing eventswhile conserving the number of ob-
servations for each edge. See (Gauvin et al. 2018) for more.

11

(a)

(b)

FIG. II.7: Illustration of intersections between
shu�ing methods. (a) The most random

link-timeline intersection, P[L, pT (�)], constrains the
static topology redistributes the individual timelines on

the links at random. (b) The most random
timeline-snapshot intersection, P[L, t], conserves the

timestamp of each instantaneous event and redistributes
them at random between the existing links.

3. Intersections of shu�ing methods

As we shall see in the following, several MRRMs ex-
ist which constrain both the content of individual time-
lines, i.e. pL(�), and the static topology, i.e. L. This
makes them intersections (Def. II.9) of link and timeline
shu�ings. They are typically implemented similarly to
link shu�ings by redistributing the timelines between the
links, but without randomizing the static structure.

Example II.10. The intersection between the most ran-
dom link shu�ing, P[pL(�)] and the most random time-
line shu�ing, P[L, E], defines the most random link-
timeline intersection: P[L, pL(�)] [Fig. II.7(a)]. This
model constrains both the static topology and all tempo-
ral correlations on individual links, but destroys correla-
tions between network topology and dynamics.

Other MRRMs constraint both the static topology, i.e.
L, and the timestamps of the events, i.e. t. These are thus
intersections of timeline and snapshot shu�ings. They
are typically implemented by exchanging the timestamps
of the events inside each timeline, or alternatively by re-
distributing events between existing links while keeping
their timestamps unchanged.

Example II.11. The intersection between the most
random timeline shu�ing, P[L, E], and the most ran-
dom snapshot shu�ing, P[t], defines the most random
timeline-snapshot intersection: P[L, t] [Fig. II.7(b)].

4. Compositions of shu�ing methods

The final classes of shu�ing methods that we will en-
counter are methods that generate randomized networks
by applying a pair of di�erent shu�ing methods in com-
position, i.e. by applying the second shu�ing to the ran-
domized networks generated by the first.

Not all compositions generate a microcanonical RRM
however. They are e.g. not guaranteed to sample the
randomized networks uniformly. But as we will show in
Section V, compositions between link shu�ings and time-
line shu�ings and between sequence shu�ings and snap-
shot shu�ings always result in a MRRM. Several such
compositions have been used in the literature to produce
MRRMs that randomize both topological and temporal
aspects of a network at the same time (we describe and
characterize them in Section VC).

Example II.12. The composition of the link shu�ing
P[pL(�)] with the timeline shu�ing P[L, E] results in the
MRRM P[L,E] which randomizes both the static topol-
ogy and the temporal order of events while conserving the
number of links L = |L| in the static graph. The compo-
sition of the sequence shu�ing P[pT (�)] with the snap-
shot shu�ing P[t] results in the MRRM P[p(A)] which
randomizes both the topology of snapshots and their tem-
poral order while conserving the multiset of the number
of events in each snapshot, p(A) = [|Et|]tœT .

III. SURVEY OF APPLICATIONS OF
RANDOMIZED REFERENCE MODELS

The applications of MRRMs for temporal networks are
manifold, but all follow two main directions: (i) study-
ing how the network and ongoing dynamical processes are
controlled by the e�ects of temporal and structural cor-
relations that characterize empirical temporal networks,
(ii) highlighting statistically significant features in tem-
poral networks.

(i) Dynamical processes have been studied by using
data-driven models, where temporal interactions are ob-
tained from real data, while the ongoing dynamical pro-
cess is modeled by using any conventional process def-
inition [45, 73] and typically simulated numerically on
the empirical and randomized temporal networks [73, 74].
One common assumption in all these models is that infor-
mation can flow between interacting entities only during
their interactions. This way the direction, temporal, and
structural position, duration, and the order of interac-
tions become utmost important from the point of view
of the dynamical process. MRRMs provide a way to sys-
tematically eliminate the e�ects of these features and to
study their influence on the ongoing dynamical process.
This methodology has recently shown to be successful in
indicating the importance of temporality, bursty dynam-
ics, community structure, weight-topology correlations,
and higher-order temporal correlations on the evolution
of dynamical processes, just to mention a few examples.

(ii) MRRMs have commonly been used as null models
to find statistically significant features in temporal net-
works (often termed interaction motifs) or correlations
between the network dynamics and node attributes. This
approach is conceptually the same as using the configura-
tion model to detect overrepresented subgraphs (termed
motifs) in static networks [39, 75, 76]. The di�erence here

Going Further

Book: Holme and Saramäki 2019
Stream Graph de�nition: Latapy, Viard, and Magnien 2018
Transforming dynamic networks into static networks: Kivelä et al.
2018
Dynamic Communities: Rossetti and Cazabet 2018

References
[1] Arnaud Casteigts et al. “Time-varying graphs and dynamic

networks”. In: International Journal of Parallel, Emergent and
Distributed Systems 27.5 (2012), pp. 387–408.

[2] Laetitia Gauvin et al. “Randomized reference models for
temporal networks”. In: arXiv preprint arXiv:1806.04032
(2018).

[3] Petter Holme and Jari Saramäki. Temporal Network Theory.
Springer, 2019.

[4] Petter Holme and Jari Saramäki. “Temporal networks”. In:
Physics reports 519.3 (2012), pp. 97–125.

[5] Mikko Kivelä et al. “Mapping temporal-network percolation
to weighted, static event graphs”. In: Scienti�c reports 8.1
(2018), pp. 1–9.

[6] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien.
“Stream graphs and link streams for the modeling of inter-
actions over time”. In: Social Network Analysis and Mining 8.1
(2018), p. 61.

[7] Giulio Rossetti and Rémy Cazabet. “Community discovery
in dynamic networks: a survey”. In: ACM Computing Surveys
(CSUR) 51.2 (2018), pp. 1–37.

