COMMUNITY DETECTION
(GRAPH CLUSTERING)



LOUVAIN ALGORITHM

Move nodes

Level 1
Level 2
Mave nadec

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.



RESOLUTION LIMIT

» Modularity == Definition of good communities !

» 2006-2008: series of articles [Fortunato,Lancicchinetti,Barthelemy]

» Resolution limit of Modularity

BB cc ARl example

Fortunato, Santo, and Marc Barthelemy. "Resolution limit in community detection." Proceedings of the national academy of sciences 104.1 (2007): 36-41.
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RESOLUTION LIMIT

Let's consider a ring of cliques
~ &K Cligues are as dense as possible

Single edge between them:
& | =>As separated as possible

Any acceptable algorithm=>tach cligue I1s a community



EOMMUNITY DE | EC THEHS.

» Community detection Is equivalent to “clustering” in
unstructured data

» Clustering: unsupervised machine learning

» Find groups of elements that are similar to each other
- People based on DNA, apartments based on characteristics, etc.

» Hundreds of methods published since 1950 (k-means)
» Problem: what does “similar to each other’ means !



OTHER WEAKNESSES

» Modularity has other controversial/not-intuitive properties:

» Global measure => a difference in one side of the network can change
communities at the other end (imagine a growing clique ring...)

» Unable to find no community:

- Network without community structure: Max modularity for partitions driven by random
noise

» lo this day, Louvain and modularity remain most used

methods

» Results are usually “good™/useful
» Some newer methods gain popularity (SBM, Leiden,...)
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HER WEAKNESSES
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MUNITY DETECTICHS

MiniBatchKMeansAffinityPropagation = MeanShift SpectralClustering

Ward AgglomerativeClustering DBSCAN Birch GaussianMixture




RESOLUTION LIMIT

» Multi-resolution modularity

ieii—aiz * Ze — la?

A = Resolution parameter

More a patch than a solution...



ALTERNATIVES

* Most serious alternatives (in my opinion)

» Infomap (based on information theory —compression)
» Stochastic block models (bayesian inference)

* [hese methods have a clear definition of what are good
communities. [ heoretically gsrounded



INFOMAP

* [Rosvall & Bergstrom 2009]

* Find the partition minimizing the description of any random
walk on the network

* We want to compress the description of random walks

Rosvall, Martin, and Carl T. Bergstrom. "Maps of random walks on complex networks reveal community structure." Proceedings of the National Academy of Sciences 105.4
(2008): 1118-1123.



INFOMAP

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 11
0011 1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1011 10 111 000 10 111 000 111 10 011 10 000 111 10 111 10 10
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m 1110 00011

Description
Random Without

L With communities
walk Communities

Huffman coding: short codes for frequent items
Prefix free: no code is a prefix of another one (avoid fix length/separators)




The Infomap method
Finding the optimal partition M:

- Shannon’s source coding theorem (Shannon’s entropy)
for a probability distribution P = {pi} L(p) — H(P) == Zpl lngi

- Minimise the expected description length of the random walk
Sum of Shannon entropies of multiple codebooks weighted by the rate of usage

probability of within modules movements
of a RW

N\ mo
LM) = g~ H(2) + Y, p~H(P)

/ = X

. Cost of movement between modules,
Expected decryption i.e. the frequency weighted average
length of partition M - 9 y weid 9

length of codewords
Algorithm

probability of between modules
movements of a RW

Cost of movements inside the module

1. Compute the fraction of time each node is visited by the random walker (Power-
method on adjacency matrix)

2. Explore the space of possible partitions (deterministic greedy search algorithm - similar to
Louvain but here we join nodes if they decrease the description length)

3. Refine the results with simulated annealing (heat-bath algorithm)



INFOMAP

SleRs i Up:

» Infomap defines a quality function for a partition different than modularity
» Any algorithm can be used to optimize it (like Modularity)

» Advantage:

» Infomap can recognize random networks (no communities)
» Good results in practice, fast.



OCHAS 11C BLOCK MOE S

» Stochastic Block Models (SBM) are based on statistical models
of networks

* They are In fact more general than usual communities.

* The model Is:

» Each node belongs to | and only | community
» To each pair of communities, there Is an associated density (probability of each
EeSERiO eXiST)



Stochastic block models

Stochastic Block Models (SBM)

A stochastic block model is a random graph model defined by:

% number of blocks

b n X 1 vector such as b; describes the index of the
block of node <.

E k x k stochastic block matrix, such as E;; gives

the number of edges between blocks ¢ and j (or
the probability to observe an edge between any pair
of nodes chosen with one node in each of the two
blocks).

