
Network Science
Cheatsheet

Made by

Remy Cazabet

Graph/Node embedding

Disclaimer

Graph/Node embeddings are a recent �eld of research, with

hundreds of publications in the last few years, and scores of

new papers published in every machine learning and network

science conference. This class is thus only an introduction to

the mechanism underlying those approaches.

Embedding of networks

In the context of graph embedding, embedding is a shortcut for
embedding in lowdimensions, and canbe understood as assign-
ing to some elements of the graph a vector (i.e., a list of numbers)
composed of d elements. d is the number of dimensions in the
embedding space, and d should be small.

Types of Network Embedding

According to the type of element which is embedded, we can dif-
ferentiate:

• Node Embedding (one vector per node)

• Edge Embedding (one vector per edge)

• Substructure Embedding (e.g., one vector per community)

• Whole Graph Embedding (one vector per graph)

In this class, we will introduce only Node Embedding, which is the
most popular approach.
Whole graph embedding is also quite popular, for instance to
classify types of networks.

Node Embedding

In node embedding, the vector assigned to each node should be
a proxy, a sort of numeric summary of the position of the node in
the graph, in term of topology. Several types of embeddings exist
that capture di�erent aspects of the network topology, in particu-
lar wewill di�erentiate locational embedding from role embedding.
Note that node embedding is sometimes called graph embed-
ding in the literature.

Embedding distance

Since each node is represented by a vector, it is possible to com-
pute a distance between nodes in the embedding. Intuitively,
two nodes occupying similar positions in the network (according
to what the chosen embedding capture) should have similar em-
bedding vectors. The notion of distance to use (cosine, euclidean,
etc.) also depends on the chosen embedding.

Adjacency matrix(A) as an embedding

A naive way to choose an embedding (in n dimensions) could be
to consider each row of the adjacency matrix as the vector repre-
sentation of the node it corresponds to.
This embedding would capture what is called the structural
equivalence, i.e. the fact that nodes share similar neighborhoods.
Two nodes with the same neighborhoods would have the same
vectors. If the Manhattan distance were used, the distance be-
tween nodes in the embedding would correspond to the number
of di�erent neighbors.

What is a good embedding?

What is a good embedding depends on the task that we want to
achieve. In the perspective of this class, embeddings are mostly
used as features for machine learning tasks. As such, they must
be 1) In as few dimensions as possible: Machine learning su�ers
from what is known as the curse of dimensionality, and tends to
work better with lower dimensions, without talking about compu-
tational advantages. 2) As dense as possible. Sparsity –usually
associated with high dimensions– makes learning harder.
Furthermore, the embedded properties must be meaningful for
the task to achieve. For instance, the notion of distance captured
by the adjacency matrix seems in contradiction with the intuition:
in graphs, one usually use the number of common neighbors,
and/or normalized fraction of neighbors (Jaccard, etc.) rather than
a raw count of di�erent neighbors.

Embedding and Dimensionality Reduc-
tion
In Machine Learning, when a dataset is composed of too many
features, dimensionality reduction algorithms can be used to
generate a smaller number of synthetic features, de�ned as com-
bination of the original ones. Common algorithms to do so are for
instance PCA (Principal Component Analysis) and T-SNEa .
A simple method to generate a better embedding from the adja-
cency matrix would be to apply Dimensionality Reduction on it to
reduce its number of dimension. Its counter-intuitive de�nition of
distance would nevertheless remain a problem.

aMaaten and Hinton 2008.

Notations
y Embedding of the graph
yi Vector corresponding to node i in the embedding y
S Similaritymatrix. For each pair of node i, j, Sij repre-

sents the graph similarity that we want to preserve.
By default, S = A: two nodes have a maximal similarity of 1 if they
are connected, and similarity 0 if they are not connected. But
one can use a di�erent notion, such as a random walk distance, a
neighborhood similarity heuristic, etc.

Node Embedding: LE

Laplacian Eigenmaps (LE)a is amethod that can be used for node
embedding, whose objective function is de�ned as follows:

y = min
∑
i 6=j

‖yi − yj‖2Sij

This can be read as follows: to �nd the embedding y of a graph,
we need to assign an embedding yi to each node i such as the
sum (over all node pairs) of the equation ‖yi− yj‖2Sij is minimal.
Said di�erently, its objective is to minimize the product between
the euclidean distance in the embedding (‖yi − yj‖2) and the
similarity in the graph Sij .
If two nodes are similar/close in the graph (high value), we need
tomake themas close as possible in the embedding (small value).
Nodesdissimilar/distant in thegraph canbedistant in the embed-
ding with a lesser penalty. To forbid a trivial solution of all nodes
being on the same location, the sum of distance between points
in the embedding must be equal to a constant.

