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Spatial Networks

De�nition
A spatial network is a network in which 1)Nodes are associated to
positions, 2) The probability of observing edges between a pair of
nodes depends on their distance.
In most cases, the probability of being connected tends to de-
crease with distance, but this is not a necessary requirement.

Position of nodes - Dimension
The position of each node is described by a vector, i.e., a list of
values. The number of values in the vector is the dimension(d) of
the space in which nodes are located. The most common space
is geographical space: nodes are located by a pair (latitude, lon-
gitude). It is therefore considered a 2D space (even though earth
is a sphere). But spatial networks can exist in spaces with more or
less dimensions, as long as the distance between nodes positions
is meaningful.

Examples of 1D spaces

• TheWatts-Strogatz randomgraph is de�ned on a (circular)
1D space: each node is (initially) connected to its k closest
nodes in this space.

• In social networks, users tend to be more connected with
other users with similar age. We can consider age as a po-
sition on a 1D space. The same is true about political opin-
ions, if we consider a Left-Right spectrum.

Examples of 3+D spaces

• If we consider altitude, geographical networks are 3D
spaces. Neurons in the brain, atoms in proteins are also
embedded in 3D spaces.

• If we consider multiple nodes properties as dimensions,
nodes can be located on high dimensional spaces, e.g.,
age, political opinion, revenue, geographical location, etc.
Be careful however, that analyzing a spatial networks
needs to de�ne the distance between nodes, which can
be tricky to de�ne if dimensions are of di�erent natures.

• Methods such as graph embedding assign to nodes loca-
tions in arbitrary large (e.g., 128) dimensions that summa-
rize some of the network properties (see later class).

Distances
The distance between each pair of nodes can be computed in
di�erent ways, depending on the nature of dimensions nodes are
embedded in. The most common ones are:

• Euclidean distance, or L2distance is the usual, straight
line distance

• Great-Circle distance is used tomeasure the distance be-
tween points located on a sphere, typically the Earth for
geographical data.

• Dot product and Cosine Distance are often used in high
dimensions, in particular when it makes sense to multiply
the location vectors.

• Manhattan distance, orL1distance, is sometimes used as
a variant of Euclidean distance for high dimensional data
(it is simply de�ned as the sum of di�erences in each of
the dimensions.)

• Observed distances can sometimes be used, a typical ex-
ample being average time distance: in datasets of trips
or tra�c, the time distance between dots might be only
loosely proportional to geographical distance.

Metric Space

In most cases, we can consider that a spatial network is embed-
ded in ametric space, a space associatedwith ametricwith prop-
erties of indiscernibility, symmetry and triangle inequality. However,
this is not always the case, in particular in directed networks, in
which it can be useful to consider di�erent distances for links (a, b)
and (b, a) (asymmetry).

Notation
∆uv Metric distance between u and v (Euclidean, Man-

hattan, etc.)
`uv Route distance between u and v, i.e., sum of Metric

distances between nodes on the shortest path be-
tween u and v

s∆u Distance strength, cumulative distance from a node
to its neighbors. s∆u =

∑
v∈N(u) ∆uv . The relation

between ku and s∆u can be studied, for instance to
see if larger nodes tend to connect at longer dis-
tances.

Route factor - Accessibility

Q(u, v) RouteFactor, also called thedetour index,measures
how e�ciently the network allows to go from a node
to another, it is de�ned as the ratio between themet-
ric distance and the route distance:

Q(u, v) =
∆uv

`uv

〈Q(u)〉 Node Accessibility: Average route factor from a
node to all others:

〈Q(u)〉 =
1

N − 1

∑
v

Q(u, v)

〈Q〉 Accessibility: Average route factor for the whole
network:

〈Q〉 =
1

N(N − 1)

∑
u6=v

Q(u, v)



Random Geometric Graphs (RGG)

Random Geometric graphs (RGG), also called Disk-percolation
random graphs, are de�ned as such:

• Distribute n nodes randomly on a bounded d dimensional
space.

• Connect any two nodes at distance less than a parameter
r

Propertiesa are:
Degree distribution: Poissionan, as ER random graphs.

Clustering coe�cient (in large graphs): C = 3
√

2
πd

( 3
4

)
d+1
2 . It

does not depends on the number of nodes, unlike randomgraphs,
thus is not vanishing with network size for �xed average degree.

aDall and Christensen 2002.

Soft RGG (Waxman random graph)

Soft RGG, or Waxman Random Graphsa, starts as the RGG by
distributing nodes at random in a space, but instead of adding
links between all nodes closer than a certain distance, it assign
edges between nodes according to a deterrence function f , i.e.,
a function de�ning how distance a�ects the probability of observ-
ing edges between nodes.
The Soft RGG can model an ER random graph if f is a constant
function, f(∆) = p. It can model a classic RGG if f is a threshold
function with:

f(d) =

{
1 ∆ ≤ r
0 ∆ > r

aWaxman 1988.

Deterrence function
A deterrence function de�nes how the distance a�ects the prob-
ability of observing an edge. It can be a probability (bounded on
[0, 1]), or de�ne a change ratio.

1. It can bede�nedapriori, usually as a classicmonotonically
decreasing function, e.g., Negative exponential(f(∆) =
e−α∆) or Negative power (f(∆) = ∆−α), with α a param-
eter. A typical example of negative power in geographi-
cal data is when the probability of observing an edge de-
creases as the square of the distance, i.e., f(∆) = 1

∆2

2. It can also be learned from data, either by �tting parame-
ters of a prede�ned function (e.g., the α parameter above),
or by using an Ad-Hoc deterrence function.

