
Experimenting with randomized versions of networks

1. Comparing networks and their randomized versions.

I recommend to use the airport dataset for interpreting results, but if it is too slow, you can write
your code on a smaller network, such as the TV series dataset.

(a) Using networkx, load the airport dataset.
(b) Generate an ER random version of it. You can use gnp random graph or gnm random graph

methods.
(c) Generate also a configuration model version of it, using expected degree graph , and the degrees

observed for the real network (e.g., with g.degree)

(d) Compare the network properties of the 3 different versions of the graph, at least the average degree,
clustering coefficient, average path length (takes <3 min. on a google colab notebook). Interpret
in terms of small-worldness

(e) Compute the (approximate) betweenness, closeness, and PageRank of nodes in the three networks.
Compare the largest values between them: are the nodes of highest values the same? Are the
highest score similar?

(f) Plot the distribution of degrees, betweenness and closeness for each network, and compare them.

Plotting properly power-law distributions can be tricky. A simple way to do it is to use
collections.Counter to count occurences of each degree, and plot the resulting keys

and values as a scatter plot (x=degree,y=occurences(frequencies)). With seaborn you
can also use ecdfplot to plot cumulative distributions.You can plot with loglog scales
(ax.set(xscale="log", yscale="log")).

2. Going further : Generating Scale-Free networks with Preferential Attachment.

Networkx has a function to create networks following the preferential attachment principle
(barabasi albert graph), but we would like to study the dynamic of the model, so we will
code our own version.

(a) Using networkx, generate an initial random ER network composed of a small number of nodes
(b) Write a for loop, such as each iteration adds a new node to the network, with a small number

of edges, each of them connected to existing nodes with a probability proportional to their degree
(preferential attachment). You can use, for instance, the method random.choices

(c) Plot the degree distribution, with and without a log-log scale.
(d) We want to observe how node degrees increase over time. For a few nodes (e.g., nodes 1, 2, 3, 9,

10, 11, 19, 20, 21), plot the evolution of their degree, for instance on a plot such as x=iteration,
y=degree, one line per node.

(e) Compare the degree distribution after the first, last, and some intermediary steps.

To plot several distributions on a same plot, you can either use seaborn.scatterplot ,
providing a long form pandas dataframe, i.e., a dataframe with 3 columns (x,y,label) such as
each row correspond to one point (x,y) of the experiment represented by label. The plot is
then done calling scatterplot(x="x",y="y",hue="label",data=dataframe) . Another
solution is to call several time pyplot plt.plot(x, y, ’color’, label=’label’) func-
tion.

(f) Vary the number of initial nodes, the number of nodes to add and the number of edges added by
each node, and observe how the final degree distribution is affected.

3. Going further : fitting exponents
(a) We have seen that a power law distribution is defined by its exponent. We would like to find the

exponent of our distribution. First, we try to find it manually. The exponent is the slope of the
line on a log-log plot. Can you find it graphically? (e.g., if you move one unit to the right on the x
axis, how many units are you going down on the y axis to stay on the line)

(b) Let’s try to fit by trial and error. Draw lines corresponding to power law distributions of intersect
C and exponent α, using the formula of the power law distribution.

A simple way to draw distribution is to generate series of values for x, e.g.,
x = np.arange(1,100, dtype=float) , and then to compute the y value for each of those

x, e.g., y = a*x+b)

(c) A naive way to fit the exponent would be to use a least-square regression on log values, i.e.,
find the slope of the line that we can observe on a log-log plot. You can use for instance the
LinearRegression method of package sklearn, model = LinearRegression.fit(log x,log y) ,

with log x and log y being the log values of observed x and y. Intercept and exponent can be ob-
tained with model.intercept and model.coef .

(d) Plot the line and check how well it fits the model. If you’re not satisfied, try to impose min and
max values of degree to consider.

(e) Fitting power laws with least square is known to be tricky. The powerlaw package has been devel-
oped to help doing it properly. Using the documentation https://pythonhosted.org/powerlaw/,
use the package to find the exponent of your distribution. How close is it from your previous ex-
periments? Which one corresponds the most to what is known in theory about the exponent of the
prefential attachment model?

Page 2