aBelkin2003LaplacianEF

Node Embedding: HOPE

Higher-Order Proximity preserved Embedding (HOPE)a objec-
tive function is:

y = min
∑
i,j

|Sij − yiyTj |

Said di�erently, its objective is tominimize the di�erence between
the graph similarity Sij and the similarity in the embedding, com-
puted as the product of embedding vectors. Vectors are imposed
to be normalized, thus yiyTj corresponds to the cosine similarity.
Two nodes close (resp. far) in the graph should therefore be close
(far) in the embedding. Relative distances should also be con-
served.

aou2016asymmetric

LE - HOPE: Complexity

Discovering the solution of LE and HOPE methods can be done
e�ciently using matrix decomposition approaches. For instance,
�nding the embedding according to LE in d dimensions for the ad-
jacency matrix can be formalized as �nding the d eigenvectors of
lowest eigenvalues of D−1/2LD−1/2, with D the degree matrix
and L the Laplacian matrix.
The computation of the Smatrix however, if it is not the adjacency
matrix, can be costly since in the general case, it requires n2 com-
putations.

RandomWalk NN based embedding

In recent years, new approaches based on random walks and
neural networks have encountered a large success and re-
launched a large interest in graph embedding for various appli-
cations. They are transpositions of techniques developed for the
embedding of words to the graph setting.

Word Embedding

Machine Learning on text su�ers from a problem similar to Ma-
chine Learning on graphs: words are not numbers and cannot be
naturally represented as (meaningful) vectors. Word embedding
objective is to assign a (lowdimensional) vector to eachword such
as two words with similar semantic have similar vectors.

Matrix decomposition and Eigenvectors

A diagonizable matrix A can be factorized using eigenvectors
as follows:

A = QΛQ−1

where Q is the n × n matrix whose ith column is the eigen-

vector qi of A, and Λ is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues, Λii = λi. Keep-

ing as embedding the eigenvectors associatedwith the largest

eigenvalues means that we can reconstruct the original matrix

with a good precision. This is the same method used by PCA

(Principal Component Analysis), on a covariance(or correlation)

matrix, which is also a form of similarity matrix.

Word Embedding: word2vec - context

The principle proposed in a famous method called word2vec is
to use the context, i.e., the words encountered around a word in
sentences of a corpus, to discover the semantic similarity. In sum-
mary, themore two words are encountered in a same context, the
more they are considered similar. For instance, a corpus might
contain sentences such as: the dog eat dry food, and the cat eat
dry food: cat and dog are found in similar contexts, which should
drive them closer in the embeddding. In other sentences, their
contexts di�ers, which should drive them away in the embedding.

Word Embedding: Skipgram/word2vec

In practice, a word is considered to be in the context of another if it
is at a distance less than l in a sentence. From a corpus, one then
extracts the probability p(wj |wi) for each word wi, that a word
taken at random in its context is wj .
The objective function of word2vec can be expressed as:

y = min
∑
(i,j)

p(wj |wi)− σ(yiyTj)

withσ the softmax function de�ned as ex∑
ex

, a function commonly
used in neural networks to add non-linearity while ensuring that
the solution is a probability.

Skipgram: a neural network formulation

The skipgram algorithm is solved, in practice, using tools and
methods of neural networks, which make it scalable to large
datasets. It can then be represented as followsa :

ahttps://towardsdatascience.com/word2vec-skip-
gram-model-part-1-intuition-78614e4d6e0b

Word2vec e�cacy

Word2Vec (and following word embedding approaches) have en-
countered an enormous success in the Natural Language Pro-
cessing domain, and are nowadays used for most practical tasks
such as automatic language translation, sentiment analysis, per-
sonal assistants, etc.
Various other �elds, including network science, have therefore
adapted the mechanism to embed other complex elements.

DeepWalk

DeepWalka is the direct transcription of Word2vec to graphs. The
principle is to generate random walks in the graph, playing the
role of sentences in a corpus. The probability of �nding a word
in the vicinity of another therefore translates in the probability of
encountering a node in a random walk from another.
To sum up, the objective function can now be expressed as:

y = min
∑
(i,j)

p(nj |ni)− σ(yiyTj)

with p(nj |ni) the probability to encounter node nj in a random
walk of a chosen length starting from node ni . Its objective is
therefore to make the distance in the embedding proportional to
a random walk based distance in the graph.

aPerozzi, Al-Rfou, and Skiena 2014.