Generating networks
1. Take N disconnected nodes

2. Connect each u,v € V' nodes with probability Epq,sn)

Properties:
« Every vertices in a same module are statistically equivalent
 Vertices in a module are connected by a random graph

- Emergent degree distribution is a combination of Poisson distributions



OCHAS 11C BLOCK MOE S

B EIRCan represent different things:

» Associative SBM: density inside nodes of a same communities >> density of
pairs belonging to different communities.

Adjacency Matrix Blockmodel Graph Adjacency Matrix Blockmodel
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OCHAS 11C BLOCK MOE S

* Being able to represent any block preference is powerful and
botentially relevant

* Problem: Often hard to interpret in real situations.
» SBM can be “constrained’: we impose that intra d.>inter d.



OCHAS 11C BLOCK MOE S

» General idea of SBM community detection:

» Specify the desired number of cluster
» Find parameters to optimize the maximum likelihood

- Principle: The best parameters are those that allow to generate the observed network with
the highest probability

» Main weakness of this approach

» Number of clusters must be specified (avoid trivial solution)



OCHAS 11C BLOCK MOE S

» Solution to the number of blocks problem:

BEAIEGT e xoto

» Minimum Description Length (MDL) (Occam’s razor)

» VWe minimise the cost of encoding
- The model (its parameters)

- The graph knowing the model



OCHAS 11C BLOCK MOE S

. : , A: adjacency matrix
|ﬂfO FmatIOﬂ Th &0 FetIC FO 'mMmu |atIOﬂ : degjgree seyquence
e: I\/Iatrli>'< of edges between blocks
Model cost (bits) NS B o

G lOgZP(A | k, e, b) # bits necessary to encode the

graph knowing the model

= — lOgZP(k, €, b) # bits necessary to encode the model

Objective = maximize the graph compression.
-Too many communities: over-complexifying the model

-Too few communities: Harder to encode the graph, since the model provides few useful
information

@ EGam s razor

Peixoto, Tiago P. "Bayesian stochastic blockmodeling." arXiv preprint arXiv:1705.10225 (2017).



OCHAS 11C BLOCK MOE S

@ s i LIp:

» SBM have a convincing definition of communities

In practice, inference usually slower than louvain/infomap
But more powerful

Can also say If there i1s no community

And also suffer from a form of resolution limrt

v

v

v

v

» Less often used, but regain popularity since works by Peixoto.
» Variants: degree-corrected, overlapping, corrected for clustering. ..



EVALUATION OF
COMMUNITY STRUCTURE



EVALUATION

* We Inturtively “know"” what are good communities

« But we have:

» Several mathematical formulations
» Several optimisation (greedy...) algorithms that might introduce biases.

 How to know which method to use !



EVALUATION

* lwo main approaches:

» Intrinsic/Internal evaluation
- Partrtion quality function
- Individual Community quality function
» Comparison of observed communities and expected communities

- Synthetic networks with community structure
- Real networks with Ground Truth



INTRINSIC EVALUATION



INTRINSIC EVALUATION

» Partition quality function
» Already defined: Modularity, graph compression, etc.

» Quality function for individual community

» Internal Clustering Coefficient

| Epye |
t
B Eondlciance: =
|E0ut|+|Ein| | E |5
- Fraction of external edges # of links to nodes inside

(respectively, outside) the
community



COMPARISON WITH
GROUND TRUTH



SYNTHETIC NETWORKS

e Planted Partition models:

» Another name for SBM with manually chosen parameters
- Assign degrees to nodes
- Assign nodes to communities
- Assign density to pairs of communities
- Attribute randomly edges

» Problem: how to choose parameters?

- Erther oversimplifying (all nodes same degrees, all communities same #nodes, all intern
densities equals...)

- Or ad-hoc process (sample values from distributions)



SYNTHETIC NETWORKS




SYNTHETIC NETWORKS

* LFR Benchmark [Lancichinetti 2008]

» High level parameters:
- Slope of the power law distribution of degrees/community sizes
- Avg Degree, Avg community size
- Mixing parameter: fraction of external edges of each node
» Varying the mixing parameter makes community more or less well defined

REREEently/ the most popular



SYNTHETIC NETWORKS

LFR Benchmark Networks with 200 Nodes

p=0.1
#Edges=2206

1=0.3
#Edges=2628

#Edges= 2462

e

—



SYNTHETIC NETWORKS

* Pros of synthetic generators:

» We know for sure the communities we should find
» We can control finely the parameters to check robustness of methods

- For instance, resolution limit. ..

RO GRS

» Generated networks are not realistic: simpler than real networks
- LFR:High CC, scale free, but all nodes have the same mixing coefficient, no overlap, ...

- SBM: depend a lot on parameters, random generation might lead to unexpected ground
truth (it I1s possible to have a node with no connections to other nodes of its own
community...)



REAL NETWORKS WITH GT

* In some networks, ground truth communities are known:

» Social networks, people belong to groups (Facebook, Friendsters, Orkut,
students In classes...)