Ad-Hoc deterrence function
When a spatialmodel is used to create a randomized version of an
observed network, the most appropriate deterrence function can
be learned from data. A simple way to achieve this is to count the
fraction of edges occurring between nodes at a given distance,
and to compare it with edges that should appear at random if
there was no spatial e�ect. To avoid over�tting (each pair of node
being at di�erent distances with in�nite precision), we usually cre-
ate bins of relevant size, e.g., every cm, km, 100km, etc., or using
bins of exponentially growing size, e.g., [0,1],[1,3],[3,7],[7,15],[15,31].
More formally, the deterrence function is de�ned as:

f(δ) =

∑
i,j|∆ij=δ Aij∑
i,j|δij=δMij

with Aij the adjacency matrix (or weight matrix) of the observed
graph and Mij the probability of observing an edge (or weight
of edges) between nodes i and j according to the chosen null
model. For instance, with the simplest hypothesis that edges oc-
cur completely at random, ∀i,j ,Mij = d (with d the network den-
sity).

Non monotony of deterrence function

In a variety of real situations, ad-hocdeterrence functions are non-
monotonous. Think of car trips, plane trips, bicycle trips, etc. It is
not e�cient to use such transportation systems for trips shorter
than a given distance, and thus the deterrence function is initially
increasing, until reaching the distance of optimal e�ciency, from
which the function start decreasing.

Gravity Model of Spatial Interactions

TheGravityModel of Spatial Interaction has been known for a long
time in Geography. It is de�ned by analogy with Newton’s law of
gravitation and, in its original form, says that the strength of the
relation between two places (countries, cities, etc.) is proportional
to they power of attraction P and to the inverse of their distance.
More formally, the expected strength of interaction Gij between
locations i and j is:

Gij = K
P outi P inj

∆2
ij

Common examples would be a model of a job market between
cities, with P ini the number of jobs o�ered in city i and P outi the
number of job seekers in city i. K is a normalization constant.

Relaxed Gravity Model

The gravity model can be relaxed to accept any deterrence func-
tion, chosen apriori or �tted on data. The important di�erence
with a soft RGG is that the probability of observing interactions is
proportional to the attractiveness of entities. More formally:

Gij = P outi P inj f(∆ij)

Network Gravity Model

The gravity model naturally translates as a Spatial Con�guration
Model, by considering that the degree of nodes correspond to
their power of attraction. It is intuitively expressed in network
terms as follows: each of the out-going stub of node i connects at
randomwith an in-going stub of all other nodes, with a probability
biased by the deterrence function.

Deterrence function in Gravity Model

The customdeterrence function of a graph that wewant tomodel
using a Gravity Model can be expressed as:

f(d) =

∑
i,j|dij=d Aij∑
i,j|dij=d

kikj
2L

This is because the probability to observe edges between two
nodeswithout spatial e�ect is de�ned by the Con�gurationModel.

Degree-Preserving Gravity Model

A weakness of the network gravity model is that it does not pre-
serve degrees: if we consider two nodes for which we have ob-
served a same degree k, one located in the center of space, and
thus having many other nodes at positively biased distances, and
the other at the periphery having fewer nodes at those distances,
the peripheral node will having fewer edges according to the net-
work model than the central one. A solutiona to correct this is to
�t nodes attractiveness that would best explain the observed de-
grees, for a given graph and a given deterrence function.

aCazabet, Borgnat, and Jensen 2017.



Radiation Law of Spatial Interactions

The Radiation Lawa is another random spatial model. Unlike pre-
vious ones, it does not depends on a deterrence function, and is
parameter-free. It is based on the principle of relative opportuni-
ties: the probability of observing an interaction from i to j depends
on P outi , P inj , and the sum of all P ink for ∆ik < ∆ik , i.e., other op-
portunities accessible at a shorter distance. More formally:

Rij = kouti

P outi P inj

(P outi + sij)(P outi + P inj + sij)

With sij =
∑

u∈V,∆iu<∆ij

P inu the sum of opportunities at a shorter

distance than the target.

aSimini et al. 2012.

Radiation Law of Spatial Interactions

Illustration of the zone sij in which opportunities decrease the
probability of interactions between i and j .

i
j

Sij

Radiation Law VS Gravity Law

The advantage of the radiation law compared with the gravity law
is that two nodes located at the same distance and of similar de-
grees can have di�erent edge probabilities depending on their
surroundings. Intuitively, the expected relation between two small
scale cities at distance l is di�erent if both cities are far from any
other large town, or if a Metropolis lies between them.
On the contrary, the weakness of the Radiation Law comes from
its simplicity: without deterrence function, it is impossible to take
into account non-linear and non-monotonic in�uence of the dis-
tance.

Space-Corrected Community Detection

Community detection applied to spatial networks tends to yield
communities corresponding to a spatial partition of space, even if
there is actually no boundary between those regions. A method
as been proposeda to remove the in�uence of space, and thus
discover communities corresponding to non-spatial (social, etc.)
e�ects, usually hidden behind the in�uence of spatial constraints.
The principle is to use a Modularity-maximization algorithm, in
which the null-model used byModularity (usually, a Con�guration
Model) is replaced by a spatial model (usually, a Gravity Model)

Map of Belgium. Black Line: communities without spatial
correction(geographic partitions). Colors: Space-corrected

partition (linguistic partition).

aExpert et al. 2011.

Going further

Spatial Networks: (Barthélemy 2011)
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