
Experimenting with Graph embeddings

As in previous classes, if your computer has limited amount of memory or just if you want to save
time when experimenting, you can create a subgraph of the airport dataset, for instance only with
the most important nodes, or only nodes in a region of the world.

For this class, we will use the karateclub library, which contains implementation of various graph
embedding methods. As usual, you can install it with pip install karateclub .

1. Preparing the network
(a) karateclub library requires graph to respect some specific properties: the graph must be composed

of a single connected component, and node names must be integers from 0 to n. First, load the
airport graph.

(b) Extract the highest connected component. You can use
G=G.subgraph(max(nx.connected components(G), key=len)).copy()

(c) Rename nodes from 0 to n, using nx.relabel nodes . To easily retrieve names later, you should
keep a dictionary associating node numbers to names, or add the original name as an attribute to
the graph (nx.set node attributes)

2. Computing your first node embedding
(a) Using karateclub library, initialize a DeepWalk embedding model with

model= DeepWalk(dimensions=16,window size=5) . dimensions corresponds the number of
dimensions in the resulting embedding, and window size corresponds to how far away in a random
walk 2 nodes can be and still considered in the context of one another.

(b) With model.fit(G) , you can compute the embedding on graph G . On the airport dataset, it
should take less than a minute or two.

(c) With X = model.get embedding() , you can now retrieve the embedding of all nodes as a matrix.
X[0] returns a vector with d elements corresponding to the vector of node 0 in the embedded

space.

3. Making sense of the embedding
(a) A good way to check that the embedding makes sense is to plot it. To do so, the first step is to convert

it from its original number of dimensions to 2 dimensions. You can use the TSNE method, with
from sklearn.manifold import TSNE and X 2 = TSNE(n components=2).fit transform(X) .

(b) You can now use draw networkx (passing the 2d embedding to the pos= parameter) or Gephi to
plot the graph (with the geolayout plug-in and dimensions as latitudes and longitudes). You can
either assign colors corresponding to countries to the nodes, or just look at node labels to check that
nodes that are close in the graph (i.e., usually, geographically close) are close in the embedding. A
quick and dirty way is simply to plot a large graph with plt.figure(1,figsize=(30,30)) before
calling draw networkx .

4. Computing distances
(a) Compute distances/similarities between all pairs of different nodes according to the original embed-

ding. You can use for instance sklearn.metrics.pairwise.cosine similarity .

(b) What are the nodes closest to Paris (PAR Paris) in the embedding? Does it seem relevant for
link prediction? What about the closest nodes overall? Remember that we have not used any
geographical information to obtain this embedding.

(c) Using the code written for heuristics in the previous class, evaluate the quality of link prediction
based on the node pair ordering. (If you do not have such a code ready, you can skip this question.)

5. Comparing embeddings
(a) Answer the same questions as previously, using Role2Vec. Observe the difference between locational

and role embedding.
(b) Answer the same questions as previously, on DeepWalk computed with a significantly different

number of dimensions. Compare the results.
(c) Answer the same questions as previously, on DeepWalk computed with a significantly different

context size. Compare the results.

6. Going Further
(a) Use DeepWalk embedding to do supervised link prediction.

Page 2