» Products, belonging to categories (Amazon, music...)

» Other resources with defined groups (Wikipedia articles, Political groups for
vote data...)

* Some websites have collected such datasets, e.g.
» http://snap.stanford.edu/data/index.ntml|



http://snap.stanford.edu/data/index.html

REAL NETWORKS WITH GT

e Pros of GT communities:

» Retain the full complexity of networks and communities

R@GnS:

» No guarantee that communities are topological communities.

» In fact, they are not: some GT communities are not even a single connected
EONNPONENL. . .

» Currently, controversial topic

» Some authors say It Is non-sense to use them for validation
» Some others consider It necessary



REAL NETWORKS WITH GT

* Example: the most famous of all networks: Zackary Karate
Club

) (@)
(L
SN )
oZAloN\wdo
§ 7/ \\'G It your algorithm find the right
Q"ng@," ® 0" communities,

“i‘ 24D W Then it is wrong...
e X ®
— N




MEASURING PARTITION
SIMILARITIES

B itaetc or G, we get:

» Reference communities
» Communities found by algorithms

* How to measure their similarity ¢
» NMI => AM|
» AR|



MEASURING PARTITION
SIMILARITIES

H(Y

 NMI: Normalized Mutual Information

» Classic notion of Information Theory: Mutual Information

» How much knowing one variable reduces uncertainty about the other
» Or how much in common between the two variables

- s (20

VoY 2o X z) p(y)

* Normalized version: NM|
» O independent, |: identical

MI(U,V)—-E{MI(U,V)}

e Adjusted fOI” chance: aNMI A O max {H(U), H(V)} — E{MI(U,V))




MEASURING PARTITION
SIMILARITIES

I(X;Y)=) > p(z,y)log (1,2()();;))

/

For all pairs of clusters taken in different partitions

Probability for a node picked at random to belong to both|x and y

Probably for a node picked at random to belong to x
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ALGORITHMS COMPARATIVE
ANALYSIS
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Lancichinetti, Andrea, and Santo Fortunato. "Community detection algorithms: a comparative analysis." Physical review E 80.5 (2009): 056117.



ALGORITHMS COMPARATIVE
FUNALTSIS

Rank | Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gee 32

All methods Overlapping only

Coscia, Michele. "Discovering Communities of Community Discovery." arXiv preprint arXiv:1907.02277 (2019).



BTHER MESO-5CATR
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MESO-SCALE

* MACRO properties of networks:

» degree distribution, density, average shortest path...

@RS roperties of hetworks:

» Centralities

« MESO-scale: what Is In-between

» Community structure

» Overlapping Community Structure
» Core-Periphery

» Spatial Organization (another class)



CORE-PERIPHERY

» Already introduced In the first class, k-cores, etc.

Figure 4 -~ Core/Periphery Network

R — —

Core-periphery structure in networks  adjacency matrix
core periphery

core

inner core

. .. ...... . o .....
periphery R X
edge (source colour)

o
@® outer core
@

—

S — —



OVERLAPPING COMMUNITIES

* In real networks, communities are often overlapping

» Some of your High-School friends might be also University Friends
» A colleague might be a member of your family

s

» Overlapping community detection is considered much harder

» And Is not well defined

» Difference between “attributes” and overlapping

communities !
» Community of Women, Community of | /7-19yo, Community of fans of...



OVERLAPPING COMMUNITIES

 Many algorithms

» Adaptations of modularity, random walks, label propagations. ..
» Original methods

» Many local methods (local criterium), unlike global optimization for non-
overlapping methods.



OVERLAPPING COMMUNITIES

« Motif-based definitions:

» Cliques
= Of a given size

- Maximal cligues
» N-cliques
- Set of nodes such as there is at least a path of length <=N between them
- Generalization of cliques for N> |
- Computationally expensive



K-CLIQUE PERCOLATION

R@inEr ridme: CPM, C-finder)
* Parameter: size k of atomic cliques
» | )Find all cliques of size k

» 2)merge Iteratively all cliques having k-1 nodes iIn common



K-CLIQUE PERCOLATION

9
10

2 5 7 Cliques for k=3:
1 {1,2,3},{1, 3,4},{2, 5, 6}
{5,6,7},15,6,8},{6, 7,8}

{5,7,8},{5, 7,9}

3 4 6 8
k-clique Communities: {2,5.6} {1.2,3}
{1, 2, 3, 4}
{2, 5,6,7,8, 9} {5,6,7}_ {5,6,8}

(57.9) (1.34)

(5,7,8} {6,7,8}




HIERARCHICAL
COMMUNITIES

Lancichinetti, Andrea, et al. "Finding statistically significant communities in networks." PloS one 6.4 (2011): e18961.
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