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

DeepWalk complexity

Contrary to matrix decomposition based approaches, DeepWalk
do not requires explicitly a similarity matrix S. All pairs (i, j) are
obtain by k random walks of length l starting from each of the n
nodes. The complexity of obtaining the input data is therefore in
O(n) (l and k being small constants).

Node2vec
Node2veca is a popular variant of DeepWalk, introducing biased
random walks. Two parameters guide the random walks: p de-
creases the probability to revisit the previous node, while q de-
creases the probability to explore farther nodes, i.e., nodes that
were not neighbors of the origin node. It allows tomimic breadth-
�rst or depth-�rst like exploration of the graph, capturing more
local or more global network structures.

aGrover and Leskovec 2016.

Node2vec
Illustration of random walk procedure in node2vec. (Figure from
(Grover and Leskovec 2016))

The walk just transitioned from t to v and is now evaluating its
next hop. Edge labels indicate the bias as a function of

parameters p and q.

Role Embedding

Node2Vec and DeepWalk are locational embedding: nodes with
similar vectors tend to be close in the graph, in term of graph dis-
tance.
Another notion of graph similarity is role similarity. Two nodes
have similar roles in the graph if their neighborhood is similar, ig-
noring node labels.

Role2Vec — Struc2Vec
Two popular methods for role embedding are Struc2Veca and
Role2Vecb . They are based on a similar principle: as DeepWalk,
they use random walks and SkipGram to generate embedding
from contexts. But instead of generating sequences composed
of the labels of encountered nodes, it generate contexts based
on the attributes/labels/features of encountered nodes. Nodes
with similar vectors thus corresponds to nodes that tend to en-
counter nodes with similar properties in random walks starting
from them.
Examples of properties could be node features (age, genre, etc.)
or structural properties (degree, clustering coe�cient, graphlet
belonging, etc).

aRibeiro, Saverese, and Figueiredo 2017.
bAhmed et al. 2019.

Node Classi�cation with embeddings

Machine Learning algorithms such as Logistic Regression or De-
cision Tree can be trained to predict a property of a node from a
vector of features representing the node property. We have seen
in a previous class that these features could be manually chosen
heuristics such as node centralities.
Vectors yielded by embedding algorithms can naturally be used
in the same way. Locational embeddings could be used, for in-
stance to attribute category to objects or political opinions to so-
cialmedia accounts, while role embedding could be used to iden-
tify suspicious accounts in social media.

Link Prediction with embeddings: unsu-
pervised

If we consider that the property captured by the embedding is
correlated with the probability of being connected by an edge,
then the distance in the embedding can be used a heuristic for
link prediction.
For instance, with LE and HOPE with S = A or with random walks
based approach, the embedding tries to put pairs of nodes con-
nected by an edge closer than unconnected ones. As a conse-
quence, we can assume that the closer two nodes are in the em-
bedding, the more likely it is that they should be connected by an
edge.

Link Prediction with embeddings: super-
vised
In the second approach, we consider each dimension of the em-
bedding as a node feature. For each pair of nodes, we compute a
vector by combining nodes’ vectors.
As with heuristics, a machine learning algorithm is then trained to
predict, from the combined vector, how likely it is to have an edge
between nodes.

Combining node vectors

There are several methods to combine node vectors. Although
it has been observed empirically that the Hadamard product of-
ten gives the best results, this choice is often considered a hyper-
parameter, i.e., all variants are tested and themost e�cient is used
for the �nal prediction.
The most used operators are:

Average (a+b)/2
Concat [a1, a2, ..., ad, b1, b2, ..., bd]

Hadamard [a1 ∗ b1, a2 ∗ b2, ..., ad ∗ bd]
Weighted L1 [|a1 − b1|, |a2 − b2|, ..., |ad − bd|]
Weighted L2 [(a1 − b1)2, (a2 − b2)2, ..., (ad − bd)2]

with a = [a1, a2, ..., ad] and b = [b1, b2, ..., bd]

Howmany dimensions?

There is no universal method to choose a number of dimensions
for the embedding. In the literature, for large graphs, a common
value is d = 128 dimensions. As a general rule, d << n.
Too few dimensions limit the capacity to embed complex infor-
mation, but too many dimensions limit cross-learning, general-
ization,(i.e., over�ts), and make learning from embeddings harder.
More dimensions also require (usually) more computation.

