
Experimenting with Spreading Processes

Several libraries exist to do diffusion on networks. I propose to use ndlib , that can be installed
using pip .
You can have a look at the tutorial to get started: https://ndlib.readthedocs.io/en/latest/
tutorial.html.

1. Spreading on a real network
(a) Initialize a SIR model on the airport network using

import nd l ib . models . ep idemics as ep
model = ep . SIRModel (g)

(b) Create and initialize a custom configuration for your model, following https://ndlib.readthedocs.
io/en/latest/tutorial.html#configure-the-simulation. Start with 1% of nodes infected, and
a same value for β and γ.

(c) Still following the tutorial, run the simulation, plot the evolution of the fraction of nodes that are
Infected and Removed. Note: you need to run the command output notebook() once before
show() in order for the plot to appear in a notebook. If it is too fast or too slow, adjust the

parameters.
(d) Run the simulation a few times and observe if the results differ from one run to the next.

Tip: if you want, you can ”play” the evolution of the diffusion on the graph by
doing 1 or a few iterations at a time, and plotting the graph with something like:
nx.draw networkx(g,pos=coordinates,node color=list(model.status.values()),with labels=False)

Optional: To properly study the results of simulations, you should analyze results averaged
over many simulations. If you see how to do such tests with python, you can extract the
results of a simulation using for instance trends[0]["trends"]["node count"][1] , and
create averaged plots, or learn how to use ndlib build-in tools.

2. Spreading compared with synthetic networks
(a) Create an ER random graph with the same number of nodes and edges than the airport network.

Run an SIS model on it (check the names of parameters at https://ndlib.readthedocs.io/en/
latest/reference/models/epidemics/SIS.html), initially with beta=0.1 and lambda=0.1 .

(b) Let’s say that we identified a virus with lambda=0.1 , and that we can use policies to reduce β.
What is the value of β above which there will be an outbreak, in theory, on this ER random network
?. Check that if the value is below it, the diffusion stops early, and that, if it is above, the diffusion
reach a stable point at a value which depends only on the parameter and the average degree.

(c) Test the same model on the original network, with values of β below and above the threshold. What
do you observe?

3. Optimal node removal
(a) Let’s assume that we can vaccinate some limited fraction of nodes. In practice, vaccinated nodes

are removed from the network before running the SIR model. Starting with beta=0.025 and
lambda=0.1 , what fraction of nodes to you need to vaccinate so that the virus infect less than

30% of non-vaccindated nodes? You can remove random nodes with:

https://ndlib.readthedocs.io/en/latest/tutorial.html
https://ndlib.readthedocs.io/en/latest/tutorial.html
https://ndlib.readthedocs.io/en/latest/tutorial.html#configure-the-simulation
https://ndlib.readthedocs.io/en/latest/tutorial.html#configure-the-simulation
https://ndlib.readthedocs.io/en/latest/reference/models/epidemics/SIS.html
https://ndlib.readthedocs.io/en/latest/reference/models/epidemics/SIS.html

g2=g . copy ()
g2 . remove nodes from (random . sample (l i s t (g . nodes ()) , X))

(b) Same question but removing nodes of largest degrees. You can for instance use the following code to
sort airports by degree: top nodes = sorted(dict(g.degree).items(),key=lambda x:x[1],reverse=True)

(c) Same question but removing nodes of largest betweenness

4. Going further: Dependence on initial conditions
(a) Using cfg.add model initial configuration("Infected", infected nodes) , you can choose

which nodes are infected in the beginning. Start by infecting the 5 nodes of highest degrees, then
the 5 nodes of lowest degrees. Observe the differences.

(b) Start by infecting 5 nodes in the same country, and then 5 random nodes. Observe the differences.

Page 2