Visualization and embeddings

Network visualization is a domain in itself. Its objective is to assign
positions to nodes in a two dimensional space in order to plot the
network in a meaningful way.
Algorithms such as HOPE or node2vec are not well adapted to
generate visually interpretable 2-dimentional spaces, in part be-
cause the distance in the embedding is based on the cosine dis-
tance, while humans naturally assume euclidean distance. When
embeddings are used for visualization, the �rst step consists
in embedding in a moderate number of dimensions (e.g., 128),
and in a second step, a dimensionality reduction algorithm more
adapted for visualization such as T-SNEa is used to reduce this
number to 2 dimensions.

aVan der Maaten and Hinton 2008.

Community detection with embeddings

Community detection in graphs is equivalent to the clustering
task in non-network data. Intuitively, clustering methods try to
group elements with similar features, and separate those that are
di�erent. Applying a clustering algorithm such as k-means on an
embeddingwill therefore yield clusters of nodes, that can be con-
sidered as communities. In practice, it has been observed that
communities detected by this approach are often similar to those
found by modularity maximization.
Note that unlike with modularity, it is often required to provide
the desired number of clusters –or a distance scale– to cluster-
ing methods.

Going Further

Python Libraries: Karate-club(Rozemberczki, Kiss, and Sarkar
2020)(Goyal and Ferrara 2018a)
Surveys on graph embedding: (Goyal and Ferrara 2018b)(Cai,
Zheng, and Chang 2018)(Cui et al. 2018)
Graph Embedding and link prediction (Mara, Lij�jt, and De Bie
2020)
Distances in Graph embedding (Vaudaine, Cazabet, and Largeron
2020)
Comparing heuristics and Graph Embedding for link prediction
(Sinha, Cazabet, and Vaudaine 2018)
Stacking embeddings and heuristics models for link prediction:
(Ghasemian et al. 2020)

References
[1] Nesreen K Ahmed et al. “role2vec: Role-based network

embeddings”. In: Proc. DLG KDD. 2019.

[2] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan
Chang. “A comprehensive survey of graph embedding:
Problems, techniques, and applications”. In: IEEE Trans-
actions on Knowledge and Data Engineering 30.9 (2018),
pp. 1616–1637.

[3] Peng Cui et al. “A survey on network embedding”. In:
IEEE Transactions on Knowledge and Data Engineering 31.5
(2018), pp. 833–852.

[4] Amir Ghasemian et al. “Stacking models for nearly optimal
link prediction in complex networks”. In: Proceedings of the
National Academy of Sciences 117.38 (2020), pp. 23393–
23400.

[5] Palash Goyal and Emilio Ferrara. “GEM: a Python package
for graph embedding methods”. In: Journal of Open Source
Software 3.29 (2018), p. 876.

[6] Palash Goyal and Emilio Ferrara. “Graph embedding tech-
niques, applications, and performance: A survey”. In:
Knowledge-Based Systems 151 (2018), pp. 78–94.

[7] Aditya Grover and Jure Leskovec. “node2vec: Scalable fea-
ture learning for networks”. In: Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining. 2016, pp. 855–864.

[8] Laurens van der Maaten and Geo�rey Hinton. “Visualizing
data using t-SNE”. In: Journal of machine learning research
9.Nov (2008), pp. 2579–2605.

[9] Alexandru Cristian Mara, Jefrey Lij�jt, and Tijl De Bie.
“Benchmarking Network Embedding Models for Link Pre-
diction: AreWeMaking Progress?” In: 2020 IEEE 7th Interna-
tional Conference on Data Science and Advanced Analytics
(DSAA). IEEE. 2020, pp. 138–147.

[10] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deep-
walk: Online learning of social representations”. In:Proceed-
ings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2014, pp. 701–710.

[11] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel
R Figueiredo. “struc2vec: Learning node representations
from structural identity”. In: Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery
and data mining. 2017, pp. 385–394.

[12] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. “Karate
Club: An API Oriented Open-source Python Framework
for Unsupervised Learning on Graphs”. In: Proceedings of
the 29th ACM International Conference on Information and
Knowledge Management (CIKM ’20). ACM. 2020, pp. 3125–
3132.

[13] Aakash Sinha, Rémy Cazabet, and Rémi Vaudaine. “Sys-
tematic biases in link prediction: comparing heuristic and
graph embedding basedmethods”. In: International Confer-
ence on Complex Networks and Their Applications. Springer.
2018, pp. 81–93.

[14] Laurens Van der Maaten and Geo�rey Hinton. “Visualizing
data using t-SNE.” In: Journal of machine learning research
9.11 (2008).

[15] Rémi Vaudaine, Rémy Cazabet, and Christine Largeron.
“Comparing the preservation of network properties by
graph embeddings”. In: International Symposium on Intelli-
gent Data Analysis. Springer. 2020, pp. 522–534.

